5 Search Results for "Razgon, Igor"


Document
Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover

Authors: Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
In the Directed Feedback Vertex Set (DFVS) problem, one is given a directed graph G = (V,E) and wants to find a minimum cardinality set S ⊆ V such that G-S is acyclic. DFVS is a fundamental problem in computer science and finds applications in areas such as deadlock detection. The problem was the subject of the 2022 PACE coding challenge. We develop a novel exact algorithm for the problem that is tailored to perform well on instances that are mostly bi-directed. For such instances, we adapt techniques from the well-researched vertex cover problem. Our core idea is an iterative reduction to vertex cover. To this end, we also develop a new reduction rule that reduces the number of not bi-directed edges. With the resulting algorithm, we were able to win third place in the exact track of the PACE challenge. We perform computational experiments and compare the running time to other exact algorithms, in particular to the winning algorithm in PACE. Our experiments show that we outpace the other algorithms on instances that have a low density of uni-directed edges.

Cite as

Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt. Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 10:1-10:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{angrick_et_al:LIPIcs.SEA.2023.10,
  author =	{Angrick, Sebastian and Bals, Ben and Casel, Katrin and Cohen, Sarel and Friedrich, Tobias and Hastrich, Niko and Hradilak, Theresa and Issac, Davis and Ki{\ss}ig, Otto and Schmidt, Jonas and Wendt, Leo},
  title =	{{Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.10},
  URN =		{urn:nbn:de:0030-drops-183602},
  doi =		{10.4230/LIPIcs.SEA.2023.10},
  annote =	{Keywords: directed feedback vertex set, vertex cover, reduction rules}
}
Document
Classification of OBDD Size for Monotone 2-CNFs

Authors: Igor Razgon

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
We introduce a new graph parameter called linear upper maximum induced matching width lu-mim width, denoted for a graph G by lu(G). We prove that the smallest size of the obdd for φ, the monotone 2-cnf corresponding to G, is sandwiched between 2^{lu(G)} and n^{O(lu(G))}. The upper bound is based on a combinatorial statement that might be of an independent interest. We show that the bounds in terms of this parameter are best possible. The new parameter is closely related to two existing parameters: linear maximum induced matching width (lmim width) and linear special induced matching width (lsim width). We prove that lu-mim width lies strictly in between these two parameters, being dominated by lsim width and dominating lmim width. We conclude that neither of the two existing parameters can be used instead of lu-mim width to characterize the size of obdds for monotone 2-cnfs and this justifies introduction of the new parameter.

Cite as

Igor Razgon. Classification of OBDD Size for Monotone 2-CNFs. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 25:1-25:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{razgon:LIPIcs.IPEC.2021.25,
  author =	{Razgon, Igor},
  title =	{{Classification of OBDD Size for Monotone 2-CNFs}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{25:1--25:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.25},
  URN =		{urn:nbn:de:0030-drops-154081},
  doi =		{10.4230/LIPIcs.IPEC.2021.25},
  annote =	{Keywords: Ordered Binary Decision Diagrams, Monotone 2-CNFs, Width parameters of graphs, upper and lower bounds}
}
Document
Fractional Covers of Hypergraphs with Bounded Multi-Intersection

Authors: Georg Gottlob, Matthias Lanzinger, Reinhard Pichler, and Igor Razgon

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is ≤ k for some constant k. We also show how our results translate to fractional vertex covers.

Cite as

Georg Gottlob, Matthias Lanzinger, Reinhard Pichler, and Igor Razgon. Fractional Covers of Hypergraphs with Bounded Multi-Intersection. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 41:1-41:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gottlob_et_al:LIPIcs.MFCS.2020.41,
  author =	{Gottlob, Georg and Lanzinger, Matthias and Pichler, Reinhard and Razgon, Igor},
  title =	{{Fractional Covers of Hypergraphs with Bounded Multi-Intersection}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{41:1--41:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.41},
  URN =		{urn:nbn:de:0030-drops-127317},
  doi =		{10.4230/LIPIcs.MFCS.2020.41},
  annote =	{Keywords: Fractional graph theory, fractional edge cover, fractional hypertree width, bounded multi-intersection, fractional cover, fractional vertex cover}
}
Document
Treewidth Reduction for Constrained Separation and Bipartization Problems

Authors: Dániel Marx, Barry O'Sullivan, and Igor Razgon

Published in: LIPIcs, Volume 5, 27th International Symposium on Theoretical Aspects of Computer Science (2010)


Abstract
We present a method for reducing the treewidth of a graph while preserving all the minimal $s-t$ separators. This technique turns out to be very useful for establishing the fixed-parameter tractability of constrained separation and bipartization problems. To demonstrate the power of this technique, we prove the fixed-parameter tractability of a number of well-known separation and bipartization problems with various additional restrictions (e.g., the vertices being removed from the graph form an independent set). These results answer a number of open questions in the area of parameterized complexity.

Cite as

Dániel Marx, Barry O'Sullivan, and Igor Razgon. Treewidth Reduction for Constrained Separation and Bipartization Problems. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 561-572, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{marx_et_al:LIPIcs.STACS.2010.2485,
  author =	{Marx, D\'{a}niel and O'Sullivan, Barry and Razgon, Igor},
  title =	{{Treewidth Reduction for Constrained Separation and Bipartization Problems}},
  booktitle =	{27th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{561--572},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-16-3},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{5},
  editor =	{Marion, Jean-Yves and Schwentick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2485},
  URN =		{urn:nbn:de:0030-drops-24850},
  doi =		{10.4230/LIPIcs.STACS.2010.2485},
  annote =	{Keywords: Fixed-parameter algorithms, graph separation problems, treewidth}
}
Document
Directed Feedback Vertex Set is Fixed-Parameter Tractable

Authors: Igor Razgon and Barry O'Sullivan

Published in: Dagstuhl Seminar Proceedings, Volume 7281, Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs (2007)


Abstract
We resolve positively a long standing open question regarding the fixed-parameter tractability of the parameterized Directed Feedback Vertex Set problem. In particular, we propose an algorithm which solves this problem in $O(8^kk!*poly(n))$.

Cite as

Igor Razgon and Barry O'Sullivan. Directed Feedback Vertex Set is Fixed-Parameter Tractable. In Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs. Dagstuhl Seminar Proceedings, Volume 7281, pp. 1-14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{razgon_et_al:DagSemProc.07281.4,
  author =	{Razgon, Igor and O'Sullivan, Barry},
  title =	{{Directed Feedback Vertex Set is Fixed-Parameter Tractable}},
  booktitle =	{Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs},
  pages =	{1--14},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7281},
  editor =	{Erik Demaine and Gregory Z. Gutin and Daniel Marx and Ulrike Stege},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07281.4},
  URN =		{urn:nbn:de:0030-drops-12363},
  doi =		{10.4230/DagSemProc.07281.4},
  annote =	{Keywords: Directed FVS, Multicut, Directed Acyclic Graph (DAG)}
}
  • Refine by Author
  • 4 Razgon, Igor
  • 2 O'Sullivan, Barry
  • 1 Angrick, Sebastian
  • 1 Bals, Ben
  • 1 Casel, Katrin
  • Show More...

  • Refine by Classification
  • 1 Information systems → Relational database query languages
  • 1 Mathematics of computing → Enumeration
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Graph theory
  • 1 Mathematics of computing → Hypergraphs
  • Show More...

  • Refine by Keyword
  • 1 Directed Acyclic Graph (DAG)
  • 1 Directed FVS
  • 1 Fixed-parameter algorithms
  • 1 Fractional graph theory
  • 1 Monotone 2-CNFs
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 1 2007
  • 1 2010
  • 1 2020
  • 1 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail