2 Search Results for "Peyrot, Loïc"


Document
Invited Talk
A Tour on Ecumenical Systems (Invited Talk)

Authors: Elaine Pimentel and Luiz Carlos Pereira

Published in: LIPIcs, Volume 270, 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)


Abstract
Ecumenism can be understood as a pursuit of unity, where diverse thoughts, ideas, or points of view coexist harmoniously. In logic, ecumenical systems refer, in a broad sense, to proof systems for combining logics. One captivating area of research over the past few decades has been the exploration of seamlessly merging classical and intuitionistic connectives, allowing them to coexist peacefully. In this paper, we will embark on a journey through ecumenical systems, drawing inspiration from Prawitz' seminal work [Dag Prawitz, 2015]. We will begin by elucidating Prawitz' concept of "ecumenism" and present a pure sequent calculus version of his system. Building upon this foundation, we will expand our discussion to incorporate alethic modalities, leveraging Simpson’s meta-logical characterization. This will enable us to propose several proof systems for ecumenical modal logics. We will conclude our tour with some discussion towards a term calculus proposal for the implicational propositional fragment of the ecumenical logic, the quest of automation using a framework based in rewriting logic, and an ecumenical view of proof-theoretic semantics.

Cite as

Elaine Pimentel and Luiz Carlos Pereira. A Tour on Ecumenical Systems (Invited Talk). In 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 270, pp. 3:1-3:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{pimentel_et_al:LIPIcs.CALCO.2023.3,
  author =	{Pimentel, Elaine and Pereira, Luiz Carlos},
  title =	{{A Tour on Ecumenical Systems}},
  booktitle =	{10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-287-7},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{270},
  editor =	{Baldan, Paolo and de Paiva, Valeria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2023.3},
  URN =		{urn:nbn:de:0030-drops-188003},
  doi =		{10.4230/LIPIcs.CALCO.2023.3},
  annote =	{Keywords: Intuitionistic logic, classical logic, modal logic, ecumenical systems, proof theory}
}
Document
Solvability for Generalized Applications

Authors: Delia Kesner and Loïc Peyrot

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
Solvability is a key notion in the theory of call-by-name lambda-calculus, used in particular to identify meaningful terms. However, adapting this notion to other call-by-name calculi, or extending it to different models of computation - such as call-by-value - , is not straightforward. In this paper, we study solvability for call-by-name and call-by-value lambda-calculi with generalized applications, both variants inspired from von Plato’s natural deduction with generalized elimination rules. We develop an operational as well as a logical theory of solvability for each of them. The operational characterization relies on a notion of solvable reduction for generalized applications, and the logical characterization is given in terms of typability in an appropriate non-idempotent intersection type system. Finally, we show that solvability in generalized applications and solvability in the lambda-calculus are equivalent notions.

Cite as

Delia Kesner and Loïc Peyrot. Solvability for Generalized Applications. In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 18:1-18:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kesner_et_al:LIPIcs.FSCD.2022.18,
  author =	{Kesner, Delia and Peyrot, Lo\"{i}c},
  title =	{{Solvability for Generalized Applications}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.18},
  URN =		{urn:nbn:de:0030-drops-162994},
  doi =		{10.4230/LIPIcs.FSCD.2022.18},
  annote =	{Keywords: Lambda-calculus, Generalized applications, Solvability, CBN/CBV, Quantitative types}
}
  • Refine by Author
  • 1 Kesner, Delia
  • 1 Pereira, Luiz Carlos
  • 1 Peyrot, Loïc
  • 1 Pimentel, Elaine

  • Refine by Classification
  • 2 Theory of computation → Type theory
  • 1 Theory of computation → Lambda calculus
  • 1 Theory of computation → Logic and verification
  • 1 Theory of computation → Modal and temporal logics
  • 1 Theory of computation → Proof theory
  • Show More...

  • Refine by Keyword
  • 1 CBN/CBV
  • 1 Generalized applications
  • 1 Intuitionistic logic
  • 1 Lambda-calculus
  • 1 Quantitative types
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail