21 Search Results for "Schulman, Leonard"


Document
APPROX
Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3

Authors: Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In a disk graph, every vertex corresponds to a disk in ℝ² and two vertices are connected by an edge whenever the two corresponding disks intersect. Disk graphs form an important class of geometric intersection graphs, which generalizes both planar graphs and unit-disk graphs. We study a fundamental optimization problem in algorithmic graph theory, Bipartization (also known as Odd Cycle Transversal), on the class of disk graphs. The goal of Bipartization is to delete a minimum number of vertices from the input graph such that the resulting graph is bipartite. A folklore (polynomial-time) 3-approximation algorithm for Bipartization on disk graphs follows from the classical framework of Goemans and Williamson [Combinatorica'98] for cycle-hitting problems. For over two decades, this result has remained the best known approximation for the problem (in fact, even for Bipartization on unit-disk graphs). In this paper, we achieve the first improvement upon this result, by giving a (3-α)-approximation algorithm for Bipartization on disk graphs, for some constant α > 0. Our algorithm directly generalizes to the broader class of pseudo-disk graphs. Furthermore, our algorithm is robust in the sense that it does not require a geometric realization of the input graph to be given.

Cite as

Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.APPROX/RANDOM.2024.6,
  author =	{Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket and Xue, Jie and Zehavi, Meirav},
  title =	{{Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.6},
  URN =		{urn:nbn:de:0030-drops-209990},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.6},
  annote =	{Keywords: bipartization, geometric intersection graphs, approximation algorithms}
}
Document
RANDOM
Interactive Coding with Unbounded Noise

Authors: Eden Fargion, Ran Gelles, and Meghal Gupta

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Interactive coding allows two parties to conduct a distributed computation despite noise corrupting a certain fraction of their communication. Dani et al. (Inf. and Comp., 2018) suggested a novel setting in which the amount of noise is unbounded and can significantly exceed the length of the (noise-free) computation. While no solution is possible in the worst case, under the restriction of oblivious noise, Dani et al. designed a coding scheme that succeeds with a polynomially small failure probability. We revisit the question of conducting computations under this harsh type of noise and devise a computationally-efficient coding scheme that guarantees the success of the computation, except with an exponentially small probability. This higher degree of correctness matches the case of coding schemes with a bounded fraction of noise. Our simulation of an N-bit noise-free computation in the presence of T corruptions, communicates an optimal number of O(N+T) bits and succeeds with probability 1-2^(-Ω(N)). We design this coding scheme by introducing an intermediary noise model, where an oblivious adversary can choose the locations of corruptions in a worst-case manner, but the effect of each corruption is random: the noise either flips the transmission with some probability or otherwise erases it. This randomized abstraction turns out to be instrumental in achieving an optimal coding scheme.

Cite as

Eden Fargion, Ran Gelles, and Meghal Gupta. Interactive Coding with Unbounded Noise. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fargion_et_al:LIPIcs.APPROX/RANDOM.2024.43,
  author =	{Fargion, Eden and Gelles, Ran and Gupta, Meghal},
  title =	{{Interactive Coding with Unbounded Noise}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.43},
  URN =		{urn:nbn:de:0030-drops-210361},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.43},
  annote =	{Keywords: Distributed Computation with Noisy Links, Interactive Coding, Noise Resilience, Unbounded Noise, Random Erasure-Flip Noise}
}
Document
RANDOM
Consequences of Randomized Reductions from SAT to Time-Bounded Kolmogorov Complexity

Authors: Halley Goldberg and Valentine Kabanets

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
A central open question within meta-complexity is that of NP-hardness of problems such as MCSP and MK^{t}P. Despite a large body of work giving consequences of and barriers for NP-hardness of these problems under (restricted) deterministic reductions, very little is known in the setting of randomized reductions. In this work, we give consequences of randomized NP-hardness reductions for both approximating and exactly computing time-bounded and time-unbounded Kolmogorov complexity. In the setting of approximate K^{poly} complexity, our results are as follows. 1) Under a derandomization assumption, for any constant δ > 0, if approximating K^t complexity within n^{δ} additive error is hard for SAT under an honest randomized non-adaptive Turing reduction running in time polynomially less than t, then NP = coNP. 2) Under the same assumptions, the worst-case hardness of NP is equivalent to the existence of one-way functions. Item 1 above may be compared with a recent work of Saks and Santhanam [Michael E. Saks and Rahul Santhanam, 2022], which makes the same assumptions except with ω(log n) additive error, obtaining the conclusion NE = coNE. In the setting of exact K^{poly} complexity, where the barriers of Item 1 and [Michael E. Saks and Rahul Santhanam, 2022] do not apply, we show: 3) If computing K^t complexity is hard for SAT under reductions as in Item 1, then the average-case hardness of NP is equivalent to the existence of one-way functions. That is, "Pessiland" is excluded. Finally, we give consequences of NP-hardness of exact time-unbounded Kolmogorov complexity under randomized reductions. 4) If computing Kolmogorov complexity is hard for SAT under a randomized many-one reduction running in time t_R and with failure probability at most 1/(t_R)^16, then coNP is contained in non-interactive statistical zero-knowledge; thus NP ⊆ coAM. Also, the worst-case hardness of NP is equivalent to the existence of one-way functions. We further exploit the connection to NISZK along with a previous work of Allender et al. [Eric Allender et al., 2023] to show that hardness of K complexity under randomized many-one reductions is highly robust with respect to failure probability, approximation error, output length, and threshold parameter.

Cite as

Halley Goldberg and Valentine Kabanets. Consequences of Randomized Reductions from SAT to Time-Bounded Kolmogorov Complexity. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 51:1-51:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goldberg_et_al:LIPIcs.APPROX/RANDOM.2024.51,
  author =	{Goldberg, Halley and Kabanets, Valentine},
  title =	{{Consequences of Randomized Reductions from SAT to Time-Bounded Kolmogorov Complexity}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{51:1--51:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.51},
  URN =		{urn:nbn:de:0030-drops-210444},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.51},
  annote =	{Keywords: Meta-complexity, Randomized reductions, NP-hardness, Worst-case complexity, Time-bounded Kolmogorov complexity}
}
Document
Reconstructing Rearrangement Phylogenies of Natural Genomes

Authors: Leonard Bohnenkämper, Jens Stoye, and Daniel Dörr

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
We study the classical problem of inferring ancestral genomes from a set of extant genomes under a given phylogeny, known as the Small Parsimony Problem (SPP). Genomes are represented as sequences of oriented markers, organized in one or more linear or circular chromosomes. Any marker may appear in several copies, without restriction on orientation or genomic location, known as the natural genomes model. Evolutionary events along the branches of the phylogeny encompass large scale rearrangements, including segmental inversions, translocations, gain and loss (DCJ-indel model). Even under simpler rearrangement models, such as the classical breakpoint model without duplicates, the SPP is computationally intractable. Nevertheless, the SPP for natural genomes under the DCJ-indel model has been studied recently, with limited success. Here, we improve on that earlier work, giving a highly optimized ILP that is able to solve the SPP for sufficiently small phylogenies and gene families. A notable improvement w.r.t. the previous result is an optimized way of handling both circular and linear chromosomes. This is especially relevant to the SPP, since the chromosomal structure of ancestral genomes is unknown and the solution space for this chromosomal structure is typically large. We benchmark our method on simulated and real data. On simulated phylogenies we observe a considerable performance improvement on problems that include linear chromosomes. And even when the ground truth contains only one circular chromosome per genome, our method outperforms its predecessor due to its optimized handling of the solution space. The practical advantage becomes also visible in an analysis of seven Anopheles taxa.

Cite as

Leonard Bohnenkämper, Jens Stoye, and Daniel Dörr. Reconstructing Rearrangement Phylogenies of Natural Genomes. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bohnenkamper_et_al:LIPIcs.WABI.2024.12,
  author =	{Bohnenk\"{a}mper, Leonard and Stoye, Jens and D\"{o}rr, Daniel},
  title =	{{Reconstructing Rearrangement Phylogenies of Natural Genomes}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.12},
  URN =		{urn:nbn:de:0030-drops-206564},
  doi =		{10.4230/LIPIcs.WABI.2024.12},
  annote =	{Keywords: genome rearrangement, ancestral reconstruction, small parsimony, integer linear programming, double-cut-and-join}
}
Document
Nearly-Tight Bounds for Flow Sparsifiers in Quasi-Bipartite Graphs

Authors: Syamantak Das, Nikhil Kumar, and Daniel Vaz

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Flow sparsification is a classic graph compression technique which, given a capacitated graph G on k terminals, aims to construct another capacitated graph H, called a flow sparsifier, that preserves, either exactly or approximately, every multicommodity flow between terminals (ideally, with size as a small function of k). Cut sparsifiers are a restricted variant of flow sparsifiers which are only required to preserve maximum flows between bipartitions of the terminal set. It is known that exact cut sparsifiers require 2^Ω(k) many vertices [Krauthgamer and Rika, SODA 2013], with the hard instances being quasi-bipartite graphs, where there are no edges between non-terminals. On the other hand, it has been shown recently that exact (or even (1+ε)-approximate) flow sparsifiers on networks with just 6 terminals require unbounded size [Krauthgamer and Mosenzon, SODA 2023, Chen and Tan, SODA 2024]. In this paper, we construct exact flow sparsifiers of size 3^k³ and exact cut sparsifiers of size 2^k² for quasi-bipartite graphs. In particular, the flow sparsifiers are contraction-based, that is, they are obtained from the input graph by (vertex) contraction operations. Our main contribution is a new technique to construct sparsifiers that exploits connections to polyhedral geometry, and that can be generalized to graphs with a small separator that separates the graph into small components. We also give an improved reduction theorem for graphs of bounded treewidth [Andoni et al., SODA 2011], implying a flow sparsifier of size O(k⋅w) and quality O((log w)/log log w), where w is the treewidth.

Cite as

Syamantak Das, Nikhil Kumar, and Daniel Vaz. Nearly-Tight Bounds for Flow Sparsifiers in Quasi-Bipartite Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 45:1-45:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.MFCS.2024.45,
  author =	{Das, Syamantak and Kumar, Nikhil and Vaz, Daniel},
  title =	{{Nearly-Tight Bounds for Flow Sparsifiers in Quasi-Bipartite Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{45:1--45:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.45},
  URN =		{urn:nbn:de:0030-drops-206018},
  doi =		{10.4230/LIPIcs.MFCS.2024.45},
  annote =	{Keywords: Graph Sparsification, Cut Sparsifiers, Flow Sparsifiers, Quasi-bipartite Graphs, Bounded Treewidth}
}
Document
Faster Approximation Schemes for (Constrained) k-Means with Outliers

Authors: Zhen Zhang, Junyu Huang, and Qilong Feng

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given a set of n points in ℝ^d and two positive integers k and m, the Euclidean k-means with outliers problem aims to remove at most m points, referred to as outliers, and minimize the k-means cost function for the remaining points. Developing algorithms for this problem remains an active area of research due to its prevalence in applications involving noisy data. In this paper, we give a (1+ε)-approximation algorithm that runs in n²d((k+m)ε^{-1})^O(kε^{-1}) time for the problem. When combined with a coreset construction method, the running time of the algorithm can be improved to be linear in n. For the case where k is a constant, this represents the first polynomial-time approximation scheme for the problem: Existing algorithms with the same approximation guarantee run in polynomial time only when both k and m are constants. Furthermore, our approach generalizes to variants of k-means with outliers incorporating additional constraints on instances, such as those related to capacities and fairness.

Cite as

Zhen Zhang, Junyu Huang, and Qilong Feng. Faster Approximation Schemes for (Constrained) k-Means with Outliers. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 84:1-84:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.MFCS.2024.84,
  author =	{Zhang, Zhen and Huang, Junyu and Feng, Qilong},
  title =	{{Faster Approximation Schemes for (Constrained) k-Means with Outliers}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{84:1--84:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.84},
  URN =		{urn:nbn:de:0030-drops-206408},
  doi =		{10.4230/LIPIcs.MFCS.2024.84},
  annote =	{Keywords: Approximation algorithms, clustering}
}
Document
Communication Complexity vs Randomness Complexity in Interactive Proofs

Authors: Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
In this work, we study the interplay between the communication from a verifier in a general private-coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case derandomization assumptions, we show that it is possible to transform any I-round interactive protocol that uses ρ random bits into another one for the same problem with the additional property that the verifier’s communication is bounded by O(I⋅ ρ). Importantly, this is done with a minor, logarithmic, increase in the communication from the prover to the verifier and while preserving the randomness complexity. Along the way, we introduce a new compression game between computationally-bounded compressor and computationally-unbounded decompressor and a new notion of conditioned efficient distributions that may be of independent interest. Our solutions are based on a combination of perfect hashing and pseudorandom generators.

Cite as

Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran. Communication Complexity vs Randomness Complexity in Interactive Proofs. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 2:1-2:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{applebaum_et_al:LIPIcs.ITC.2024.2,
  author =	{Applebaum, Benny and Bhushan, Kaartik and Prabhakaran, Manoj},
  title =	{{Communication Complexity vs Randomness Complexity in Interactive Proofs}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{2:1--2:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.2},
  URN =		{urn:nbn:de:0030-drops-205103},
  doi =		{10.4230/LIPIcs.ITC.2024.2},
  annote =	{Keywords: Interactive Proof Systems, Communication Complexity, Hash Functions, Pseudo-Random Generators, Compression}
}
Document
Asymptotically-Good RLCCs with (log n)^(2+o(1)) Queries

Authors: Gil Cohen and Tal Yankovitz

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Recently, Kumar and Mon reached a significant milestone by constructing asymptotically good relaxed locally correctable codes (RLCCs) with poly-logarithmic query complexity. Specifically, they constructed n-bit RLCCs with O(log^{69} n) queries. Their construction relies on a clever reduction to locally testable codes (LTCs), capitalizing on recent breakthrough works in LTCs. As for lower bounds, Gur and Lachish (SICOMP 2021) proved that any asymptotically-good RLCC must make Ω̃(√{log n}) queries. Hence emerges the intriguing question regarding the identity of the least value 1/2 ≤ e ≤ 69 for which asymptotically-good RLCCs with query complexity (log n)^{e+o(1)} exist. In this work, we make substantial progress in narrowing the gap by devising asymptotically-good RLCCs with a query complexity of (log n)^{2+o(1)}. The key insight driving our work lies in recognizing that the strong guarantee of local testability overshoots the requirements for the Kumar-Mon reduction. In particular, we prove that we can replace the LTCs by "vanilla" expander codes which indeed have the necessary property: local testability in the code’s vicinity.

Cite as

Gil Cohen and Tal Yankovitz. Asymptotically-Good RLCCs with (log n)^(2+o(1)) Queries. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.CCC.2024.8,
  author =	{Cohen, Gil and Yankovitz, Tal},
  title =	{{Asymptotically-Good RLCCs with (log n)^(2+o(1)) Queries}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.8},
  URN =		{urn:nbn:de:0030-drops-204045},
  doi =		{10.4230/LIPIcs.CCC.2024.8},
  annote =	{Keywords: Relaxed locally decodable codes, Relxaed locally correctable codes, RLCC, RLDC}
}
Document
Information Dissemination via Broadcasts in the Presence of Adversarial Noise

Authors: Klim Efremenko, Gillat Kol, Dmitry Paramonov, Ran Raz, and Raghuvansh R. Saxena

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We initiate the study of error correcting codes over the multi-party adversarial broadcast channel. Specifically, we consider the classic information dissemination problem where n parties, each holding an input bit, wish to know each other’s input. For this, they communicate in rounds, where, in each round, one designated party sends a bit to all other parties over a channel governed by an adversary that may corrupt a constant fraction of the received communication. We mention that the dissemination problem was studied in the stochastic noise model since the 80’s. While stochastic noise in multi-party channels has received quite a bit of attention, the case of adversarial noise has largely been avoided, as such channels cannot handle more than a 1/n-fraction of errors. Indeed, this many errors allow an adversary to completely corrupt the incoming or outgoing communication for one of the parties and fail the protocol. Curiously, we show that by eliminating these "trivial" attacks, one can get a simple protocol resilient to a constant fraction of errors. Thus, a model that rules out such attacks is both necessary and sufficient to get a resilient protocol. The main shortcoming of our dissemination protocol is its length: it requires Θ(n²) communication rounds whereas n rounds suffice in the absence of noise. Our main result is a matching lower bound of Ω(n²) on the length of any dissemination protocol in our model. Our proof first "gets rid" of the channel noise by converting it to a form of "input noise", showing that a noisy dissemination protocol implies a (noiseless) protocol for a version of the direct sum gap-majority problem. We conclude the proof with a tight lower bound for the latter problem, which may be of independent interest.

Cite as

Klim Efremenko, Gillat Kol, Dmitry Paramonov, Ran Raz, and Raghuvansh R. Saxena. Information Dissemination via Broadcasts in the Presence of Adversarial Noise. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 19:1-19:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{efremenko_et_al:LIPIcs.CCC.2024.19,
  author =	{Efremenko, Klim and Kol, Gillat and Paramonov, Dmitry and Raz, Ran and Saxena, Raghuvansh R.},
  title =	{{Information Dissemination via Broadcasts in the Presence of Adversarial Noise}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{19:1--19:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.19},
  URN =		{urn:nbn:de:0030-drops-204159},
  doi =		{10.4230/LIPIcs.CCC.2024.19},
  annote =	{Keywords: Radio Networks, Interactive Coding, Error Correcting Codes}
}
Document
Track A: Algorithms, Complexity and Games
Fast Approximate Counting of Cycles

Authors: Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal.

Cite as

Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams. Fast Approximate Counting of Cycles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 37:1-37:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.ICALP.2024.37,
  author =	{Censor-Hillel, Keren and Even, Tomer and Vassilevska Williams, Virginia},
  title =	{{Fast Approximate Counting of Cycles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{37:1--37:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.37},
  URN =		{urn:nbn:de:0030-drops-201809},
  doi =		{10.4230/LIPIcs.ICALP.2024.37},
  annote =	{Keywords: Approximate triangle counting, Approximate cycle counting Fast matrix multiplication, Fast rectangular matrix multiplication}
}
Document
Track A: Algorithms, Complexity and Games
Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
It is known for many algorithmic problems that if a tree decomposition of width t is given in the input, then the problem can be solved with exponential dependence on t. A line of research initiated by Lokshtanov, Marx, and Saurabh [SODA 2011] produced lower bounds showing that in many cases known algorithms already achieve the best possible exponential dependence on t, assuming the Strong Exponential-Time Hypothesis (SETH). The main message of this paper is showing that the same lower bounds can already be obtained in a much more restricted setting: informally, a graph consisting of a block of t vertices connected to components of constant size already has the same hardness as a general tree decomposition of width t. Formally, a (σ,δ)-hub is a set Q of vertices such that every component of Q has size at most σ and is adjacent to at most δ vertices of Q. We explore if the known tight lower bounds parameterized by the width of the given tree decomposition remain valid if we parameterize by the size of the given hub. - For every ε > 0, there are σ,δ > 0 such that Independent Set (equivalently Vertex Cover) cannot be solved in time (2-ε)^p⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the SETH. This matches the earlier tight lower bounds parameterized by width of the tree decomposition. Similar tight bounds are obtained for Odd Cycle Transversal, Max Cut, q-Coloring, and edge/vertex deletions versions of q-Coloring. - For every ε > 0, there are σ,δ > 0 such that △-Partition cannot be solved in time (2-ε)^p ⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the Set Cover Conjecture (SCC). In fact, we prove that this statement is equivalent to the SCC, thus it is unlikely that this could be proved assuming the SETH. - For Dominating Set, we can prove a non-tight lower bound ruling out (2-ε)^p ⋅ n^𝒪(1) algorithms, assuming either the SETH or the SCC, but this does not match the 3^p⋅ n^{𝒪(1)} upper bound. Thus our results reveal that, for many problems, the research on lower bounds on the dependence on tree width was never really about tree decompositions, but the real source of hardness comes from a much simpler structure. Additionally, we study if the same lower bounds can be obtained if σ and δ are fixed universal constants (not depending on ε). We show that lower bounds of this form are possible for Max Cut and the edge-deletion version of q-Coloring, under the Max 3-Sat Hypothesis (M3SH). However, no such lower bounds are possible for Independent Set, Odd Cycle Transversal, and the vertex-deletion version of q-Coloring: better than brute force algorithms are possible for every fixed (σ,δ).

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ICALP.2024.34,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.34},
  URN =		{urn:nbn:de:0030-drops-201772},
  doi =		{10.4230/LIPIcs.ICALP.2024.34},
  annote =	{Keywords: Parameterized Complexity, Tight Bounds, Hub, Treewidth, Strong Exponential Time Hypothesis, Vertex Coloring, Vertex Deletion, Edge Deletion, Triangle Packing, Triangle Partition, Set Cover Hypothesis, Dominating Set}
}
Document
Track A: Algorithms, Complexity and Games
On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch

Authors: Tsvi Kopelowitz, Ariel Korin, and Liam Roditty

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For an undirected unweighted graph G = (V,E) with n vertices and m edges, let d(u,v) denote the distance from u ∈ V to v ∈ V in G. An (α,β)-stretch approximate distance oracle (ADO) for G is a data structure that given u,v ∈ V returns in constant (or near constant) time a value dˆ(u,v) such that d(u,v) ≤ dˆ(u,v) ≤ α⋅ d(u,v) + β, for some reals α > 1, β. Thorup and Zwick [Mikkel Thorup and Uri Zwick, 2005] showed that one cannot beat stretch 3 with subquadratic space (in terms of n) for general graphs. Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one can obtain stretch 2 using O(m^{1/3}n^{4/3}) space, and so if m is subquadratic in n then the space usage is also subquadratic. Moreover, Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one cannot beat stretch 2 with subquadratic space even for graphs where m = Õ(n), based on the set-intersection hypothesis. In this paper we explore the conditions for which an ADO can beat stretch 2 while using subquadratic space. In particular, we show that if the maximum degree in G is Δ_G ≤ O(n^{1/k-ε}) for some 0 < ε ≤ 1/k, then there exists an ADO for G that uses Õ(n^{2-(kε)/3) space and has a (2,1-k)-stretch. For k = 2 this result implies a subquadratic sub-2 stretch ADO for graphs with Δ_G ≤ O(n^{1/2-ε}). Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which states that for any positive integer k ≤ log n, obtaining a sub-(k+2)/k stretch for graphs with Δ_G = Θ(n^{1/k}) requires Ω̃(n²) space. Thus, for graphs with maximum degree Θ(n^{1/2}), obtaining a sub-2 stretch requires Ω̃(n²) space.

Cite as

Tsvi Kopelowitz, Ariel Korin, and Liam Roditty. On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 101:1-101:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kopelowitz_et_al:LIPIcs.ICALP.2024.101,
  author =	{Kopelowitz, Tsvi and Korin, Ariel and Roditty, Liam},
  title =	{{On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{101:1--101:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.101},
  URN =		{urn:nbn:de:0030-drops-202443},
  doi =		{10.4230/LIPIcs.ICALP.2024.101},
  annote =	{Keywords: Graph algorithms, Approximate distance oracle, data structures, shortest path}
}
Document
Track A: Algorithms, Complexity and Games
Two-Source and Affine Non-Malleable Extractors for Small Entropy

Authors: Xin Li and Yan Zhong

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Non-malleable extractors are generalizations and strengthening of standard randomness extractors, that are resilient to adversarial tampering. Such extractors have wide applications in cryptography and have become important cornerstones in recent breakthroughs of explicit constructions of two-source extractors and affine extractors for small entropy. However, explicit constructions of non-malleable extractors appear to be much harder than standard extractors. Indeed, in the well-studied models of two-source and affine non-malleable extractors, the previous best constructions only work for entropy rate > 2/3 and 1-γ for some small constant γ > 0 respectively by Li (FOCS' 23). In this paper, we present explicit constructions of two-source and affine non-malleable extractors that match the state-of-the-art constructions of standard ones for small entropy. Our main results include: - Two-source and affine non-malleable extractors (over 𝖥₂) for sources on n bits with min-entropy k ≥ log^C n and polynomially small error, matching the parameters of standard extractors by Chattopadhyay and Zuckerman (STOC' 16, Annals of Mathematics' 19) and Li (FOCS' 16). - Two-source and affine non-malleable extractors (over 𝖥₂) for sources on n bits with min-entropy k = O(log n) and constant error, matching the parameters of standard extractors by Li (FOCS' 23). Our constructions significantly improve previous results, and the parameters (entropy requirement and error) are the best possible without first improving the constructions of standard extractors. In addition, our improved affine non-malleable extractors give strong lower bounds for a certain kind of read-once linear branching programs, recently introduced by Gryaznov, Pudlák, and Talebanfard (CCC' 22) as a generalization of several well studied computational models. These bounds match the previously best-known average-case hardness results given by Chattopadhyay and Liao (CCC' 23) and Li (FOCS' 23), where the branching program size lower bounds are close to optimal, but the explicit functions we use here are different. Our results also suggest a possible deeper connection between non-malleable extractors and standard ones.

Cite as

Xin Li and Yan Zhong. Two-Source and Affine Non-Malleable Extractors for Small Entropy. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 108:1-108:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ICALP.2024.108,
  author =	{Li, Xin and Zhong, Yan},
  title =	{{Two-Source and Affine Non-Malleable Extractors for Small Entropy}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{108:1--108:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.108},
  URN =		{urn:nbn:de:0030-drops-202512},
  doi =		{10.4230/LIPIcs.ICALP.2024.108},
  annote =	{Keywords: Randomness Extractors, Non-malleable, Two-source, Affine}
}
Document
Track A: Algorithms, Complexity and Games
An O(loglog n)-Approximation for Submodular Facility Location

Authors: Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Submodular Facility Location problem (SFL) we are given a collection of n clients and m facilities in a metric space. A feasible solution consists of an assignment of each client to some facility. For each client, one has to pay the distance to the associated facility. Furthermore, for each facility f to which we assign the subset of clients S^f, one has to pay the opening cost g(S^f), where g() is a monotone submodular function with g(emptyset)=0. SFL is APX-hard since it includes the classical (metric uncapacitated) Facility Location problem (with uniform facility costs) as a special case. Svitkina and Tardos [SODA'06] gave the current-best O(log n) approximation algorithm for SFL. The same authors pose the open problem whether SFL admits a constant approximation and provide such an approximation for a very restricted special case of the problem. We make some progress towards the solution of the above open problem by presenting an O(loglog n) approximation. Our approach is rather flexible and can be easily extended to generalizations and variants of SFL. In more detail, we achieve the same approximation factor for the natural generalizations of SFL where the opening cost of each facility f is of the form p_f + g(S^f) or w_f * g(S^f), where p_f, w_f >= 0 are input values. We also obtain an improved approximation algorithm for the related Universal Stochastic Facility Location problem. In this problem one is given a classical (metric) facility location instance and has to a priori assign each client to some facility. Then a subset of active clients is sampled from some given distribution, and one has to pay (a posteriori) only the connection and opening costs induced by the active clients. The expected opening cost of each facility f can be modelled with a submodular function of the set of clients assigned to f.

Cite as

Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely. An O(loglog n)-Approximation for Submodular Facility Location. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.5,
  author =	{Abbasi, Fateme and Adamczyk, Marek and Bosch-Calvo, Miguel and Byrka, Jaros{\l}aw and Grandoni, Fabrizio and Sornat, Krzysztof and Tinguely, Antoine},
  title =	{{An O(loglog n)-Approximation for Submodular Facility Location}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.5},
  URN =		{urn:nbn:de:0030-drops-201488},
  doi =		{10.4230/LIPIcs.ICALP.2024.5},
  annote =	{Keywords: approximation algorithms, facility location, submodular facility location, universal stochastic facility location}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces

Authors: Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the well-studied Robust (k,z)-Clustering problem, which generalizes the classic k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi, Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1, the input to Robust (k,z)-Clustering is a set P of n points in a metric space (M,δ), a weight function w: P → ℝ_{≥ 0} and a positive integer k. Further, each point belongs to one (or more) of the m many different groups S_1,S_2,…,S_m ⊆ P. Our goal is to find a set X of k centers such that max_{i ∈ [m]} ∑_{p ∈ S_i} w(p) δ(p,X)^z is minimized. Complementing recent work on this problem, we give a comprehensive understanding of the parameterized approximability of the problem in geometric spaces where the parameter is the number k of centers. We prove the following results: [(i)] 1) For a universal constant η₀ > 0.0006, we devise a 3^z(1-η₀)-factor FPT approximation algorithm for Robust (k,z)-Clustering in discrete high-dimensional Euclidean spaces where the set of potential centers is finite. This shows that the lower bound of 3^z for general metrics [Goyal, Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure. 2) We show that Robust (k,z)-Clustering in discrete Euclidean spaces is (√{3/2}- o(1))-hard to approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic dimensions. This rules out a (1+ε)-approximation algorithm running in time f(k,ε)poly(m,n) (also called efficient parameterized approximation scheme or EPAS), giving a striking contrast with the recent EPAS for the continuous setting where centers can be placed anywhere in the space [Abbasi et al., FOCS'23]. 3) However, we obtain an EPAS for Robust (k,z)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al., FOCS'23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics of sub-logarithmic doubling dimension.

Cite as

Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.6,
  author =	{Abbasi, Fateme and Banerjee, Sandip and Byrka, Jaros{\l}aw and Chalermsook, Parinya and Gadekar, Ameet and Khodamoradi, Kamyar and Marx, D\'{a}niel and Sharma, Roohani and Spoerhase, Joachim},
  title =	{{Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.6},
  URN =		{urn:nbn:de:0030-drops-201494},
  doi =		{10.4230/LIPIcs.ICALP.2024.6},
  annote =	{Keywords: Clustering, approximation algorithms, parameterized complexity}
}
  • Refine by Author
  • 3 Schulman, Leonard J.
  • 2 Abbasi, Fateme
  • 2 Byrka, Jarosław
  • 2 Cohen, Gil
  • 2 Marx, Dániel
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Facility location and clustering
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Error-correcting codes
  • 2 Theory of computation → Graph algorithms analysis
  • 1 Applied computing → Bioinformatics
  • Show More...

  • Refine by Keyword
  • 3 approximation algorithms
  • 2 Interactive Coding
  • 1 Affine
  • 1 Approximate cycle counting Fast matrix multiplication
  • 1 Approximate distance oracle
  • Show More...

  • Refine by Type
  • 21 document

  • Refine by Publication Year
  • 15 2024
  • 1 2008
  • 1 2015
  • 1 2017
  • 1 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail