57 Search Results for "Scott, Michael L."


Document
Implementing a Digital Twin for a Robotic Platform to Support Large-Scale Coding Classes

Authors: Michael Heeney, Kelly Androutsopoulos, and Franco Raimondi

Published in: OASIcs, Volume 122, 5th International Computer Programming Education Conference (ICPEC 2024)


Abstract
Constructionist learning involves learners that are actively engaged in the construction of an entity that reflects the learning achievements. When learning to code, such a physical entity can take the shape of a robot, or of a robotic arm, or any other hardware device that is used to manifest the effect of the code that students are writing. Hardware devices have been used in primary and secondary schools, and also in Higher Education. Unfortunately, the use of hardware devices is limited as it does not scale to large cohorts and requires a physical space for face-to-face teaching. In this paper we introduce a digital twin for a robotic platform to replicate a classroom setting used for teaching first year undergraduate Computer Science students. We describe the architecture of the system and its implementation.

Cite as

Michael Heeney, Kelly Androutsopoulos, and Franco Raimondi. Implementing a Digital Twin for a Robotic Platform to Support Large-Scale Coding Classes. In 5th International Computer Programming Education Conference (ICPEC 2024). Open Access Series in Informatics (OASIcs), Volume 122, pp. 15:1-15:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{heeney_et_al:OASIcs.ICPEC.2024.15,
  author =	{Heeney, Michael and Androutsopoulos, Kelly and Raimondi, Franco},
  title =	{{Implementing a Digital Twin for a Robotic Platform to Support Large-Scale Coding Classes}},
  booktitle =	{5th International Computer Programming Education Conference (ICPEC 2024)},
  pages =	{15:1--15:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-347-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{122},
  editor =	{Santos, Andr\'{e} L. and Pinto-Albuquerque, Maria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICPEC.2024.15},
  URN =		{urn:nbn:de:0030-drops-209848},
  doi =		{10.4230/OASIcs.ICPEC.2024.15},
  annote =	{Keywords: digital twin, introductory programming, constructionism, robotics, computer science education}
}
Document
Semi-Streaming Algorithms for Weighted k-Disjoint Matchings

Authors: S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We design and implement two single-pass semi-streaming algorithms for the maximum weight k-disjoint matching (k-DM) problem. Given an integer k, the k-DM problem is to find k pairwise edge-disjoint matchings such that the sum of the weights of the matchings is maximized. For k ≥ 2, this problem is NP-hard. Our first algorithm is based on the primal-dual framework of a linear programming relaxation of the problem and is 1/(3+ε)-approximate. We also develop an approximation preserving reduction from k-DM to the maximum weight b-matching problem. Leveraging this reduction and an existing semi-streaming b-matching algorithm, we design a (1/(2+ε))(1 - 1/(k+1))-approximate semi-streaming algorithm for k-DM. For any constant ε > 0, both of these algorithms require O(nk log_{1+ε}² n) bits of space. To the best of our knowledge, this is the first study of semi-streaming algorithms for the k-DM problem. We compare our two algorithms to state-of-the-art offline algorithms on 95 real-world and synthetic test problems, including thirteen graphs generated from data center network traces. On these instances, our streaming algorithms used significantly less memory (ranging from 6× to 512× less) and were faster in runtime than the offline algorithms. Our solutions were often within 5% of the best weights from the offline algorithms. We highlight that the existing offline algorithms run out of 1 TB memory for most of the large instances (> 1 billion edges), whereas our streaming algorithms can solve these problems using only 100 GB memory for k = 8.

Cite as

S M Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krishnamoorthy. Semi-Streaming Algorithms for Weighted k-Disjoint Matchings. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 53:1-53:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ferdous_et_al:LIPIcs.ESA.2024.53,
  author =	{Ferdous, S M and Samineni, Bhargav and Pothen, Alex and Halappanavar, Mahantesh and Krishnamoorthy, Bala},
  title =	{{Semi-Streaming Algorithms for Weighted k-Disjoint Matchings}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{53:1--53:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.53},
  URN =		{urn:nbn:de:0030-drops-211245},
  doi =		{10.4230/LIPIcs.ESA.2024.53},
  annote =	{Keywords: Matchings, Semi-Streaming Algorithms, Approximation Algorithms}
}
Document
Hitting Meets Packing: How Hard Can It Be?

Authors: Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Węgrzycki

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study a general family of problems that form a common generalization of classic hitting (also referred to as covering or transversal) and packing problems. An instance of 𝒳-HitPack asks: Can removing k (deletable) vertices of a graph G prevent us from packing 𝓁 vertex-disjoint objects of type 𝒳? This problem captures a spectrum of problems with standard hitting and packing on opposite ends. Our main motivating question is whether the combination 𝒳-HitPack can be significantly harder than these two base problems. Already for one particular choice of 𝒳, this question can be posed for many different complexity notions, leading to a large, so-far unexplored domain at the intersection of the areas of hitting and packing problems. At a high level, we present two case studies: (1) 𝒳 being all cycles, and (2) 𝒳 being all copies of a fixed graph H. In each, we explore the classical complexity as well as the parameterized complexity with the natural parameters k+𝓁 and treewidth. We observe that the combined problem can be drastically harder than the base problems: for cycles or for H being a connected graph on at least 3 vertices, the problem is Σ₂^𝖯-complete and requires double-exponential dependence on the treewidth of the graph (assuming the Exponential-Time Hypothesis). In contrast, the combined problem admits qualitatively similar running times as the base problems in some cases, although significant novel ideas are required. For 𝒳 being all cycles, we establish a 2^{poly(k+𝓁)}⋅ n^{𝒪(1)} algorithm using an involved branching method, for example. Also, for 𝒳 being all edges (i.e., H = K₂; this combines Vertex Cover and Maximum Matching) the problem can be solved in time 2^{poly(tw)}⋅ n^{𝒪(1)} on graphs of treewidth tw. The key step enabling this running time relies on a combinatorial bound obtained from an algebraic (linear delta-matroid) representation of possible matchings.

Cite as

Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Węgrzycki. Hitting Meets Packing: How Hard Can It Be?. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 55:1-55:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{focke_et_al:LIPIcs.ESA.2024.55,
  author =	{Focke, Jacob and Frei, Fabian and Li, Shaohua and Marx, D\'{a}niel and Schepper, Philipp and Sharma, Roohani and W\k{e}grzycki, Karol},
  title =	{{Hitting Meets Packing: How Hard Can It Be?}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{55:1--55:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.55},
  URN =		{urn:nbn:de:0030-drops-211261},
  doi =		{10.4230/LIPIcs.ESA.2024.55},
  annote =	{Keywords: Hitting, Packing, Covering, Parameterized Algorithms, Lower Bounds, Treewidth}
}
Document
Practical Expander Decomposition

Authors: Lars Gottesbüren, Nikos Parotsidis, and Maximilian Probst Gutenberg

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The expander decomposition of a graph decomposes the set of vertices into clusters such that the induced subgraph of each cluster is a subgraph with high conductance, and there is only a small number of inter-cluster edges. Expander decompositions are at the forefront of recent theoretical developments in the area of efficient graph algorithms and act as a central component in several state-of-the-art graph algorithms for fundamental problems like maximum flow, min-cost flow, Gomory-Hu trees, global min-cut, and more. Despite this crucial role and the existence of theoretically efficient expander decomposition algorithms, little is known on their behavior in practice. In this paper we explore the engineering design space in implementations for computing expander decompositions. We base our implementation on the near-linear time algorithm of Saranurak and Wang [SODA'19], and enhance it with practical optimizations that accelerate its running time in practice and at the same time preserve the theoretical runtime and approximation guarantees. We evaluate our algorithm on real-world graphs with up to tens of millions of edges. We demonstrate significant speedups of up to two orders of magnitude over the only prior implementation. To the best of our knowledge, our implementation is the first to compute expander decompositions at this scale within reasonable time.

Cite as

Lars Gottesbüren, Nikos Parotsidis, and Maximilian Probst Gutenberg. Practical Expander Decomposition. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 61:1-61:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.ESA.2024.61,
  author =	{Gottesb\"{u}ren, Lars and Parotsidis, Nikos and Gutenberg, Maximilian Probst},
  title =	{{Practical Expander Decomposition}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{61:1--61:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.61},
  URN =		{urn:nbn:de:0030-drops-211323},
  doi =		{10.4230/LIPIcs.ESA.2024.61},
  annote =	{Keywords: Expander Decomposition, Clustering, Graph Algorithms}
}
Document
Scalable Distributed String Sorting

Authors: Florian Kurpicz, Pascal Mehnert, Peter Sanders, and Matthias Schimek

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
String sorting is an important part of tasks such as building index data structures. Unfortunately, current string sorting algorithms do not scale to massively parallel distributed-memory machines since they either have latency (at least) proportional to the number of processors p or communicate the data a large number of times (at least logarithmic). We present practical and efficient algorithms for distributed-memory string sorting that scale to large p. Similar to state-of-the-art sorters for atomic objects, the algorithms have latency of about p^{1/k} when allowing the data to be communicated k times. Experiments indicate good scaling behavior on a wide range of inputs on up to 49152 cores. Overall, we achieve speedups of up to 4.9 over the current state-of-the-art distributed string sorting algorithms.

Cite as

Florian Kurpicz, Pascal Mehnert, Peter Sanders, and Matthias Schimek. Scalable Distributed String Sorting. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 83:1-83:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kurpicz_et_al:LIPIcs.ESA.2024.83,
  author =	{Kurpicz, Florian and Mehnert, Pascal and Sanders, Peter and Schimek, Matthias},
  title =	{{Scalable Distributed String Sorting}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{83:1--83:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.83},
  URN =		{urn:nbn:de:0030-drops-211541},
  doi =		{10.4230/LIPIcs.ESA.2024.83},
  annote =	{Keywords: sorting, strings, distributed-memory computing, distributed membership filters, scalability}
}
Document
Engineering Edge Orientation Algorithms

Authors: Henrik Reinstädtler, Christian Schulz, and Bora Uçar

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Given an undirected graph G, the edge orientation problem asks for assigning a direction to each edge to convert G into a directed graph. The aim is to minimize the maximum out-degree of a vertex in the resulting directed graph. This problem, which is solvable in polynomial time, arises in many applications. An ongoing challenge in edge orientation algorithms is their scalability, particularly in handling large-scale networks with millions or billions of edges efficiently. We propose a novel algorithmic framework based on finding and manipulating simple paths to face this challenge. Our framework is based on an existing algorithm and allows many algorithmic choices. By carefully exploring these choices and engineering the underlying algorithms, we obtain an implementation which is more efficient and scalable than the current state-of-the-art. Our experiments demonstrate significant performance improvements compared to state-of-the-art solvers. On average our algorithm is 6.59 times faster when compared to the state-of-the-art.

Cite as

Henrik Reinstädtler, Christian Schulz, and Bora Uçar. Engineering Edge Orientation Algorithms. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 97:1-97:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{reinstadtler_et_al:LIPIcs.ESA.2024.97,
  author =	{Reinst\"{a}dtler, Henrik and Schulz, Christian and U\c{c}ar, Bora},
  title =	{{Engineering Edge Orientation Algorithms}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{97:1--97:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.97},
  URN =		{urn:nbn:de:0030-drops-211682},
  doi =		{10.4230/LIPIcs.ESA.2024.97},
  annote =	{Keywords: edge orientation, pseudoarboricity, graph algorithms}
}
Document
APPROX
On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms

Authors: Karthekeyan Chandrasekaran, Chandra Chekuri, Manuel R. Torres, and Weihao Zhu

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Dense subgraph discovery is an important problem in graph mining and network analysis with several applications. Two canonical polynomial-time solvable problems here are to find a maxcore (subgraph of maximum min degree) and to find a densest subgraph (subgraph of maximum average degree). Both of these problems can be solved in polynomial time. Veldt, Benson, and Kleinberg [Veldt et al., 2021] introduced the generalized p-mean densest subgraph problem which captures the maxcore problem when p = -∞ and the densest subgraph problem when p = 1. They observed that for p ≥ 1, the objective function is supermodular and hence the problem can be solved in polynomial time. In this work, we focus on the p-mean densest subgraph problem for p ∈ (-∞, 1). We prove that for every p ∈ (-∞,1), the problem is NP-hard, thus resolving an open question from [Veldt et al., 2021]. We also show that for every p ∈ (0,1), the weighted version of the problem is APX-hard. On the algorithmic front, we describe two simple 1/2-approximation algorithms for every p ∈ (-∞, 1). We complement the approximation algorithms by exhibiting non-trivial instances on which the algorithms simultaneously achieve an approximation factor of at most 1/2.

Cite as

Karthekeyan Chandrasekaran, Chandra Chekuri, Manuel R. Torres, and Weihao Zhu. On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chandrasekaran_et_al:LIPIcs.APPROX/RANDOM.2024.9,
  author =	{Chandrasekaran, Karthekeyan and Chekuri, Chandra and Torres, Manuel R. and Zhu, Weihao},
  title =	{{On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.9},
  URN =		{urn:nbn:de:0030-drops-210025},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.9},
  annote =	{Keywords: Densest subgraph problem, Hardness of approximation, Approximation algorithms}
}
Document
APPROX
Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Authors: Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The online joint replenishment problem (JRP) is a fundamental problem in the area of online problems with delay. Over the last decade, several works have studied generalizations of JRP with different cost functions for servicing requests. Most prior works on JRP and its generalizations have focused on the clairvoyant setting. Recently, Touitou [Noam Touitou, 2023] developed a non-clairvoyant framework that provided an O(√{n log n}) upper bound for a wide class of generalized JRP, where n is the number of request types. We advance the study of non-clairvoyant algorithms by providing a simpler, modular framework that matches the competitive ratio established by Touitou for the same class of generalized JRP. Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary monotone subadditive functions using a simple class of functions termed disjoint. This allows us to reduce the problem to several independent instances of the TCP Acknowledgement problem, for which a simple 2-competitive non-clairvoyant algorithm is known. The modularity of our framework is a major advantage as it allows us to tailor the reduction to specific problems and obtain better competitive ratios. In particular, we obtain tight O(√n)-competitive algorithms for two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive Joint Replenishment. We also show that, in contrast, Touitou’s algorithm is Ω(√{n log n})-competitive for both of these problems.

Cite as

Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh. Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ezra_et_al:LIPIcs.APPROX/RANDOM.2024.12,
  author =	{Ezra, Tomer and Leonardi, Stefano and Paw{\l}owski, Micha{\l} and Russo, Matteo and Umboh, Seeun William},
  title =	{{Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  URN =		{urn:nbn:de:0030-drops-210050},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  annote =	{Keywords: Set Cover, Joint Replenishment, TCP-Acknowledgment, Subadditive Function Approximation, Multi-Level Aggregation}
}
Document
APPROX
Distributional Online Weighted Paging with Limited Horizon

Authors: Yaron Fairstein, Joseph (Seffi) Naor, and Tomer Tsachor

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In this work we study the classic problem of online weighted paging with a probabilistic prediction model, in which we are given additional information about the input in the form of distributions over page requests, known as distributional online paging (DOP). This work continues a recent line of research on learning-augmented algorithms that incorporates machine-learning predictions in online algorithms, so as to go beyond traditional worst-case competitive analysis, thus circumventing known lower bounds for online paging. We first provide an efficient online algorithm that achieves a constant factor competitive ratio with respect to the best online algorithm (policy) for weighted DOP that follows from earlier work on the stochastic k-server problem. Our main contribution concerns the question of whether distributional information over a limited horizon suffices for obtaining a constant competitive factor. To this end, we define in a natural way a new predictive model with limited horizon, which we call Per-Request Stochastic Prediction (PRSP). We show that we can obtain a constant factor competitive algorithm with respect to the optimal online algorithm for this model.

Cite as

Yaron Fairstein, Joseph (Seffi) Naor, and Tomer Tsachor. Distributional Online Weighted Paging with Limited Horizon. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fairstein_et_al:LIPIcs.APPROX/RANDOM.2024.15,
  author =	{Fairstein, Yaron and Naor, Joseph (Seffi) and Tsachor, Tomer},
  title =	{{Distributional Online Weighted Paging with Limited Horizon}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{15:1--15:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.15},
  URN =		{urn:nbn:de:0030-drops-210088},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.15},
  annote =	{Keywords: Online algorithms, Caching, Stochastic analysis, Predictions}
}
Document
APPROX
The Telephone k-Multicast Problem

Authors: Daniel Hathcock, Guy Kortsarz, and R. Ravi

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We consider minimum time multicasting problems in directed and undirected graphs: given a root node and a subset of t terminal nodes, multicasting seeks to find the minimum number of rounds within which all terminals can be informed with a message originating at the root. In each round, the telephone model we study allows the information to move via a matching from the informed nodes to the uninformed nodes. Since minimum time multicasting in digraphs is poorly understood compared to the undirected variant, we study an intermediate problem in undirected graphs that specifies a target k < t, and requires the only k of the terminals be informed in the minimum number of rounds. For this problem, we improve implications of prior results and obtain an Õ(t^{1/3}) multiplicative approximation. For the directed version, we obtain an additive Õ(k^{1/2}) approximation algorithm (with a poly-logarithmic multiplicative factor). Our algorithms are based on reductions to the related problems of finding k-trees of minimum poise (sum of maximum degree and diameter) and applying a combination of greedy network decomposition techniques and set covering under partition matroid constraints.

Cite as

Daniel Hathcock, Guy Kortsarz, and R. Ravi. The Telephone k-Multicast Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hathcock_et_al:LIPIcs.APPROX/RANDOM.2024.21,
  author =	{Hathcock, Daniel and Kortsarz, Guy and Ravi, R.},
  title =	{{The Telephone k-Multicast Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.21},
  URN =		{urn:nbn:de:0030-drops-210148},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.21},
  annote =	{Keywords: Network Design, Multicast, Steiner Poise}
}
Document
Investigating Wrench Attacks: Physical Attacks Targeting Cryptocurrency Users

Authors: Marilyne Ordekian, Gilberto Atondo-Siu, Alice Hutchings, and Marie Vasek

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Cryptocurrency wrench attacks are physical attacks targeting cryptocurrency users in the real world to illegally obtain cryptocurrencies. These attacks significantly undermine the efficacy of existing digital security norms when confronted with real-world threats. We present the first comprehensive study on wrench attacks. We propose a theoretical approach to defining wrench attacks per criminal law norms, and an interdisciplinary empirical approach to measure their incidence. Leveraging three data sources, we perform crime script analysis, detecting incidents globally across 10 interviews with victims and experts, 146 news articles, and 37 online forums. Our findings reveal diverse groups of attackers ranging from organized crime groups to friends and family, various modi operandi, and different forms of attacks varying from blackmail to murder. Despite existing since Bitcoin’s early days, these attacks are underreported due to revictimization fears. Additionally, unlike other cryptocurrency crimes, users with advanced security experience were not immune to them. We identify potential vulnerabilities in users' behavior and encourage cryptocurrency holders to lean into digital as well as physical safety measures to protect themselves and their cryptocurrency. We offer actionable recommendations for the security community and regulators, highlighting the double-edged sword of Know Your Customer policies.

Cite as

Marilyne Ordekian, Gilberto Atondo-Siu, Alice Hutchings, and Marie Vasek. Investigating Wrench Attacks: Physical Attacks Targeting Cryptocurrency Users. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 24:1-24:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ordekian_et_al:LIPIcs.AFT.2024.24,
  author =	{Ordekian, Marilyne and Atondo-Siu, Gilberto and Hutchings, Alice and Vasek, Marie},
  title =	{{Investigating Wrench Attacks: Physical Attacks Targeting Cryptocurrency Users}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{24:1--24:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.24},
  URN =		{urn:nbn:de:0030-drops-209609},
  doi =		{10.4230/LIPIcs.AFT.2024.24},
  annote =	{Keywords: cryptocurrency, Bitcoin, crime, wrench attack, physical attack}
}
Document
Cross Module Quickening - The Curious Case of C Extensions

Authors: Felix Berlakovich and Stefan Brunthaler

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Dynamic programming languages such as Python offer expressive power and programmer productivity at the expense of performance. Although the topic of optimizing Python has received considerable attention over the years, a key obstacle remains elusive: C extensions. Time and again, optimized run-time environments, such as JIT compilers and optimizing interpreters, fall short of optimizing across C extensions, as they cannot reason about the native code hiding underneath. To bridge this gap, we present an analysis of C extensions for Python. The analysis data indicates that C extensions come in different varieties. One such variety is to merely speed up a single thing, such as reading a file and processing it directly in C. Another variety offers broad access through an API, resulting in a domain-specific language realized by function calls. While the former variety of C extensions offer little optimization potential for optimizing run-times, we find that the latter variety does offer considerable optimization potential. This optimization potential rests on dynamic locality that C extensions cannot readily tap. We introduce a new, interpreter-based optimization leveraging this untapped optimization potential called Cross-Module Quickening. The key idea is that C extensions can use an optimization interface to register highly-optimized operations on C extension-specific datatypes. A quickening interpreter uses these information to continuously specialize programs with C extensions. To quantify the attainable performance potential of going beyond C extensions, we demonstrate a concrete instantiation of Cross-Module Quickening for the CPython interpreter and the popular NumPy C extension. We evaluate our implementation with the NPBench benchmark suite and report performance improvements by a factor of up to 2.84.

Cite as

Felix Berlakovich and Stefan Brunthaler. Cross Module Quickening - The Curious Case of C Extensions. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 6:1-6:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berlakovich_et_al:LIPIcs.ECOOP.2024.6,
  author =	{Berlakovich, Felix and Brunthaler, Stefan},
  title =	{{Cross Module Quickening - The Curious Case of C Extensions}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{6:1--6:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.6},
  URN =		{urn:nbn:de:0030-drops-208557},
  doi =		{10.4230/LIPIcs.ECOOP.2024.6},
  annote =	{Keywords: interpreter, optimizations, C extensions, Python}
}
Document
Static Basic Block Versioning

Authors: Olivier Melançon, Marc Feeley, and Manuel Serrano

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Basic Block Versioning (BBV) is a compilation technique for optimizing program execution. It consists in duplicating and specializing basic blocks of code according to the execution contexts of the blocks, up to a version limit. BBV has been used in Just-In-Time (JIT) compilers for reducing the dynamic type checks of dynamic languages. Our work revisits the BBV technique to adapt it to Ahead-of-Time (AOT) compilation. This Static BBV (SBBV) raises new challenges, most importantly how to ensure the convergence of the algorithm when the specializations of the basic blocks are not based on profiled variable values and how to select the good specialization contexts. SBBV opens new opportunities for more precise optimizations as the compiler can explore multiple versions and only keep those within the version limit that yield better generated code. In this paper, we present the main SBBV algorithm and its use to optimize the dynamic type checks, array bound checks, and mixed-type arithmetic operators often found in dynamic languages. We have implemented SBBV in two AOT compilers for the Scheme programming language that we have used to evaluate the technique’s effectiveness. On a suite of benchmarks, we have observed that even with a low limit of 2 versions, SBBV greatly reduces the number of dynamic type tests (by 54% and 62% on average) and accelerates the execution time (by about 10% on average). Previous work has needed a higher version limit to achieve a similar level of optimization. We also observe a small impact on compilation time and code size (a decrease in some cases).

Cite as

Olivier Melançon, Marc Feeley, and Manuel Serrano. Static Basic Block Versioning. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 28:1-28:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{melancon_et_al:LIPIcs.ECOOP.2024.28,
  author =	{Melan\c{c}on, Olivier and Feeley, Marc and Serrano, Manuel},
  title =	{{Static Basic Block Versioning}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{28:1--28:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.28},
  URN =		{urn:nbn:de:0030-drops-208770},
  doi =		{10.4230/LIPIcs.ECOOP.2024.28},
  annote =	{Keywords: Compiler, Ahead-of-Time Compilation, Optimization, Dynamic Languages}
}
Document
Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Authors: Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Refinement types have been extensively used in class-based languages to specify and verify fine-grained logical specifications. Despite the advances in practical aspects such as applicability and usability, two fundamental issues persist. First, the soundness of existing class-based refinement type systems is inadequately explored, casting doubts on their reliability. Second, the expressiveness of existing systems is limited, restricting the depiction of semantic properties related to object-oriented constructs. This work tackles these issues through a systematic framework. We formalize a declarative class-based refinement type calculus (named RFJ), that is expressive and concise. We rigorously develop the soundness meta-theory of this calculus, followed by its mechanization in Coq. Finally, to ensure the calculus’s verifiability, we propose an algorithmic verification approach based on a fragment of first-order logic (named LFJ), and implement this approach as a type checker.

Cite as

Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao. Formalizing, Mechanizing, and Verifying Class-Based Refinement Types. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 39:1-39:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ECOOP.2024.39,
  author =	{Sun, Ke and Wang, Di and Chen, Sheng and Wang, Meng and Hao, Dan},
  title =	{{Formalizing, Mechanizing, and Verifying Class-Based Refinement Types}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{39:1--39:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.39},
  URN =		{urn:nbn:de:0030-drops-208881},
  doi =		{10.4230/LIPIcs.ECOOP.2024.39},
  annote =	{Keywords: Refinement Types, Program Verification, Object-oriented Programming}
}
Document
Inductive Predicate Synthesis Modulo Programs

Authors: Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler, Valentin Wüstholz, and Arie Gurfinkel

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
A growing trend in program analysis is to encode verification conditions within the language of the input program. This simplifies the design of analysis tools by utilizing off-the-shelf verifiers, but makes communication with the underlying solver more challenging. Essentially, the analysis tools operates at the level of input programs, whereas the solver operates at the level of problem encodings. To bridge this gap, the verifier must pass along proof-rules from the analysis tool to the solver. For example, an analysis tool for concurrent programs built on an inductive program verifier might need to declare Owicki-Gries style proof-rules for the underlying solver. Each such proof-rule further specifies how a program should be verified, meaning that the problem of passing proof-rules is a form of invariant synthesis. Similarly, many program analysis tasks reduce to the synthesis of pure, loop-free Boolean functions (i.e., predicates), relative to a program. From this observation, we propose Inductive Predicate Synthesis Modulo Programs (IPS-MP) which extends high-level languages with minimal synthesis features to guide analysis. In IPS-MP, unknown predicates appear under assume and assert statements, acting as specifications modulo the program semantics. Existing synthesis solvers are inefficient at IPS-MP as they target more general problems. In this paper, we show that IPS-MP admits an efficient solution in the Boolean case, despite being generally undecidable. Moreover, we show that IPS-MP reduces to the satisfiability of constrained Horn clauses, which is less general than existing synthesis problems, yet expressive enough to encode verification tasks. We provide reductions from challenging verification tasks - such as parameterized model checking - to IPS-MP. We realize these reductions with an efficient IPS-MP-solver based on SeaHorn, and describe a real-world application to smart-contract verification.

Cite as

Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler, Valentin Wüstholz, and Arie Gurfinkel. Inductive Predicate Synthesis Modulo Programs. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 43:1-43:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wesley_et_al:LIPIcs.ECOOP.2024.43,
  author =	{Wesley, Scott and Christakis, Maria and Navas, Jorge A. and Trefler, Richard and W\"{u}stholz, Valentin and Gurfinkel, Arie},
  title =	{{Inductive Predicate Synthesis Modulo Programs}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{43:1--43:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.43},
  URN =		{urn:nbn:de:0030-drops-208926},
  doi =		{10.4230/LIPIcs.ECOOP.2024.43},
  annote =	{Keywords: Software Verification, Invariant Synthesis, Model-Checking}
}
  • Refine by Author
  • 4 Scott, Michael L.
  • 2 Cai, Wentao
  • 2 Du, Mingzhe
  • 2 Ferdous, S M
  • 2 Halappanavar, Mahantesh
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Logic and verification
  • 4 Theory of computation → Quantum complexity theory
  • 3 Mathematics of computing → Graph algorithms
  • 3 Theory of computation → Constraint and logic programming
  • 3 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 2 Lower Bounds
  • 2 Parameterized Algorithms
  • 2 categorical semantics
  • 2 graph algorithms
  • 1 3D sketching
  • Show More...

  • Refine by Type
  • 57 document

  • Refine by Publication Year
  • 52 2024
  • 1 2015
  • 1 2017
  • 1 2019
  • 1 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail