41 Search Results for "Paulusma, Daniël"


Document
Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set

Authors: Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
For a tree decomposition 𝒯 of a graph G, by μ(𝒯) we denote the size of a largest induced matching in G all of whose edges intersect one bag of 𝒯. The induced matching treewidth of a graph G is the minimum value of μ(𝒯) over all tree decompositions 𝒯 of G. Yolov [SODA 2018] proved that for graphs of bounded induced matching treewidth, tree decompositions with bounded μ(𝒯) can be computed in polynomial time and Max Weight Independent Set can be solved in polynomial time. In this paper we explore what other problems are tractable in such classes of graphs. As our main result, we give a polynomial-time algorithm for Min Weight Feedback Vertex Set. We also provide some positive results concerning packing induced subgraphs, which in particular imply a PTAS for the problem of finding a largest induced subgraph of bounded treewidth. These results suggest that in graphs of bounded induced matching treewidth, one could find in polynomial time a maximum-weight induced subgraph of bounded treewidth satisfying a given CMSO₂ formula. We conjecture that such a result indeed holds and prove it for graphs of bounded tree-independence number, which form a rich and important family of subclasses of graphs of bounded induced matching treewidth. We complement these algorithmic results with a number of complexity and structural results concerning induced matching treewidth, including a linear relation to treewidth for graphs with bounded degree.

Cite as

Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel. Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 85:1-85:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lima_et_al:LIPIcs.ESA.2024.85,
  author =	{Lima, Paloma T. and Milani\v{c}, Martin and Mur\v{s}i\v{c}, Peter and Okrasa, Karolina and Rz\k{a}\.{z}ewski, Pawe{\l} and \v{S}torgel, Kenny},
  title =	{{Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{85:1--85:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.85},
  URN =		{urn:nbn:de:0030-drops-211569},
  doi =		{10.4230/LIPIcs.ESA.2024.85},
  annote =	{Keywords: induced matching treewidth, tree-independence number, feedback vertex set, induced packing, algorithmic meta-theorem}
}
Document
Finding Maximum Common Contractions Between Phylogenetic Networks

Authors: Bertrand Marchand, Nadia Tahiri, Olivier Tremblay-Savard, and Manuel Lafond

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
In this paper, we lay the groundwork on the comparison of phylogenetic networks based on edge contractions and expansions as edit operations, as originally proposed by Robinson and Foulds to compare trees. We prove that these operations connect the space of all phylogenetic networks on the same set of leaves, even if we forbid contractions that create cycles. This allows to define an operational distance on this space, as the minimum number of contractions and expansions required to transform one network into another. We highlight the difference between this distance and the computation of the maximum common contraction between two networks. Given its ability to outline a common structure between them, which can provide valuable biological insights, we study the algorithmic aspects of the latter. We first prove that computing a maximum common contraction between two networks is NP-hard, even when the maximum degree, the size of the common contraction, or the number of leaves is bounded. We also provide lower bounds to the problem based on the Exponential-Time Hypothesis. Nonetheless, we do provide a polynomial-time algorithm for weakly galled trees, a generalization of galled trees.

Cite as

Bertrand Marchand, Nadia Tahiri, Olivier Tremblay-Savard, and Manuel Lafond. Finding Maximum Common Contractions Between Phylogenetic Networks. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 16:1-16:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{marchand_et_al:LIPIcs.WABI.2024.16,
  author =	{Marchand, Bertrand and Tahiri, Nadia and Tremblay-Savard, Olivier and Lafond, Manuel},
  title =	{{Finding Maximum Common Contractions Between Phylogenetic Networks}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{16:1--16:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.16},
  URN =		{urn:nbn:de:0030-drops-206606},
  doi =		{10.4230/LIPIcs.WABI.2024.16},
  annote =	{Keywords: Phylogenetic networks, contractions, algorithms, weakly galled trees}
}
Document
Graph Search Trees and the Intermezzo Problem

Authors: Jesse Beisegel, Ekkehard Köhler, Fabienne Ratajczak, Robert Scheffler, and Martin Strehler

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
The last in-tree recognition problem asks whether a given spanning tree can be derived by connecting each vertex with its rightmost left neighbor of some search ordering. In this study, we demonstrate that the last-in-tree recognition problem for Generic Search is NP-complete. We utilize this finding to strengthen a complexity result from order theory. Given a partial order π and a set of triples, the NP-complete intermezzo problem asks for a linear extension of π where each first element of a triple is not between the other two. We show that this problem remains NP-complete even when the Hasse diagram of the partial order forms a tree of bounded height. In contrast, we give an XP-algorithm for the problem when parameterized by the width of the partial order. Furthermore, we show that - under the assumption of the Exponential Time Hypothesis - the running time of this algorithm is asymptotically optimal.

