4 Search Results for "Schneider, Klaus"


Document
Introduction
Introduction to the Special Issue on Embedded Systems for Computer Vision

Authors: Samarjit Chakraborty and Qing Rao

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
We provide a broad overview of some of the current research directions at the intersection of embedded systems and computer vision, in addition to introducing the papers appearing in this special issue. Work at this intersection is steadily growing in importance, especially in the context of autonomous and cyber-physical systems design. Vision-based perception is almost a mandatory component in any autonomous system, but also adds myriad challenges like, how to efficiently implement vision processing algorithms on resource-constrained embedded architectures, and how to verify the functional and timing correctness of these algorithms. Computer vision is also crucial in implementing various smart functionality like security, e.g., using facial recognition, or monitoring events or traffic patterns. Some of these applications are reviewed in this introductory article. The remaining articles featured in this special issue dive into more depth on a few of them.

Cite as

LITES, Volume 8, Issue 1: Special Issue on Embedded Systems for Computer Vision, pp. 0:i-0:viii, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{chakraborty_et_al:LITES.8.1.0,
  author =	{Chakraborty, Samarjit and Rao, Qing},
  title =	{{Introduction to the Special Issue on Embedded Systems for Computer Vision}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{00:1--00:8},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.0},
  doi =		{10.4230/LITES.8.1.0},
  annote =	{Keywords: Embedded systems, Computer vision, Cyber-physical systems, Computer architecture}
}
Document
Track A: Algorithms, Complexity and Games
An Improved FPTAS for 0-1 Knapsack

Authors: Ce Jin

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The 0-1 knapsack problem is an important NP-hard problem that admits fully polynomial-time approximation schemes (FPTASs). Previously the fastest FPTAS by Chan (2018) with approximation factor 1+epsilon runs in O~(n + (1/epsilon)^{12/5}) time, where O~ hides polylogarithmic factors. In this paper we present an improved algorithm in O~(n+(1/epsilon)^{9/4}) time, with only a (1/epsilon)^{1/4} gap from the quadratic conditional lower bound based on (min,+)-convolution. Our improvement comes from a multi-level extension of Chan’s number-theoretic construction, and a greedy lemma that reduces unnecessary computation spent on cheap items.

Cite as

Ce Jin. An Improved FPTAS for 0-1 Knapsack. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 76:1-76:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{jin:LIPIcs.ICALP.2019.76,
  author =	{Jin, Ce},
  title =	{{An Improved FPTAS for 0-1 Knapsack}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{76:1--76:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.76},
  URN =		{urn:nbn:de:0030-drops-106527},
  doi =		{10.4230/LIPIcs.ICALP.2019.76},
  annote =	{Keywords: approximation algorithms, knapsack, subset sum}
}
Document
Synchronous Programming (Dagstuhl Seminar 13471)

Authors: Stephen A. Edwards, Alain Girault, and Klaus Schneider

Published in: Dagstuhl Reports, Volume 3, Issue 11 (2014)


Abstract
Synchronous programming languages are programming languages with an abstract (logical) notion of time: The execution of such programs is divided into discrete reaction steps, and in each of these reactions steps, the program reads new inputs and reacts by computing corresponding outputs of the considered reaction step. The programs are called synchronous because all outputs are computed together in zero time within a step and because parallel components synchronize their reaction steps by the semantics of the languages. For this reason, the synchronous composition is deterministic, which is a great advantage concerning predictability, verification of system design, and embedded code generation. Starting with the definition of the classic synchronous languages Esterel, Lustre and Signal in the late 1980's, the research during the past 20 years was very fruitful and lead to new languages, compilation techniques, software and hardware architectures, as well as extensions, transformations, and interfaces to other models of computations, in particular to asynchronous and hybrid systems. This report is a summary of the Dagstuhl Seminar 13471 "Synchronous Programming", which took place during November 18-22, 2013, and which was the 20th edition of the yearly workshop of the synchronous programming community. The report contains the abstracts of the presentations given during the seminar in addition to the documents provided by the participants on the web pages of the seminar.

Cite as

Stephen A. Edwards, Alain Girault, and Klaus Schneider. Synchronous Programming (Dagstuhl Seminar 13471). In Dagstuhl Reports, Volume 3, Issue 11, pp. 117-143, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@Article{edwards_et_al:DagRep.3.11.117,
  author =	{Edwards, Stephen A. and Girault, Alain and Schneider, Klaus},
  title =	{{Synchronous Programming (Dagstuhl Seminar 13471)}},
  pages =	{117--143},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2014},
  volume =	{3},
  number =	{11},
  editor =	{Edwards, Stephen A. and Girault, Alain and Schneider, Klaus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.3.11.117},
  URN =		{urn:nbn:de:0030-drops-44395},
  doi =		{10.4230/DagRep.3.11.117},
  annote =	{Keywords: Synchronous Languages, Hybrid Systems, Formal Verification, Models of Computation, WCET-Analysis, Embedded Systems}
}
Document
09481 Abstracts Collection – SYNCHRON 2009

Authors: Albert Benveniste, Stephen A. Edwards, Edward Lee, Klaus Schneider, and Reinhard von Hanxleden

Published in: Dagstuhl Seminar Proceedings, Volume 9481, SYNCHRON 2009


Abstract
The 16th SYNCHRON workshop has been organized as Dagstuhl seminar 09481 from November 22-27, 2009. Online material of the seminar is available at the following web page: http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=09481

Cite as

Albert Benveniste, Stephen A. Edwards, Edward Lee, Klaus Schneider, and Reinhard von Hanxleden. 09481 Abstracts Collection – SYNCHRON 2009. In SYNCHRON 2009. Dagstuhl Seminar Proceedings, Volume 9481, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{benveniste_et_al:DagSemProc.09481.1,
  author =	{Benveniste, Albert and Edwards, Stephen A. and Lee, Edward and Schneider, Klaus and von Hanxleden, Reinhard},
  title =	{{09481 Abstracts Collection – SYNCHRON 2009}},
  booktitle =	{SYNCHRON 2009},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{9481},
  editor =	{Albert Benveniste and Stephen A. Edwards and Edward Lee and Klaus Schneider and Reinhard von Hanxleden},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09481.1},
  URN =		{urn:nbn:de:0030-drops-24340},
  doi =		{10.4230/DagSemProc.09481.1},
  annote =	{Keywords: Synchronous languages, Safety-critical real-time systems, Model-based design, Discrete and hybrid systems, Combining synchronous and asynchronous models, Formally consistent subsetting of UML, High-level hardware modeling and synthesis, Compilation and code synthesis for embedded systems}
}
  • Refine by Author
  • 2 Edwards, Stephen A.
  • 2 Schneider, Klaus
  • 1 Benveniste, Albert
  • 1 Chakraborty, Samarjit
  • 1 Girault, Alain
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • 1 Theory of computation → Algorithm design techniques

  • Refine by Keyword
  • 1 Combining synchronous and asynchronous models
  • 1 Compilation and code synthesis for embedded systems
  • 1 Computer architecture
  • 1 Computer vision
  • 1 Cyber-physical systems
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2010
  • 1 2014
  • 1 2019
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail