10 Search Results for "Schuster, Martin"


Document
HOBBIT: Hashed OBject Based InTegrity

Authors: Matthias Bernad and Stefan Brunthaler

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
C vulnerabilities usually hold verbatim for C++ programs. The counterfeit-object-oriented programming attack demonstrated that this relation is asymmetric, i.e., it only applies to C++. The problem pinpointed by this COOP attack is that C++ does not validate the integrity of its objects. By injecting malicious objects with manipulated virtual function table pointers, attackers can hijack control-flow of programs. The software security community addressed the COOP-problem in the years following its discovery, but together with the emergence of transient-execution attacks, such as Spectre, researchers also shifted their attention. We present Hobbit, a software-only solution to prevent COOP attacks by validating object integrity for virtual function pointer tables. Hobbit does not require any hardware specific features, scales to multi-million lines of C++ source code, and our LLVM-based implementation offers a configurable performance impact between 121.63% and 2.80% on compute-intensive SPEC CPU C++ benchmarks. Hobbit’s security analysis indicates strong resistance to brute forcing attacks and demonstrates additional benefits of using execute-only memory.

Cite as

Matthias Bernad and Stefan Brunthaler. HOBBIT: Hashed OBject Based InTegrity. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 7:1-7:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bernad_et_al:LIPIcs.ECOOP.2024.7,
  author =	{Bernad, Matthias and Brunthaler, Stefan},
  title =	{{HOBBIT: Hashed OBject Based InTegrity}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{7:1--7:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.7},
  URN =		{urn:nbn:de:0030-drops-208566},
  doi =		{10.4230/LIPIcs.ECOOP.2024.7},
  annote =	{Keywords: software security, code-reuse attacks, language-based security, counterfeit-object-oriented programming, object integrity, compiler security}
}
Document
RNA Inverse Folding Can Be Solved in Linear Time for Structures Without Isolated Stacks or Base Pairs

Authors: Théo Boury, Laurent Bulteau, and Yann Ponty

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Inverse folding is a classic instance of negative RNA design which consists in finding a sequence that uniquely folds into a target secondary structure with respect to energy minimization. A breakthrough result of Bonnet et al. shows that, even in simple base pairs-based (BP) models, the decision version of a mildly constrained version of inverse folding is NP-hard. In this work, we show that inverse folding can be solved in linear time for a large collection of targets, including every structure that contains no isolated BP and no isolated stack (or, equivalently, when all helices consist of 3^{+} base pairs). For structures featuring shorter helices, our linear algorithm is no longer guaranteed to produce a solution, but still does so for a large proportion of instances. Our approach introduces a notion of modulo m-separability, generalizing a property pioneered by Hales et al. Separability is a sufficient condition for the existence of a solution to the inverse folding problem. We show that, for any input secondary structure of length n, a modulo m-separated sequence can be produced in time 𝒪(n 2^m) anytime such a sequence exists. Meanwhile, we show that any structure consisting of 3^{+} base pairs is either trivially non-designable, or always admits a modulo-2 separated solution (m = 2). Solution sequences can thus be produced in linear time, and even be uniformly generated within the set of modulo-2 separable sequences.

Cite as

Théo Boury, Laurent Bulteau, and Yann Ponty. RNA Inverse Folding Can Be Solved in Linear Time for Structures Without Isolated Stacks or Base Pairs. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 19:1-19:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boury_et_al:LIPIcs.WABI.2024.19,
  author =	{Boury, Th\'{e}o and Bulteau, Laurent and Ponty, Yann},
  title =	{{RNA Inverse Folding Can Be Solved in Linear Time for Structures Without Isolated Stacks or Base Pairs}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{19:1--19:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.19},
  URN =		{urn:nbn:de:0030-drops-206632},
  doi =		{10.4230/LIPIcs.WABI.2024.19},
  annote =	{Keywords: RNA structure, String Design, Parameterized Complexity, Uniform Sampling}
}
Document
From Proofs to Computation in Geometric Logic and Generalizations (Dagstuhl Seminar 24021)

Authors: Ingo Blechschmidt, Hajime Ishihara, Peter M. Schuster, and Gabriele Buriola

Published in: Dagstuhl Reports, Volume 14, Issue 1 (2024)


Abstract
What is the computational content of proofs? This is one of the main topics in mathematical logic, especially proof theory, that is of relevance for computer science. The well-known foundational solutions aim at rebuilding mathematics constructively almost from scratch, and include Bishop-style constructive mathematics and Martin-Löf’s intuitionistic type theory, the latter most recently in the form of the so-called homotopy or univalent type theory put forward by Voevodsky. From a more practical angle, however, the question rather is to which extent any given proof is effective, which proofs of which theorems can be rendered effective, and whether and how numerical information such as bounds and algorithms can be extracted from proofs. Ideally, all this is done by manipulating proofs mechanically and/or by adequate metatheorems (proof translations, automated theorem proving, program extraction from proofs, proof mining, etc.). A crucial role for answering these questions is played by coherent and geometric theories and their generalizations: not only that they are fairly widespread in modern mathematics and non-classical logics (e.g., in abstract algebra, and in temporal and modal logics); those theories are also a priori amenable for constructivisation (see Barr’s Theorem, especially its proof-theoretic variants, and the numerous Glivenko–style theorems); last but not least, effective theorem-proving for coherent theories can be automated with relative ease and clarity in relation to resolution. Specific topics that substantially involve computer science research include categorical semantics for geometric theories up to the proof-theoretic presentation of sheaf models and higher toposes; extracting the computational content of proofs and dynamical methods in quadratic form theory; the interpretation of transfinite proof methods as latent computations; complexity issues of and algorithms for geometrization of theories; the use of geometric theories in constructive mathematics including finding algorithms, ideally with integrated developments; and coherent logic for obtaining automatically readable proofs.

Cite as

Ingo Blechschmidt, Hajime Ishihara, Peter M. Schuster, and Gabriele Buriola. From Proofs to Computation in Geometric Logic and Generalizations (Dagstuhl Seminar 24021). In Dagstuhl Reports, Volume 14, Issue 1, pp. 1-24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{blechschmidt_et_al:DagRep.14.1.1,
  author =	{Blechschmidt, Ingo and Ishihara, Hajime and Schuster, Peter M. and Buriola, Gabriele},
  title =	{{From Proofs to Computation in Geometric Logic and Generalizations (Dagstuhl Seminar 24021)}},
  pages =	{1--24},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{14},
  number =	{1},
  editor =	{Blechschmidt, Ingo and Ishihara, Hajime and Schuster, Peter M. and Buriola, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.14.1.1},
  URN =		{urn:nbn:de:0030-drops-204882},
  doi =		{10.4230/DagRep.14.1.1},
  annote =	{Keywords: automated theorem proving, categorical semantics, constructivisation, geometric logic, proof theory}
}
Document
The Platin Multi-Target Worst-Case Analysis Tool

Authors: Emad Jacob Maroun, Eva Dengler, Christian Dietrich, Stefan Hepp, Henriette Herzog, Benedikt Huber, Jens Knoop, Daniel Wiltsche-Prokesch, Peter Puschner, Phillip Raffeck, Martin Schoeberl, Simon Schuster, and Peter Wägemann

Published in: OASIcs, Volume 121, 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)


Abstract
With the increasing number of applications that require reliable runtime guarantees, the relevance of static worst-case analysis tools that can provide such guarantees increases. These analysis tools determine resource-consumption bounds of application tasks, with a model of the underlying hardware, to meet given resource budgets during runtime, such as deadlines of real-time tasks. This paper presents enhancements to the Platin worst-case analysis tool developed since its original release more than ten years ago. These novelties comprise Platin’s support for new architectures (i.e., ARMv6-M, RISC-V, and AVR) in addition to the previous backends for Patmos and ARMv7-M. Further, Platin now features system-wide analysis methods and annotation support to express system-level constraints. Besides an overview of these enhancements, we evaluate Platin’s accuracy for the two supported architecture implementations, Patmos and RISC-V.

Cite as

Emad Jacob Maroun, Eva Dengler, Christian Dietrich, Stefan Hepp, Henriette Herzog, Benedikt Huber, Jens Knoop, Daniel Wiltsche-Prokesch, Peter Puschner, Phillip Raffeck, Martin Schoeberl, Simon Schuster, and Peter Wägemann. The Platin Multi-Target Worst-Case Analysis Tool. In 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024). Open Access Series in Informatics (OASIcs), Volume 121, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{maroun_et_al:OASIcs.WCET.2024.2,
  author =	{Maroun, Emad Jacob and Dengler, Eva and Dietrich, Christian and Hepp, Stefan and Herzog, Henriette and Huber, Benedikt and Knoop, Jens and Wiltsche-Prokesch, Daniel and Puschner, Peter and Raffeck, Phillip and Schoeberl, Martin and Schuster, Simon and W\"{a}gemann, Peter},
  title =	{{The Platin Multi-Target Worst-Case Analysis Tool}},
  booktitle =	{22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)},
  pages =	{2:1--2:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-346-1},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{121},
  editor =	{Carle, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2024.2},
  URN =		{urn:nbn:de:0030-drops-204704},
  doi =		{10.4230/OASIcs.WCET.2024.2},
  annote =	{Keywords: worst-case resource consumption, WCET, static analysis tool}
}
Document
PACE Solver Description
PACE Solver Description: Fluid

Authors: Max Bannach, Sebastian Berndt, Martin Schuster, and Marcel Wienöbst

Published in: LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)


Abstract
This document describes the heuristic for computing treedepth decompositions of undirected graphs used by our solve fluid. The heuristic runs four different strategies to find a solution and finally outputs the best solution obtained by any of them. Two strategies are score-based and iteratively remove the vertex with the best score. The other two strategies iteratively search for vertex separators and remove them. We also present implementation strategies and data structures that significantly improve the run time complexity and might be interesting on their own.

Cite as

Max Bannach, Sebastian Berndt, Martin Schuster, and Marcel Wienöbst. PACE Solver Description: Fluid. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 27:1-27:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bannach_et_al:LIPIcs.IPEC.2020.27,
  author =	{Bannach, Max and Berndt, Sebastian and Schuster, Martin and Wien\"{o}bst, Marcel},
  title =	{{PACE Solver Description: Fluid}},
  booktitle =	{15th International Symposium on Parameterized and Exact Computation (IPEC 2020)},
  pages =	{27:1--27:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-172-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{180},
  editor =	{Cao, Yixin and Pilipczuk, Marcin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.27},
  URN =		{urn:nbn:de:0030-drops-133300},
  doi =		{10.4230/LIPIcs.IPEC.2020.27},
  annote =	{Keywords: treedepth, heuristics}
}
Document
PACE Solver Description
PACE Solver Description: PID^⋆

Authors: Max Bannach, Sebastian Berndt, Martin Schuster, and Marcel Wienöbst

Published in: LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)


Abstract
This document provides a short overview of our treedepth solver PID^{⋆} in the version that we submitted to the exact track of the PACE challenge 2020. The solver relies on the positive-instance driven dynamic programming (PID) paradigm that was discovered in the light of earlier iterations of the PACE in the context of treewidth. It was recently shown that PID can be used to solve a general class of vertex pursuit-evasion games - which include the game theoretic characterization of treedepth. Our solver PID^{⋆} is build on top of this characterization.

Cite as

Max Bannach, Sebastian Berndt, Martin Schuster, and Marcel Wienöbst. PACE Solver Description: PID^⋆. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 28:1-28:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bannach_et_al:LIPIcs.IPEC.2020.28,
  author =	{Bannach, Max and Berndt, Sebastian and Schuster, Martin and Wien\"{o}bst, Marcel},
  title =	{{PACE Solver Description: PID^⋆}},
  booktitle =	{15th International Symposium on Parameterized and Exact Computation (IPEC 2020)},
  pages =	{28:1--28:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-172-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{180},
  editor =	{Cao, Yixin and Pilipczuk, Marcin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.28},
  URN =		{urn:nbn:de:0030-drops-133312},
  doi =		{10.4230/LIPIcs.IPEC.2020.28},
  annote =	{Keywords: treedepth, positive-instance driven}
}
Document
New Abilities and Limitations of Spectral Graph Bisection

Authors: Martin R. Schuster and Maciej Liskiewicz

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
Spectral based heuristics belong to well-known commonly used methods which determines provably minimal graph bisection or outputs "fail" when the optimality cannot be certified. In this paper we focus on Boppana's algorithm which belongs to one of the most prominent methods of this type. It is well known that the algorithm works well in the random planted bisection model - the standard class of graphs for analysis minimum bisection and relevant problems. In 2001 Feige and Kilian posed the question if Boppana's algorithm works well in the semirandom model by Blum and Spencer. In our paper we answer this question affirmatively. We show also that the algorithm achieves similar performance on graph classes which extend the semirandom model. Since the behavior of Boppana's algorithm on the semirandom graphs remained unknown, Feige and Kilian proposed a new semidefinite programming (SDP) based approach and proved that it works on this model. The relationship between the performance of the SDP based algorithm and Boppana's approach was left as an open problem. In this paper we solve the problem in a complete way by proving that the bisection algorithm of Feige and Kilian provides exactly the same results as Boppana's algorithm. As a consequence we get that Boppana's algorithm achieves the optimal threshold for exact cluster recovery in the stochastic block model. On the other hand we prove some limitations of Boppana's approach: we show that if the density difference on the parameters of the planted bisection model is too small then the algorithm fails with high probability in the model.

Cite as

Martin R. Schuster and Maciej Liskiewicz. New Abilities and Limitations of Spectral Graph Bisection. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 66:1-66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{schuster_et_al:LIPIcs.ESA.2017.66,
  author =	{Schuster, Martin R. and Liskiewicz, Maciej},
  title =	{{New Abilities and Limitations of Spectral Graph Bisection}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{66:1--66:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.66},
  URN =		{urn:nbn:de:0030-drops-78658},
  doi =		{10.4230/LIPIcs.ESA.2017.66},
  annote =	{Keywords: Minimum Graph Bisection, Spectral Methods, Convex Programming}
}
Document
Transducer-Based Rewriting Games for Active XML

Authors: Martin Schuster

Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)


Abstract
Context-free games are two-player rewriting games that are played on nested strings representing XML documents with embedded function symbols. These games were introduced to model rewriting processes for intensional documents in the Active XML framework, where input documents are to be rewritten into a given target schema by calls to external services. This paper studies the setting where dependencies between inputs and outputs of service calls are modelled by transducers, which has not been examined previously. It defines transducer models operating on nested words and studies their properties, as well as the computational complexity of the winning problem for transducer-based context-free games in several scenarios. While the complexity of this problem is quite high in most settings (ranging from NP-complete to undecidable), some tractable restrictions are also identified.

Cite as

Martin Schuster. Transducer-Based Rewriting Games for Active XML. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 83:1-83:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{schuster:LIPIcs.MFCS.2016.83,
  author =	{Schuster, Martin},
  title =	{{Transducer-Based Rewriting Games for Active XML}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{83:1--83:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.83},
  URN =		{urn:nbn:de:0030-drops-64910},
  doi =		{10.4230/LIPIcs.MFCS.2016.83},
  annote =	{Keywords: active XML, computational complexity, nested words, transducers, rewriting games}
}
Document
Games for Active XML Revisited

Authors: Martin Schuster and Thomas Schwentick

Published in: LIPIcs, Volume 31, 18th International Conference on Database Theory (ICDT 2015)


Abstract
The paper studies the rewriting mechanisms for intensional documents in the Active XML framework, abstracted in the form of active context-free games. The safe rewriting problem studied in this paper is to decide whether the first player, Juliet, has a winning strategy for a given game and (nested) word; this corresponds to a successful rewriting strategy for a given intensional document. The paper examines several extensions to active context-free games. The primary extension allows more expressive schemas (namely XML schemas and regular nested word languages) for both target and replacement languages and has the effect that games are played on nested words instead of (flat) words as in previous studies. Other extensions consider validation of input parameters of web services, and an alternative semantics based on insertion of service call results. In general, the complexity of the safe rewriting problem is highly intractable (doubly exponential time), but the paper identifies interesting tractable cases.

Cite as

Martin Schuster and Thomas Schwentick. Games for Active XML Revisited. In 18th International Conference on Database Theory (ICDT 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 31, pp. 60-75, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{schuster_et_al:LIPIcs.ICDT.2015.60,
  author =	{Schuster, Martin and Schwentick, Thomas},
  title =	{{Games for Active XML Revisited}},
  booktitle =	{18th International Conference on Database Theory (ICDT 2015)},
  pages =	{60--75},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-79-8},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{31},
  editor =	{Arenas, Marcelo and Ugarte, Mart{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2015.60},
  URN =		{urn:nbn:de:0030-drops-49773},
  doi =		{10.4230/LIPIcs.ICDT.2015.60},
  annote =	{Keywords: Active XML, Computational Complexity, Nested Words, Rewriting Games, Semistructured Data}
}
Document
Polyglutamine and Polyalanine Tracts Are Enriched in Transcription Factors of Plants

Authors: Nina Kottenhagen, Lydia Gramzow, Fabian Horn, Martin Pohl, and Günter Theißen

Published in: OASIcs, Volume 26, German Conference on Bioinformatics 2012


Abstract
Polyglutamine (polyQ) tracts have been studied extensively for their roles in a number of human diseases such as Huntington's or different Ataxias. However, it has also been recognized that polyQ tracts are abundant and may have important functional and evolutionary roles. Especially the association of polyQ and also polyalanine (polyA) tracts with transcription factors and their activation activity has been noted. While a number of examples for this association have been found for proteins from opisthokonts (animals and fungi), only a few studies exist for polyQ and polyA stretches in plants, and systematic investigations of the significance of these repeats in plant transcription factors are scarce. Here, we analyze the abundance and length of polyQ and polyA stretches in the conceptual proteomes of six plant species and examine the connection between polyQ and polyA tracts and transcription factors of the repeat-containing proteins. We show that there is an association of polyQ stretches with transcription factors in plants. In grasses, transcription factors are also significantly enriched in polyA stretches. While there is variation in the abundance, length, and association with certain functions of polyQ and polyA stretches between different species, no general differences in the evolution of these repeats could be observed between plants and opisthokonts.

Cite as

Nina Kottenhagen, Lydia Gramzow, Fabian Horn, Martin Pohl, and Günter Theißen. Polyglutamine and Polyalanine Tracts Are Enriched in Transcription Factors of Plants. In German Conference on Bioinformatics 2012. Open Access Series in Informatics (OASIcs), Volume 26, pp. 93-107, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{kottenhagen_et_al:OASIcs.GCB.2012.93,
  author =	{Kottenhagen, Nina and Gramzow, Lydia and Horn, Fabian and Pohl, Martin and Thei{\ss}en, G\"{u}nter},
  title =	{{Polyglutamine and Polyalanine Tracts Are Enriched in Transcription Factors of Plants}},
  booktitle =	{German Conference on Bioinformatics 2012},
  pages =	{93--107},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-44-6},
  ISSN =	{2190-6807},
  year =	{2012},
  volume =	{26},
  editor =	{B\"{o}cker, Sebastian and Hufsky, Franziska and Scheubert, Kerstin and Schleicher, Jana and Schuster, Stefan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.GCB.2012.93},
  URN =		{urn:nbn:de:0030-drops-37217},
  doi =		{10.4230/OASIcs.GCB.2012.93},
  annote =	{Keywords: tandem repeats, molecular evolution, GO annotation}
}
  • Refine by Author
  • 4 Schuster, Martin
  • 2 Bannach, Max
  • 2 Berndt, Sebastian
  • 2 Wienöbst, Marcel
  • 1 Bernad, Matthias
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 treedepth
  • 1 Active XML
  • 1 Computational Complexity
  • 1 Convex Programming
  • 1 GO annotation
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 4 2024
  • 2 2020
  • 1 2012
  • 1 2015
  • 1 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail