52 Search Results for "Ravi, S. S."


Document
The Functor of Points Approach to Schemes in Cubical Agda

Authors: Max Zeuner and Matthias Hutzler

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We present a formalization of quasi-compact and quasi-separated schemes (qcqs-schemes) in the Cubical Agda proof assistant. We follow Grothendieck’s functor of points approach, which defines schemes, the quintessential notion of modern algebraic geometry, as certain well-behaved functors from commutative rings to sets. This approach is often regarded as conceptually simpler than the standard approach of defining schemes as locally ringed spaces, but to our knowledge it has not yet been adopted in formalizations of algebraic geometry. We build upon a previous formalization of the so-called Zariski lattice associated to a commutative ring in order to define the notion of compact open subfunctor. This allows for a concise definition of qcqs-schemes, streamlining the usual presentation as e.g. given in the standard textbook of Demazure and Gabriel. It also lets us obtain a fully constructive proof that compact open subfunctors of affine schemes are qcqs-schemes.

Cite as

Max Zeuner and Matthias Hutzler. The Functor of Points Approach to Schemes in Cubical Agda. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 38:1-38:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zeuner_et_al:LIPIcs.ITP.2024.38,
  author =	{Zeuner, Max and Hutzler, Matthias},
  title =	{{The Functor of Points Approach to Schemes in Cubical Agda}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{38:1--38:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.38},
  URN =		{urn:nbn:de:0030-drops-207667},
  doi =		{10.4230/LIPIcs.ITP.2024.38},
  annote =	{Keywords: Schemes, Algebraic Geometry, Category Theory, Cubical Agda, Homotopy Type Theory and Univalent Foundations, Constructive Mathematics}
}
Document
Invariants for One-Counter Automata with Disequality Tests

Authors: Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem has been known to be NP-hard and in PSPACE, and characterising its computational complexity has been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell (2020). We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy, namely into the class coNP^NP. In the presence of both equality and disequality tests, our upper bound is at the third level, P^NP^NP. To prove this result, we show that non-reachability can be witnessed by a pair of invariants (forward and backward). These invariants are almost inductive. They aim to over-approximate only a "core" of the reachability set instead of the entire set. The invariants are also leaky: it is possible to escape the set. We complement this with separate checks as the leaks can only occur in a controlled way.

Cite as

Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger. Invariants for One-Counter Automata with Disequality Tests. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2024.17,
  author =	{Chistikov, Dmitry and Leroux, J\'{e}r\^{o}me and Sinclair-Banks, Henry and Waldburger, Nicolas},
  title =	{{Invariants for One-Counter Automata with Disequality Tests}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.17},
  URN =		{urn:nbn:de:0030-drops-207898},
  doi =		{10.4230/LIPIcs.CONCUR.2024.17},
  annote =	{Keywords: Inductive invariant, Vector addition system, One-counter automaton}
}
Document
Memoization on Shared Subtrees Accelerates Computations on Genealogical Forests

Authors: Lukas Hübner and Alexandros Stamatakis

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
The field of population genetics attempts to advance our understanding of evolutionary processes. It has applications, for example, in medical research, wildlife conservation, and - in conjunction with recent advances in ancient DNA sequencing technology - studying human migration patterns over the past few thousand years. The basic toolbox of population genetics includes genealogical trees, which describe the shared evolutionary history among individuals of the same species. They are calculated on the basis of genetic variations. However, in recombining organisms, a single tree is insufficient to describe the evolutionary history of the whole genome. Instead, a collection of correlated trees can be used, where each describes the evolutionary history of a consecutive region of the genome. The current corresponding state of-the-art data structure, tree sequences, compresses these genealogical trees via edit operations when moving from one tree to the next along the genome instead of storing the full, often redundant, description for each tree. We propose a new data structure, genealogical forests, which compresses the set of genealogical trees into a DAG. In this DAG identical subtrees that are shared across the input trees are encoded only once, thereby allowing for straight-forward memoization of intermediate results. Additionally, we provide a C++ implementation of our proposed data structure, called gfkit, which is 2.1 to 11.2 (median 4.0) times faster than the state-of-the-art tool on empirical and simulated datasets at computing important population genetics statistics such as the Allele Frequency Spectrum, Patterson’s f, the Fixation Index, Tajima’s D, pairwise Lowest Common Ancestors, and others. On Lowest Common Ancestor queries with more than two samples as input, gfkit scales asymptotically better than the state-of-the-art, and is thus up to 990 times faster. In conclusion, our proposed data structure compresses genealogical trees by storing shared subtrees only once, thereby enabling straight-forward memoization of intermediate results, yielding a substantial runtime reduction and a potentially more intuitive data representation over the state-of-the-art. Our improvements will boost the development of novel analyses and models in the field of population genetics and increases scalability to ever-growing genomic datasets.

Cite as

Lukas Hübner and Alexandros Stamatakis. Memoization on Shared Subtrees Accelerates Computations on Genealogical Forests. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 5:1-5:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hubner_et_al:LIPIcs.WABI.2024.5,
  author =	{H\"{u}bner, Lukas and Stamatakis, Alexandros},
  title =	{{Memoization on Shared Subtrees Accelerates Computations on Genealogical Forests}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{5:1--5:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.5},
  URN =		{urn:nbn:de:0030-drops-206499},
  doi =		{10.4230/LIPIcs.WABI.2024.5},
  annote =	{Keywords: bioinformatics, population genetics, algorithms}
}
Document
Multiway Cuts with a Choice of Representatives

Authors: Kristóf Bérczi, Tamás Király, and Daniel P. Szabo

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In the Multiway Cut problem, we are given an undirected graph with nonnegative edge weights and a subset of k terminals, and the goal is to determine a set of edges of minimum total weight whose removal disconnects each terminal from the rest. The problem is APX-hard for k ≥ 3, and an extensive line of research has concentrated on closing the gap between the best upper and lower bounds for approximability and inapproximability, respectively. In this paper, we study several generalizations of Multiway Cut where the terminals can be chosen as representatives from sets of candidates T₁,…,T_q. In this setting, one is allowed to choose these representatives so that the minimum-weight cut separating these sets via their representatives is as small as possible. We distinguish different cases depending on (A) whether the representative of a candidate set has to be separated from the other candidate sets completely or only from the representatives, and (B) whether there is a single representative for each candidate set or the choice of representative is independent for each pair of candidate sets. For fixed q, we give approximation algorithms for each of these problems that match the best known approximation guarantee for Multiway Cut. Our technical contribution is a new extension of the CKR relaxation that preserves approximation guarantees. For general q, we show o(log q)-inapproximability for all cases where the choice of representatives may depend on the pair of candidate sets, as well as for the case where the goal is to separate a fixed node from a single representative from each candidate set. As a positive result, we give a 2-approximation algorithm for the case where we need to choose a single representative from each candidate set. This is a generalization of the (2-2/k)-approximation for k-Cut, and we can solve it by relating the tree case to optimization over a gammoid.

Cite as

Kristóf Bérczi, Tamás Király, and Daniel P. Szabo. Multiway Cuts with a Choice of Representatives. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berczi_et_al:LIPIcs.MFCS.2024.25,
  author =	{B\'{e}rczi, Krist\'{o}f and Kir\'{a}ly, Tam\'{a}s and Szabo, Daniel P.},
  title =	{{Multiway Cuts with a Choice of Representatives}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.25},
  URN =		{urn:nbn:de:0030-drops-205813},
  doi =		{10.4230/LIPIcs.MFCS.2024.25},
  annote =	{Keywords: Approximation algorithms, Multiway cut, CKR relaxation, Steiner multicut}
}
Document
Faster Approximation Schemes for (Constrained) k-Means with Outliers

Authors: Zhen Zhang, Junyu Huang, and Qilong Feng

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given a set of n points in ℝ^d and two positive integers k and m, the Euclidean k-means with outliers problem aims to remove at most m points, referred to as outliers, and minimize the k-means cost function for the remaining points. Developing algorithms for this problem remains an active area of research due to its prevalence in applications involving noisy data. In this paper, we give a (1+ε)-approximation algorithm that runs in n²d((k+m)ε^{-1})^O(kε^{-1}) time for the problem. When combined with a coreset construction method, the running time of the algorithm can be improved to be linear in n. For the case where k is a constant, this represents the first polynomial-time approximation scheme for the problem: Existing algorithms with the same approximation guarantee run in polynomial time only when both k and m are constants. Furthermore, our approach generalizes to variants of k-means with outliers incorporating additional constraints on instances, such as those related to capacities and fairness.

Cite as

Zhen Zhang, Junyu Huang, and Qilong Feng. Faster Approximation Schemes for (Constrained) k-Means with Outliers. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 84:1-84:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.MFCS.2024.84,
  author =	{Zhang, Zhen and Huang, Junyu and Feng, Qilong},
  title =	{{Faster Approximation Schemes for (Constrained) k-Means with Outliers}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{84:1--84:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.84},
  URN =		{urn:nbn:de:0030-drops-206408},
  doi =		{10.4230/LIPIcs.MFCS.2024.84},
  annote =	{Keywords: Approximation algorithms, clustering}
}
Document
Pebble Games and Algebraic Proof Systems

Authors: Lisa-Marie Jaser and Jacobo Torán

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Analyzing refutations of the well known pebbling formulas Peb(G) we prove some new strong connections between pebble games and algebraic proof system, showing that there is a parallelism between the reversible, black and black-white pebbling games on one side, and the three algebraic proof systems Nullstellensatz, Monomial Calculus and Polynomial Calculus on the other side. In particular we prove that for any DAG G with a single sink, if there is a Monomial Calculus refutation for Peb(G) having simultaneously degree s and size t then there is a black pebbling strategy on G with space s and time t+s. Also if there is a black pebbling strategy for G with space s and time t it is possible to extract from it a MC refutation for Peb(G) having simultaneously degree s and size ts. These results are analogous to those proven in [Susanna F. de Rezende et al., 2021] for the case of reversible pebbling and Nullstellensatz. Using them we prove degree separations between NS, MC and PC, as well as strong degree-size tradeoffs for MC. We also notice that for any directed acyclic graph G the space needed in a pebbling strategy on G, for the three versions of the game, reversible, black and black-white, exactly matches the variable space complexity of a refutation of the corresponding pebbling formula Peb(G) in each of the algebraic proof systems NS,MC and PC. Using known pebbling bounds on graphs, this connection implies separations between the corresponding variable space measures.

Cite as

Lisa-Marie Jaser and Jacobo Torán. Pebble Games and Algebraic Proof Systems. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 64:1-64:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jaser_et_al:LIPIcs.MFCS.2024.64,
  author =	{Jaser, Lisa-Marie and Tor\'{a}n, Jacobo},
  title =	{{Pebble Games and Algebraic Proof Systems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{64:1--64:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.64},
  URN =		{urn:nbn:de:0030-drops-206200},
  doi =		{10.4230/LIPIcs.MFCS.2024.64},
  annote =	{Keywords: Proof Complexity, Algebraic Proof Systems, Pebble Games}
}
Document
Consistent Ultrafinitist Logic

Authors: Michał J. Gajda

Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)


Abstract
Ultrafinitism postulates that we can only compute on relatively short objects, and numbers beyond a certain value are not available. This approach would also forbid many forms of infinitary reasoning and allow removing certain paradoxes stemming from enumeration theorems. For a computational application of ultrafinitist logic, we need more than a proof system, but a logical framework to express both proofs, programs, and theorems in a single framework. We present its inference rules, reduction relation, and self-encoding to allow direct proving of the properties of ultrafinitist logic within itself. We also provide a justification why it can express all bounded Turing programs, and thus serve as a "logic of computability".

Cite as

Michał J. Gajda. Consistent Ultrafinitist Logic. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gajda:LIPIcs.TYPES.2023.5,
  author =	{Gajda, Micha{\l} J.},
  title =	{{Consistent Ultrafinitist Logic}},
  booktitle =	{29th International Conference on Types for Proofs and Programs (TYPES 2023)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-332-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{303},
  editor =	{Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.5},
  URN =		{urn:nbn:de:0030-drops-204833},
  doi =		{10.4230/LIPIcs.TYPES.2023.5},
  annote =	{Keywords: ultrafinitism, bounded Turing completeness, logic of computability, decidable logic, explicit complexity, strict finitism}
}
Document
Entailing Generalization Boosts Enumeration

Authors: Dror Fried, Alexander Nadel, Roberto Sebastiani, and Yogev Shalmon

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Given a combinational circuit Γ with a single output o, AllSAT-CT is the problem of enumerating all solutions of Γ. Recently, we introduced several state-of-the-art AllSAT-CT algorithms based on satisfying generalization, which generalizes a given total Boolean solution to a smaller ternary solution that still satisfies the circuit. We implemented them in our open-source tool HALL. In this work we draw upon recent theoretical works suggesting that utilizing generalization algorithms, which can produce solutions that entail the circuit without satisfying it, may enhance enumeration. After considering the theory and adapting it to our needs, we enrich HALL’s AllSAT-CT algorithms by incorporating several newly implemented generalization schemes and additional SAT solvers. By conducting extensive experiments we show that entailing generalization substantially boosts HALL’s performance and quality (where quality corresponds to the number of reported generalized solutions per instance), with the best results achieved by combining satisfying and entailing generalization.

Cite as

Dror Fried, Alexander Nadel, Roberto Sebastiani, and Yogev Shalmon. Entailing Generalization Boosts Enumeration. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 13:1-13:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fried_et_al:LIPIcs.SAT.2024.13,
  author =	{Fried, Dror and Nadel, Alexander and Sebastiani, Roberto and Shalmon, Yogev},
  title =	{{Entailing Generalization Boosts Enumeration}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{13:1--13:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.13},
  URN =		{urn:nbn:de:0030-drops-205351},
  doi =		{10.4230/LIPIcs.SAT.2024.13},
  annote =	{Keywords: Generalization, Minimization, Prime Implicant, AllSAT, SAT, Circuits}
}
Document
eSLIM: Circuit Minimization with SAT Based Local Improvement

Authors: Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
eSLIM is a tool for circuit minimization that utilizes Exact Synthesis and the SAT-based local improvement method (SLIM) to locally improve circuits. eSLIM improves upon the earlier prototype CIOPS that uses Quantified Boolean Formulas (QBF) to succinctly encode resynthesis of multi-output subcircuits subject to don't cares. This paper describes two improvements. First, it presents a purely propositional encoding based on a Boolean relation characterizing the input-output behavior of the subcircuit under don't cares. This allows the use of a SAT solver for resynthesis, substantially reducing running times when applied to functions from the IWLS 2023 competition, where eSLIM placed second. Second, it proposes circuit partitioning techniques in which don't cares for a subcircuit are captured only with respect to an enclosing window, rather than the entire circuit. Circuit partitioning trades completeness for efficiency, and successfully enables the application of exact synthesis to some of the largest circuits in the EPFL suite, leading to improvements over the current best implementation for several instances.

Cite as

Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider. eSLIM: Circuit Minimization with SAT Based Local Improvement. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{reichl_et_al:LIPIcs.SAT.2024.23,
  author =	{Reichl, Franz-Xaver and Slivovsky, Friedrich and Szeider, Stefan},
  title =	{{eSLIM: Circuit Minimization with SAT Based Local Improvement}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.23},
  URN =		{urn:nbn:de:0030-drops-205458},
  doi =		{10.4230/LIPIcs.SAT.2024.23},
  annote =	{Keywords: QBF, Exact Synthesis, Circuit Minimization, SLIM}
}
Document
Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

Authors: Dana Dachman-Soled, Julian Loss, and Adam O'Neill

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
We investigate the relationship between the classical RSA and factoring problems when preprocessing is considered. In such a model, adversaries can use an unbounded amount of precomputation to produce an "advice" string to then use during the online phase, when a problem instance becomes known. Previous work (e.g., [Bernstein, Lange ASIACRYPT '13]) has shown that preprocessing attacks significantly improve the runtime of the best-known factoring algorithms. Due to these improvements, we ask whether the relationship between factoring and RSA fundamentally changes when preprocessing is allowed. Specifically, we investigate whether there is a superpolynomial gap between the runtime of the best attack on RSA with preprocessing and on factoring with preprocessing. Our main result rules this out with respect to algorithms that perform generic computation on the RSA instance x^e od N yet arbitrary computation on the modulus N, namely a careful adaptation of the well-known generic ring model of Aggarwal and Maurer (Eurocrypt 2009) to the preprocessing setting. In particular, in this setting we show the existence of a factoring algorithm with polynomially related parameters, for any setting of RSA parameters. Our main technical contribution is a set of new information-theoretic techniques that allow us to handle or eliminate cases in which the Aggarwal and Maurer result does not yield a factoring algorithm in the standard model with parameters that are polynomially related to those of the RSA algorithm. These techniques include two novel compression arguments, and a variant of the Fiat-Naor/Hellman tables construction that is tailored to the factoring setting.

Cite as

Dana Dachman-Soled, Julian Loss, and Adam O'Neill. Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 8:1-8:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dachmansoled_et_al:LIPIcs.ITC.2024.8,
  author =	{Dachman-Soled, Dana and Loss, Julian and O'Neill, Adam},
  title =	{{Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{8:1--8:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.8},
  URN =		{urn:nbn:de:0030-drops-205163},
  doi =		{10.4230/LIPIcs.ITC.2024.8},
  annote =	{Keywords: RSA, factoring, generic ring model, preprocessing}
}
Document
Secure Multiparty Computation of Symmetric Functions with Polylogarithmic Bottleneck Complexity and Correlated Randomness

Authors: Reo Eriguchi

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
Bottleneck complexity is an efficiency measure of secure multiparty computation (MPC) protocols introduced to achieve load-balancing in large-scale networks, which is defined as the maximum communication complexity required by any one player within the protocol execution. Towards the goal of achieving low bottleneck complexity, prior works proposed MPC protocols for computing symmetric functions in the correlated randomness model, where players are given input-independent correlated randomness in advance. However, the previous protocols with polylogarithmic bottleneck complexity in the number n of players require a large amount of correlated randomness that is linear in n, which limits the per-party efficiency as receiving and storing correlated randomness are the bottleneck for efficiency. In this work, we present for the first time MPC protocols for symmetric functions such that bottleneck complexity and the amount of correlated randomness are both polylogarithmic in n, assuming semi-honest adversaries colluding with at most n-o(n) players. Furthermore, one of our protocols is even computationally efficient in that each player performs only polylog(n) arithmetic operations while the computational complexity of the previous protocols is O(n). Technically, our efficiency improvements come from novel protocols based on ramp secret sharing to realize basic functionalities with low bottleneck complexity, which we believe may be of interest beyond their applications to secure computation of symmetric functions.

Cite as

Reo Eriguchi. Secure Multiparty Computation of Symmetric Functions with Polylogarithmic Bottleneck Complexity and Correlated Randomness. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 10:1-10:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{eriguchi:LIPIcs.ITC.2024.10,
  author =	{Eriguchi, Reo},
  title =	{{Secure Multiparty Computation of Symmetric Functions with Polylogarithmic Bottleneck Complexity and Correlated Randomness}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{10:1--10:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.10},
  URN =		{urn:nbn:de:0030-drops-205182},
  doi =		{10.4230/LIPIcs.ITC.2024.10},
  annote =	{Keywords: Secure multiparty computation, Bottleneck complexity, Secret sharing}
}
Document
Asymptotics of Relaxed k-Ary Trees

Authors: Manosij Ghosh Dastidar and Michael Wallner

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
A relaxed k-ary tree is an ordered directed acyclic graph with a unique source and sink in which every node has out-degree k. These objects arise in the compression of trees in which some repeated subtrees are factored and repeated appearances are replaced by pointers. We prove an asymptotic theta-result for the number of relaxed k-ary tree with n nodes for n → ∞. This generalizes the previously proved binary case to arbitrary finite arity, and shows that the seldom observed phenomenon of a stretched exponential term e^{c n^{1/3}} appears in all these cases. We also derive the recurrences for compacted k-ary trees in which all subtrees are unique and minimal deterministic finite automata accepting a finite language over a finite alphabet.

Cite as

Manosij Ghosh Dastidar and Michael Wallner. Asymptotics of Relaxed k-Ary Trees. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 15:1-15:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghoshdastidar_et_al:LIPIcs.AofA.2024.15,
  author =	{Ghosh Dastidar, Manosij and Wallner, Michael},
  title =	{{Asymptotics of Relaxed k-Ary Trees}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{15:1--15:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.15},
  URN =		{urn:nbn:de:0030-drops-204506},
  doi =		{10.4230/LIPIcs.AofA.2024.15},
  annote =	{Keywords: Asymptotic enumeration, stretched exponential, Airy function, directed acyclic graph, Dyck paths, compacted trees, minimal automata}
}
Document
A Technique for Hardness Amplification Against AC⁰

Authors: William M. Hoza

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study hardness amplification in the context of two well-known "moderate" average-case hardness results for AC⁰ circuits. First, we investigate the extent to which AC⁰ circuits of depth d can approximate AC⁰ circuits of some larger depth d + k. The case k = 1 is resolved by Håstad, Rossman, Servedio, and Tan’s celebrated average-case depth hierarchy theorem (JACM 2017). Our contribution is a significantly stronger correlation bound when k ≥ 3. Specifically, we show that there exists a linear-size AC⁰_{d + k} circuit h : {0, 1}ⁿ → {0, 1} such that for every AC⁰_d circuit g, either g has size exp(n^{Ω(1/d)}), or else g agrees with h on at most a (1/2 + ε)-fraction of inputs where ε = exp(-(1/d) ⋅ Ω(log n)^{k-1}). For comparison, Håstad, Rossman, Servedio, and Tan’s result has ε = n^{-Θ(1/d)}. Second, we consider the majority function. It is well known that the majority function is moderately hard for AC⁰ circuits (and stronger classes). Our contribution is a stronger correlation bound for the XOR of t copies of the n-bit majority function, denoted MAJ_n^{⊕ t}. We show that if g is an AC⁰_d circuit of size S, then g agrees with MAJ_n^{⊕ t} on at most a (1/2 + ε)-fraction of inputs, where ε = (O(log S)^{d - 1} / √n)^t. To prove these results, we develop a hardness amplification technique that is tailored to a specific type of circuit lower bound proof. In particular, one way to show that a function h is moderately hard for AC⁰ circuits is to (a) design some distribution over random restrictions or random projections, (b) show that AC⁰ circuits simplify to shallow decision trees under these restrictions/projections, and finally (c) show that after applying the restriction/projection, h is moderately hard for shallow decision trees with respect to an appropriate distribution. We show that (roughly speaking) if h can be proven to be moderately hard by a proof with that structure, then XORing multiple copies of h amplifies its hardness. Our analysis involves a new kind of XOR lemma for decision trees, which might be of independent interest.

Cite as

William M. Hoza. A Technique for Hardness Amplification Against AC⁰. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hoza:LIPIcs.CCC.2024.1,
  author =	{Hoza, William M.},
  title =	{{A Technique for Hardness Amplification Against AC⁰}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.1},
  URN =		{urn:nbn:de:0030-drops-203977},
  doi =		{10.4230/LIPIcs.CCC.2024.1},
  annote =	{Keywords: Bounded-depth circuits, average-case lower bounds, hardness amplification, XOR lemmas}
}
Document
Derandomizing Logspace with a Small Shared Hard Drive

Authors: Edward Pyne

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We obtain new catalytic algorithms for space-bounded derandomization. In the catalytic computation model introduced by (Buhrman, Cleve, Koucký, Loff, and Speelman STOC 2013), we are given a small worktape, and a larger catalytic tape that has an arbitrary initial configuration. We may edit this tape, but it must be exactly restored to its initial configuration at the completion of the computation. We prove that BPSPACE[S] ⊆ CSPACE[S,S²] where BPSPACE[S] corresponds to randomized space S computation, and CSPACE[S,C] corresponds to catalytic algorithms that use O(S) bits of workspace and O(C) bits of catalytic space. Previously, only BPSPACE[S] ⊆ CSPACE[S,2^O(S)] was known. In fact, we prove a general tradeoff, that for every α ∈ [1,1.5], BPSPACE[S] ⊆ CSPACE[S^α,S^(3-α)]. We do not use the algebraic techniques of prior work on catalytic computation. Instead, we develop an algorithm that branches based on if the catalytic tape is conditionally random, and instantiate this primitive in a recursive framework. Our result gives an alternate proof of the best known time-space tradeoff for BPSPACE[S], due to (Cai, Chakaravarthy, and van Melkebeek, Theory Comput. Sys. 2006). As a final application, we extend our results to solve search problems in CSPACE[S,S²]. As far as we are aware, this constitutes the first study of search problems in the catalytic computing model.

Cite as

Edward Pyne. Derandomizing Logspace with a Small Shared Hard Drive. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{pyne:LIPIcs.CCC.2024.4,
  author =	{Pyne, Edward},
  title =	{{Derandomizing Logspace with a Small Shared Hard Drive}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.4},
  URN =		{urn:nbn:de:0030-drops-204006},
  doi =		{10.4230/LIPIcs.CCC.2024.4},
  annote =	{Keywords: Catalytic computation, space-bounded computation, derandomization}
}
Document
Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

Authors: Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The following question arises naturally in the study of graph streaming algorithms: Is there any graph problem which is "not too hard", in that it can be solved efficiently with total communication (nearly) linear in the number n of vertices, and for which, nonetheless, any streaming algorithm with Õ(n) space (i.e., a semi-streaming algorithm) needs a polynomial n^Ω(1) number of passes? Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case. However, the lower bounds that they obtained are for rather non-standard graph problems. Our first main contribution is to present the first polynomial-pass lower bounds for natural "not too hard" graph problems studied previously in the streaming model: k-cores and degeneracy. We devise a novel communication protocol for both problems with near-linear communication, thus showing that k-cores and degeneracy are natural examples of "not too hard" problems. Indeed, previous work have developed single-pass semi-streaming algorithms for approximating these problems. In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires (almost) Ω(n^{1/3}) passes. The lower bound follows by a reduction from a generalization of the hidden pointer chasing (HPC) problem of Assadi, Chen, and Khanna, which is also the basis of their earlier semi-streaming lower bounds. Our second main contribution is improved round-communication lower bounds for the underlying communication problems at the basis of these reductions: - We improve the previous lower bound of Assadi, Chen, and Khanna for HPC to achieve optimal bounds for this problem. - We further observe that all current reductions from HPC can also work with a generalized version of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound for this generalization. These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming algorithms by a polynomial factor, namely, from n^{1/5} to n^{1/3} passes.

Cite as

Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay. Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.CCC.2024.7,
  author =	{Assadi, Sepehr and Ghosh, Prantar and Loff, Bruno and Mittal, Parth and Mukhopadhyay, Sagnik},
  title =	{{Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.7},
  URN =		{urn:nbn:de:0030-drops-204035},
  doi =		{10.4230/LIPIcs.CCC.2024.7},
  annote =	{Keywords: Graph streaming, Lower bounds, Communication complexity, k-Cores and degeneracy}
}
  • Refine by Author
  • 6 Ravi, R.
  • 2 Abbasi, Fateme
  • 2 Byrka, Jarosław
  • 2 Etalle, Sandro
  • 2 Haney, Samuel
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Approximation algorithms analysis
  • 6 Theory of computation → Facility location and clustering
  • 5 Theory of computation → Graph algorithms analysis
  • 4 Theory of computation → Routing and network design problems
  • 3 Theory of computation → Circuit complexity
  • Show More...

  • Refine by Keyword
  • 4 Approximation algorithms
  • 3 privacy
  • 2 Approximation Algorithm
  • 2 Approximation Algorithms
  • 2 DRM
  • Show More...

  • Refine by Type
  • 52 document

  • Refine by Publication Year
  • 32 2024
  • 4 2009
  • 3 2017
  • 3 2020
  • 2 2010
  • Show More...