Cite as

Jesse Beisegel, Ekkehard Köhler, Fabienne Ratajczak, Robert Scheffler, and Martin Strehler. Graph Search Trees and the Intermezzo Problem. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beisegel_et_al:LIPIcs.MFCS.2024.22,
  author =	{Beisegel, Jesse and K\"{o}hler, Ekkehard and Ratajczak, Fabienne and Scheffler, Robert and Strehler, Martin},
  title =	{{Graph Search Trees and the Intermezzo Problem}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.22},
  URN =		{urn:nbn:de:0030-drops-205781},
  doi =		{10.4230/LIPIcs.MFCS.2024.22},
  annote =	{Keywords: graph search trees, intermezzo problem, algorithm, parameterized complexity}
}
Document
Minimal Obstructions to C₅-Coloring in Hereditary Graph Classes

Authors: Jan Goedgebeur, Jorik Jooken, Karolina Okrasa, Paweł Rzążewski, and Oliver Schaudt

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
For graphs G and H, an H-coloring of G is an edge-preserving mapping from V(G) to V(H). Note that if H is the triangle, then H-colorings are equivalent to 3-colorings. In this paper we are interested in the case that H is the five-vertex cycle C₅. A minimal obstruction to C₅-coloring is a graph that does not have a C₅-coloring, but every proper induced subgraph thereof has a C₅-coloring. In this paper we are interested in minimal obstructions to C₅-coloring in F-free graphs, i.e., graphs that exclude some fixed graph F as an induced subgraph. Let P_t denote the path on t vertices, and let S_{a,b,c} denote the graph obtained from paths P_{a+1},P_{b+1},P_{c+1} by identifying one of their endvertices. We show that there is only a finite number of minimal obstructions to C₅-coloring among F-free graphs, where F ∈ {P₈, S_{2,2,1}, S_{3,1,1}} and explicitly determine all such obstructions. This extends the results of Kamiński and Pstrucha [Discr. Appl. Math. 261, 2019] who proved that there is only a finite number of P₇-free minimal obstructions to C₅-coloring, and of Dębski et al. [ISAAC 2022 Proc.] who showed that the triangle is the unique S_{2,1,1}-free minimal obstruction to C₅-coloring. We complement our results with a construction of an infinite family of minimal obstructions to C₅-coloring, which are simultaneously P_{13}-free and S_{2,2,2}-free. We also discuss infinite families of F-free minimal obstructions to H-coloring for other graphs H.

Cite as

Jan Goedgebeur, Jorik Jooken, Karolina Okrasa, Paweł Rzążewski, and Oliver Schaudt. Minimal Obstructions to C₅-Coloring in Hereditary Graph Classes. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 55:1-55:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goedgebeur_et_al:LIPIcs.MFCS.2024.55,
  author =	{Goedgebeur, Jan and Jooken, Jorik and Okrasa, Karolina and Rz\k{a}\.{z}ewski, Pawe{\l} and Schaudt, Oliver},
  title =	{{Minimal Obstructions to C₅-Coloring in Hereditary Graph Classes}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{55:1--55:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.55},
  URN =		{urn:nbn:de:0030-drops-206110},
  doi =		{10.4230/LIPIcs.MFCS.2024.55},
  annote =	{Keywords: graph homomorphism, critical graphs, hereditary graph classes}
}
Document
C_{2k+1}-Coloring of Bounded-Diameter Graphs

Authors: Marta Piecyk

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
For a fixed graph H, in the graph homomorphism problem, denoted by Hom(H), we are given a graph G and we have to determine whether there exists an edge-preserving mapping φ: V(G) → V(H). Note that Hom(C₃), where C₃ is the cycle of length 3, is equivalent to 3-Coloring. The question of whether 3-Coloring is polynomial-time solvable on diameter-2 graphs is a well-known open problem. In this paper we study the Hom(C_{2k+1}) problem on bounded-diameter graphs for k ≥ 2, so we consider all other odd cycles than C₃. We prove that for k ≥ 2, the Hom(C_{2k+1}) problem is polynomial-time solvable on diameter-(k+1) graphs - note that such a result for k = 1 would be precisely a polynomial-time algorithm for 3-Coloring of diameter-2 graphs. Furthermore, we give subexponential-time algorithms for diameter-(k+2) and -(k+3) graphs. We complement these results with a lower bound for diameter-(2k+2) graphs - in this class of graphs the Hom(C_{2k+1}) problem is NP-hard and cannot be solved in subexponential-time, unless the ETH fails. Finally, we consider another direction of generalizing 3-Coloring on diameter-2 graphs. We consider other target graphs H than odd cycles but we restrict ourselves to diameter 2. We show that if H is triangle-free, then Hom(H) is polynomial-time solvable on diameter-2 graphs.

Cite as

Marta Piecyk. C_{2k+1}-Coloring of Bounded-Diameter Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 78:1-78:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{piecyk:LIPIcs.MFCS.2024.78,
  author =	{Piecyk, Marta},
  title =	{{C\underline\{2k+1\}-Coloring of Bounded-Diameter Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{78:1--78:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.78},
  URN =		{urn:nbn:de:0030-drops-206348},
  doi =		{10.4230/LIPIcs.MFCS.2024.78},
  annote =	{Keywords: graph homomorphism, odd cycles, diameter}
}
Document
Scalable Hard Instances for Independent Set Reconfiguration

Authors: Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Token Jumping problem, also known as the independent set reconfiguration problem under the token jumping model, is defined as follows: Given a graph and two same-sized independent sets, determine whether one can be transformed into the other via a sequence of independent sets. Token Jumping has been extensively studied, mainly from the viewpoint of algorithmic theory, but its practical study has just begun. To develop a practically good solver, it is important to construct benchmark datasets that are scalable and hard. Here, "scalable" means the ability to change the scale of the instance while maintaining its characteristics by adjusting the given parameters; and "hard" means that the instance can become so difficult that it cannot be solved within a practical time frame by a solver. In this paper, we propose four types of instance series for Token Jumping. Our instance series is scalable in the sense that instance scales are controlled by the number of vertices. To establish their hardness, we focus on the numbers of transformation steps; our instance series requires exponential numbers of steps with respect to the number of vertices. Interestingly, three types of instance series are constructed by importing theories developed by algorithmic research. We experimentally evaluate the scalability and hardness of the proposed instance series, using the SAT solver and award-winning solvers of the international competition for Token Jumping.

Cite as

Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito. Scalable Hard Instances for Independent Set Reconfiguration. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{soh_et_al:LIPIcs.SEA.2024.26,
  author =	{Soh, Takehide and Watanabe, Takumu and Kawahara, Jun and Suzuki, Akira and Ito, Takehiro},
  title =	{{Scalable Hard Instances for Independent Set Reconfiguration}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.26},
  URN =		{urn:nbn:de:0030-drops-203913},
  doi =		{10.4230/LIPIcs.SEA.2024.26},
  annote =	{Keywords: Combinatorial reconfiguration, Benckmark dataset, Graph Algorithm, PSPACE-complete}
}
Document
Track A: Algorithms, Complexity and Games
Two-Sets Cut-Uncut on Planar Graphs

Authors: Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study Two-Sets Cut-Uncut on planar graphs. Therein, one is given an undirected planar graph G and two disjoint sets S and T of vertices as input. The question is, what is the minimum number of edges to remove from G, such that all vertices in S are separated from all vertices in T, while maintaining that every vertex in S, and respectively in T, stays in the same connected component. We show that this problem can be solved in 2^{|S|+|T|} n^𝒪(1) time with a one-sided-error randomized algorithm. Our algorithm implies a polynomial-time algorithm for the network diversion problem on planar graphs, which resolves an open question from the literature. More generally, we show that Two-Sets Cut-Uncut is fixed-parameter tractable when parameterized by the number r of faces in a planar embedding covering the terminals S ∪ T, by providing a 2^𝒪(r) n^𝒪(1)-time algorithm.

Cite as

Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen. Two-Sets Cut-Uncut on Planar Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.ICALP.2024.22,
  author =	{Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka},
  title =	{{Two-Sets Cut-Uncut on Planar Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.22},
  URN =		{urn:nbn:de:0030-drops-201654},
  doi =		{10.4230/LIPIcs.ICALP.2024.22},
  annote =	{Keywords: planar graphs, cut-uncut, group-constrained paths}
}
Document
Track A: Algorithms, Complexity and Games
A Tight Monte-Carlo Algorithm for Steiner Tree Parameterized by Clique-Width

Authors: Narek Bojikian and Stefan Kratsch

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given a graph G = (V,E), a set T ⊆ V, and an integer b, the Steiner Tree problem asks whether G has a connected subgraph H with at most b vertices that spans all of T. This work presents a 3^k⋅ n^𝒪(1) time one-sided Monte-Carlo algorithm for solving Steiner Tree when additionally a clique-expression of width k is provided. Known lower bounds for less expressive parameters imply that this dependence on the clique-width of G is optimal assuming the Strong Exponential-Time Hypothesis (SETH). Indeed our work establishes that the parameter dependence of Steiner Tree is the same for any graph parameter between cutwidth and clique-width, assuming SETH. Our work contributes to the program of determining the exact parameterized complexity of fundamental hard problems relative to structural graph parameters such as treewidth, which was initiated by Lokshtanov et al. [SODA 2011 & TALG 2018] and which by now has seen a plethora of results. Since the cut-and-count framework of Cygan et al. [FOCS 2011 & TALG 2022], connectivity problems have played a key role in this program as they pose many challenges for developing tight upper and lower bounds. Recently, Hegerfeld and Kratsch [ESA 2023] gave the first application of the cut-and-count technique to problems parameterized by clique-width and obtained tight bounds for Connected Dominating Set and Connected Vertex Cover, leaving open the complexity of other benchmark connectivity problems such as Steiner Tree and Feedback Vertex Set. Our algorithm for Steiner Tree does not follow the cut-and-count technique and instead works with the connectivity patterns of partial solutions. As a first technical contribution we identify a special family of so-called complete patterns that has strong (existential) representation properties, and using these at least one solution will be preserved. Furthermore, there is a family of 3^k basis patterns that (parity) represents the complete patterns, i.e., it has the same number of solutions modulo two. Our main technical contribution, a new technique called "isolating a representative," allows us to leverage both forms of representation (existential and parity). Both complete patterns and isolation of a representative will likely be applicable to other (connectivity) problems.

Cite as

Narek Bojikian and Stefan Kratsch. A Tight Monte-Carlo Algorithm for Steiner Tree Parameterized by Clique-Width. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bojikian_et_al:LIPIcs.ICALP.2024.29,
  author =	{Bojikian, Narek and Kratsch, Stefan},
  title =	{{A Tight Monte-Carlo Algorithm for Steiner Tree Parameterized by Clique-Width}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.29},
  URN =		{urn:nbn:de:0030-drops-201728},
  doi =		{10.4230/LIPIcs.ICALP.2024.29},
  annote =	{Keywords: Parameterized complexity, Steiner tree, clique-width}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Algorithms for Steiner Forest in Bounded Width Graphs

Authors: Andreas Emil Feldmann and Michael Lampis

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we reassess the parameterized complexity and approximability of the well-studied Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme with a runtime of n^O(k²/ε) on graphs of treewidth k. Our main result is a much faster efficient parameterized approximation scheme (EPAS) with a runtime of 2^O(k²/ε log k/ε)⋅n^O(1). If k instead is the vertex cover number of the input graph, we show how to compute the optimum solution in 2^O(k log k)⋅n^O(1) time, and we also prove that this runtime dependence on k is asymptotically best possible, under ETH. Furthermore, if k is the size of a feedback edge set, then we obtain a faster 2^O(k)⋅n^O(1) time algorithm, which again cannot be improved under ETH.

Cite as

Andreas Emil Feldmann and Michael Lampis. Parameterized Algorithms for Steiner Forest in Bounded Width Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 61:1-61:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feldmann_et_al:LIPIcs.ICALP.2024.61,
  author =	{Feldmann, Andreas Emil and Lampis, Michael},
  title =	{{Parameterized Algorithms for Steiner Forest in Bounded Width Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.61},
  URN =		{urn:nbn:de:0030-drops-202048},
  doi =		{10.4230/LIPIcs.ICALP.2024.61},
  annote =	{Keywords: Steiner Forest, Approximation Algorithms, FPT algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Lipschitz Continuous Allocations for Optimization Games

Authors: Soh Kumabe and Yuichi Yoshida

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In cooperative game theory, the primary focus is the equitable allocation of payoffs or costs among agents. However, in the practical applications of cooperative games, accurately representing games is challenging. In such cases, using an allocation method sensitive to small perturbations in the game can lead to various problems, including dissatisfaction among agents and the potential for manipulation by agents seeking to maximize their own benefits. Therefore, the allocation method must be robust against game perturbations. In this study, we explore optimization games, in which the value of the characteristic function is provided as the optimal value of an optimization problem. To assess the robustness of the allocation methods, we use the Lipschitz constant, which quantifies the extent of change in the allocation vector in response to a unit perturbation in the weight vector of the underlying problem. Thereafter, we provide an algorithm for the matching game that returns an allocation belonging to the (1/2-ε)-approximate core with Lipschitz constant O(ε^{-1}). Additionally, we provide an algorithm for a minimum spanning tree game that returns an allocation belonging to the 4-approximate core with a constant Lipschitz constant. The Shapley value is a popular allocation that satisfies several desirable properties. Therefore, we investigate the robustness of the Shapley value. We demonstrate that the Lipschitz constant of the Shapley value for the minimum spanning tree is constant, whereas that for the matching game is Ω(log n), where n denotes the number of vertices.

Cite as

Soh Kumabe and Yuichi Yoshida. Lipschitz Continuous Allocations for Optimization Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 102:1-102:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kumabe_et_al:LIPIcs.ICALP.2024.102,
  author =	{Kumabe, Soh and Yoshida, Yuichi},
  title =	{{Lipschitz Continuous Allocations for Optimization Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{102:1--102:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.102},
  URN =		{urn:nbn:de:0030-drops-202456},
  doi =		{10.4230/LIPIcs.ICALP.2024.102},
  annote =	{Keywords: Cooperative Games, Lipschitz Continuity}
}
Document
Track A: Algorithms, Complexity and Games
Isomorphism for Tournaments of Small Twin Width

Authors: Martin Grohe and Daniel Neuen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We prove that isomorphism of tournaments of twin width at most k can be decided in time k^O(log k) n^O(1). This implies that the isomorphism problem for classes of tournaments of bounded or moderately growing twin width is in polynomial time. By comparison, there are classes of undirected graphs of bounded twin width that are isomorphism complete, that is, the isomorphism problem for the classes is as hard as the general graph isomorphism problem. Twin width is a graph parameter that has been introduced only recently (Bonnet et al., FOCS 2020), but has received a lot of attention in structural graph theory since then. On directed graphs, it is functionally smaller than clique width. We prove that on tournaments (but not on general directed graphs) it is also functionally smaller than directed tree width (and thus, the same also holds for cut width and directed path width). Hence, our result implies that tournament isomorphism testing is also fixed-parameter tractable when parameterized by any of these parameters. Our isomorphism algorithm heavily employs group-theoretic techniques. This seems to be necessary: as a second main result, we show that the combinatorial Weisfeiler-Leman algorithm does not decide isomorphism of tournaments of twin width at most 35 if its dimension is o(n). (Throughout this abstract, n is the order of the input graphs.)

Cite as

Martin Grohe and Daniel Neuen. Isomorphism for Tournaments of Small Twin Width. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 78:1-78:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICALP.2024.78,
  author =	{Grohe, Martin and Neuen, Daniel},
  title =	{{Isomorphism for Tournaments of Small Twin Width}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{78:1--78:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.78},
  URN =		{urn:nbn:de:0030-drops-202216},
  doi =		{10.4230/LIPIcs.ICALP.2024.78},
  annote =	{Keywords: tournament isomorphism, twin width, fixed-parameter tractability, Weisfeiler-Leman algorithm}
}
Document
Edge Multiway Cut and Node Multiway Cut Are Hard for Planar Subcubic Graphs

Authors: Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)


Abstract
It is known that the weighted version of Edge Multiway Cut (also known as Multiterminal Cut) is NP-complete on planar graphs of maximum degree 3. In contrast, for the unweighted version, NP-completeness is only known for planar graphs of maximum degree 11. In fact, the complexity of unweighted Edge Multiway Cut was open for graphs of maximum degree 3 for over twenty years. We prove that the unweighted version is NP-complete even for planar graphs of maximum degree 3. As weighted Edge Multiway Cut is polynomial-time solvable for graphs of maximum degree at most 2, we have now closed the complexity gap. We also prove that (unweighted) Node Multiway Cut (both with and without deletable terminals) is NP-complete for planar graphs of maximum degree 3. By combining our results with known results, we can apply two meta-classifications on graph containment from the literature. This yields full dichotomies for all three problems on H-topological-minor-free graphs and, should H be finite, on H-subgraph-free graphs as well. Previously, such dichotomies were only implied for H-minor-free graphs.

Cite as

Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Edge Multiway Cut and Node Multiway Cut Are Hard for Planar Subcubic Graphs. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{johnson_et_al:LIPIcs.SWAT.2024.29,
  author =	{Johnson, Matthew and Martin, Barnaby and Pandey, Sukanya and Paulusma, Dani\"{e}l and Smith, Siani and van Leeuwen, Erik Jan},
  title =	{{Edge Multiway Cut and Node Multiway Cut Are Hard for Planar Subcubic Graphs}},
  booktitle =	{19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-318-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{294},
  editor =	{Bodlaender, Hans L.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.29},
  URN =		{urn:nbn:de:0030-drops-200699},
  doi =		{10.4230/LIPIcs.SWAT.2024.29},
  annote =	{Keywords: multiway cut, planar subcubic graph, complexity dichotomy, graph containment}
}
Document
Matching Cuts in Graphs of High Girth and H-Free Graphs

Authors: Carl Feghali, Felicia Lucke, Daniël Paulusma, and Bernard Ries

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
The (Perfect) Matching Cut problem is to decide if a connected graph has a (perfect) matching that is also an edge cut. The Disconnected Perfect Matching problem is to decide if a connected graph has a perfect matching that contains a matching cut. Both Matching Cut and Disconnected Perfect Matching are NP-complete for planar graphs of girth 5, whereas Perfect Matching Cut is known to be NP-complete even for subcubic bipartite graphs of arbitrarily large fixed girth. We prove that Matching Cut and Disconnected Perfect Matching are also NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Our result for Matching Cut resolves a 20-year old open problem. We also show that the more general problem d-Cut, for every fixed d ≥ 1, is NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Furthermore, we show that Matching Cut, Perfect Matching Cut and Disconnected Perfect Matching are NP-complete for H-free graphs whenever H contains a connected component with two vertices of degree at least 3. Afterwards, we update the state-of-the-art summaries for H-free graphs and compare them with each other, and with a known and full classification of the Maximum Matching Cut problem, which is to determine a largest matching cut of a graph G. Finally, by combining existing results, we obtain a complete complexity classification of Perfect Matching Cut for H-subgraph-free graphs where H is any finite set of graphs.

Cite as

Carl Feghali, Felicia Lucke, Daniël Paulusma, and Bernard Ries. Matching Cuts in Graphs of High Girth and H-Free Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{feghali_et_al:LIPIcs.ISAAC.2023.31,
  author =	{Feghali, Carl and Lucke, Felicia and Paulusma, Dani\"{e}l and Ries, Bernard},
  title =	{{Matching Cuts in Graphs of High Girth and H-Free Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.31},
  URN =		{urn:nbn:de:0030-drops-193332},
  doi =		{10.4230/LIPIcs.ISAAC.2023.31},
  annote =	{Keywords: matching cut, perfect matching, girth, H-free graph}
}
Document
Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs

Authors: Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
For any finite set ℋ = {H_1,…,H_p} of graphs, a graph is ℋ-subgraph-free if it does not contain any of H_1,…,H_p as a subgraph. In recent work, meta-classifications have been studied: these show that if graph problems satisfy certain prescribed conditions, their complexity can be classified on classes of ℋ-subgraph-free graphs. We continue this work and focus on problems that have polynomial-time solutions on classes that have bounded treewidth or maximum degree at most 3 and examine their complexity on H-subgraph-free graph classes where H is a connected graph. With this approach, we obtain comprehensive classifications for (Independent) Feedback Vertex Set, Connected Vertex Cover, Colouring and Matching Cut. This resolves a number of open problems. We highlight that, to establish that Independent Feedback Vertex Set belongs to this collection of problems, we first show that it can be solved in polynomial time on graphs of maximum degree 3. We demonstrate that, with the exception of the complete graph on four vertices, each graph in this class has a minimum size feedback vertex set that is also an independent set.

Cite as

Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{johnson_et_al:LIPIcs.MFCS.2023.57,
  author =	{Johnson, Matthew and Martin, Barnaby and Pandey, Sukanya and Paulusma, Dani\"{e}l and Smith, Siani and van Leeuwen, Erik Jan},
  title =	{{Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{57:1--57:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.57},
  URN =		{urn:nbn:de:0030-drops-185914},
  doi =		{10.4230/LIPIcs.MFCS.2023.57},
  annote =	{Keywords: forbidden subgraphs, independent feedback vertex set, treewidth}
}
Document
Dichotomies for Maximum Matching Cut: H-Freeness, Bounded Diameter, Bounded Radius

Authors: Felicia Lucke, Daniël Paulusma, and Bernard Ries

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
The (Perfect) Matching Cut problem is to decide if a graph G has a (perfect) matching cut, i.e., a (perfect) matching that is also an edge cut of G. Both Matching Cut and Perfect Matching Cut are known to be NP-complete, leading to many complexity results for both problems on special graph classes. A perfect matching cut is also a matching cut with maximum number of edges. To increase our understanding of the relationship between the two problems, we introduce the Maximum Matching Cut problem. This problem is to determine a largest matching cut in a graph. We generalize and unify known polynomial-time algorithms for Matching Cut and Perfect Matching Cut restricted to graphs of diameter at most 2 and to (P₆+sP₂)-free graphs. We also show that the complexity of Maximum Matching Cut differs from the complexities of Matching Cut and Perfect Matching Cut by proving NP-hardness of Maximum Matching Cut for 2P₃-free quadrangulated graphs of diameter 3 and radius 2 and for subcubic line graphs of triangle-free graphs. In this way, we obtain full dichotomies of Maximum Matching Cut for graphs of bounded diameter, bounded radius and H-free graphs.

Cite as

Felicia Lucke, Daniël Paulusma, and Bernard Ries. Dichotomies for Maximum Matching Cut: H-Freeness, Bounded Diameter, Bounded Radius. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 64:1-64:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lucke_et_al:LIPIcs.MFCS.2023.64,
  author =	{Lucke, Felicia and Paulusma, Dani\"{e}l and Ries, Bernard},
  title =	{{Dichotomies for Maximum Matching Cut: H-Freeness, Bounded Diameter, Bounded Radius}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.64},
  URN =		{urn:nbn:de:0030-drops-185981},
  doi =		{10.4230/LIPIcs.MFCS.2023.64},
  annote =	{Keywords: matching cut, perfect matching, H-free graph, diameter, radius, dichotomy}
}
  • Refine by Author
  • 23 Paulusma, Daniël
  • 8 Martin, Barnaby
  • 7 Dabrowski, Konrad K.
  • 7 Johnson, Matthew
  • 7 Paulusma, Daniel
  • Show More...

  • Refine by Classification
  • 10 Mathematics of computing → Graph algorithms
  • 10 Mathematics of computing → Graph theory
  • 6 Theory of computation → Graph algorithms analysis
  • 6 Theory of computation → Problems, reductions and completeness
  • 4 Theory of computation → Parameterized complexity and exact algorithms
  • Show More...

  • Refine by Keyword
  • 7 H-free graph
  • 5 clique-width
  • 4 computational complexity
  • 4 diameter
  • 3 dichotomy
  • Show More...

  • Refine by Type
  • 41 document

  • Refine by Publication Year
  • 12 2024
  • 5 2018
  • 4 2023
  • 3 2016
  • 3 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail