7 Search Results for "Scott, Ryan"


Document
Exact and Approximate Range Mode Query Data Structures in Practice

Authors: Meng He and Zhen Liu

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We conduct an experimental study on the range mode problem. In the exact version of the problem, we preprocess an array A, such that given a query range [a, b], the most frequent element in A[a, b] can be found efficiently. For this problem, our most important finding is that the strategy of using succinct data structures to encode more precomputed information not only helped Chan et al. (Linear-space data structures for range mode query in arrays, Theory of Computing Systems, 2013) improve previous results in theory but also helps us achieve the best time/space tradeoff in practice; we even go a step further to replace more components in their solution with succinct data structures and improve the performance further. In the approximate version of this problem, a (1+ε)-approximate range mode query looks for an element whose occurrences in A[a,b] is at least F_{a,b}/(1+ε), where F_{a,b} is the frequency of the mode in A[a,b]. We implement all previous solutions to this problems and find that, even when ε = 1/2, the average approximation ratio of these solutions is close to 1 in practice, and they provide much faster query time than the best exact solution. These solutions achieve different useful time-space tradeoffs, and among them, El-Zein et al. (On Approximate Range Mode and Range Selection, 30th International Symposium on Algorithms and Computation, 2019) provide us with one solution whose space usage is only 35.6% to 93.8% of the cost of storing the input array of 32-bit integers (in most cases, the space cost is closer to the lower end, and the average space cost is 20.2 bits per symbol among all datasets). Its non-succinct version also stands out with query support at least several times faster than other O(n/ε)-word structures while using only slightly more space in practice.

Cite as

Meng He and Zhen Liu. Exact and Approximate Range Mode Query Data Structures in Practice. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 19:1-19:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.SEA.2023.19,
  author =	{He, Meng and Liu, Zhen},
  title =	{{Exact and Approximate Range Mode Query Data Structures in Practice}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{19:1--19:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.19},
  URN =		{urn:nbn:de:0030-drops-183693},
  doi =		{10.4230/LIPIcs.SEA.2023.19},
  annote =	{Keywords: range mode query, exact range mode query, approximate range mode query}
}
Document
Interaction Tree Specifications: A Framework for Specifying Recursive, Effectful Computations That Supports Auto-Active Verification

Authors: Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
This paper presents a specification framework for monadic, recursive, interactive programs that supports auto-active verification, an approach that combines user-provided guidance with automatic verification techniques. This verification tool is designed to have the flexibility of a manual approach to verification along with the usability benefits of automatic approaches. We accomplish this by augmenting Interaction Trees, a Coq datastructure for representing effectful computations, with logical quantifier events. We show that this yields a language of specifications that are easy to understand, automatable, and are powerful enough to handle properties that involve non-termination. Our framework is implemented as a library in Coq. We demonstrate the effectiveness of this framework by verifying real, low-level code.

Cite as

Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott. Interaction Tree Specifications: A Framework for Specifying Recursive, Effectful Computations That Supports Auto-Active Verification. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 30:1-30:26, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{silver_et_al:LIPIcs.ECOOP.2023.30,
  author =	{Silver, Lucas and Westbrook, Eddy and Yacavone, Matthew and Scott, Ryan},
  title =	{{Interaction Tree Specifications: A Framework for Specifying Recursive, Effectful Computations That Supports Auto-Active Verification}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{30:1--30:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.30},
  URN =		{urn:nbn:de:0030-drops-182239},
  doi =		{10.4230/LIPIcs.ECOOP.2023.30},
  annote =	{Keywords: coinduction, specification, verification, monads}
}
Document
A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Authors: Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Designing and modeling complex cyber-physical systems (CPS) faces the double challenge of combined discrete-continuous dynamics and concurrent behavior. Existing formal modeling and verification languages for CPS expose the underlying proof search technology. They lack high-level structuring elements and are not efficiently executable. The ensuing modeling gap renders formal CPS models hard to understand and to validate. We propose a high-level programming-based approach to formal modeling and verification of hybrid systems as a hybrid extension of an Active Objects language. Well-structured hybrid active programs and requirements allow automatic, reachability-preserving translation into differential dynamic logic, a logic for hybrid (discrete-continuous) programs. Verification is achieved by discharging the resulting formulas with the theorem prover KeYmaera X. We demonstrate the usability of our approach with case studies.

Cite as

Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle. A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 04:1-04:34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kamburjan_et_al:LITES.8.2.4,
  author =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  title =	{{A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems}},
  booktitle =	{LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems},
  pages =	{04:1--04:34},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.4},
  doi =		{10.4230/LITES.8.2.4},
  annote =	{Keywords: Active Objects, Differential Dynamic Logic, Hybrid Systems}
}
Document
Influence in Completely Bounded Block-Multilinear Forms and Classical Simulation of Quantum Algorithms

Authors: Nikhil Bansal, Makrand Sinha, and Ronald de Wolf

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
The Aaronson-Ambainis conjecture (Theory of Computing '14) says that every low-degree bounded polynomial on the Boolean hypercube has an influential variable. This conjecture, if true, would imply that the acceptance probability of every d-query quantum algorithm can be well-approximated almost everywhere (i.e., on almost all inputs) by a poly(d)-query classical algorithm. We prove a special case of the conjecture: in every completely bounded degree-d block-multilinear form with constant variance, there always exists a variable with influence at least 1/poly(d). In a certain sense, such polynomials characterize the acceptance probability of quantum query algorithms, as shown by Arunachalam, Briët and Palazuelos (SICOMP '19). As a corollary we obtain efficient classical almost-everywhere simulation for a particular class of quantum algorithms that includes for instance k-fold Forrelation. Our main technical result relies on connections to free probability theory.

Cite as

Nikhil Bansal, Makrand Sinha, and Ronald de Wolf. Influence in Completely Bounded Block-Multilinear Forms and Classical Simulation of Quantum Algorithms. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 28:1-28:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.CCC.2022.28,
  author =	{Bansal, Nikhil and Sinha, Makrand and de Wolf, Ronald},
  title =	{{Influence in Completely Bounded Block-Multilinear Forms and Classical Simulation of Quantum Algorithms}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{28:1--28:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.28},
  URN =		{urn:nbn:de:0030-drops-165908},
  doi =		{10.4230/LIPIcs.CCC.2022.28},
  annote =	{Keywords: Aaronson-Ambainis conjecture, Quantum query complexity, Classical query complexity, Free probability, Completely bounded norm, Analysis of Boolean functions, Influence}
}
Document
Quantum Approximate Counting with Nonadaptive Grover Iterations

Authors: Ramgopal Venkateswaran and Ryan O'Donnell

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
Approximate Counting refers to the problem where we are given query access to a function f : [N] → {0,1}, and we wish to estimate K = #{x : f(x) = 1} to within a factor of 1+ε (with high probability), while minimizing the number of queries. In the quantum setting, Approximate Counting can be done with O(min (√{N/ε}, √{N/K} / ε) queries. It has recently been shown that this can be achieved by a simple algorithm that only uses "Grover iterations"; however the algorithm performs these iterations adaptively. Motivated by concerns of computational simplicity, we consider algorithms that use Grover iterations with limited adaptivity. We show that algorithms using only nonadaptive Grover iterations can achieve O(√{N/ε}) query complexity, which is tight.

Cite as

Ramgopal Venkateswaran and Ryan O'Donnell. Quantum Approximate Counting with Nonadaptive Grover Iterations. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 59:1-59:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{venkateswaran_et_al:LIPIcs.STACS.2021.59,
  author =	{Venkateswaran, Ramgopal and O'Donnell, Ryan},
  title =	{{Quantum Approximate Counting with Nonadaptive Grover Iterations}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{59:1--59:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.59},
  URN =		{urn:nbn:de:0030-drops-137048},
  doi =		{10.4230/LIPIcs.STACS.2021.59},
  annote =	{Keywords: quantum approximate counting, Grover search}
}
Document
Predicting Math Success in an Online Tutoring System Using Language Data and Click-Stream Variables: A Longitudinal Analysis

Authors: Scott Crossley, Shamya Karumbaiah, Jaclyn Ocumpaugh, Matthew J. Labrum, and Ryan S. Baker

Published in: OASIcs, Volume 70, 2nd Conference on Language, Data and Knowledge (LDK 2019)


Abstract
Previous studies have demonstrated strong links between students' linguistic knowledge, their affective language patterns and their success in math. Other studies have shown that demographic and click-stream variables in online learning environments are important predictors of math success. This study builds on this research in two ways. First, it combines linguistics and click-stream variables along with demographic information to increase prediction rates for math success. Second, it examines how random variance, as found in repeated participant data, can explain math success beyond linguistic, demographic, and click-stream variables. The findings indicate that linguistic, demographic, and click-stream factors explained about 14% of the variance in math scores. These variables mixed with random factors explained about 44% of the variance.

Cite as

Scott Crossley, Shamya Karumbaiah, Jaclyn Ocumpaugh, Matthew J. Labrum, and Ryan S. Baker. Predicting Math Success in an Online Tutoring System Using Language Data and Click-Stream Variables: A Longitudinal Analysis. In 2nd Conference on Language, Data and Knowledge (LDK 2019). Open Access Series in Informatics (OASIcs), Volume 70, pp. 25:1-25:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{crossley_et_al:OASIcs.LDK.2019.25,
  author =	{Crossley, Scott and Karumbaiah, Shamya and Ocumpaugh, Jaclyn and Labrum, Matthew J. and Baker, Ryan S.},
  title =	{{Predicting Math Success in an Online Tutoring System Using Language Data and Click-Stream Variables: A Longitudinal Analysis}},
  booktitle =	{2nd Conference on Language, Data and Knowledge (LDK 2019)},
  pages =	{25:1--25:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-105-4},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{70},
  editor =	{Eskevich, Maria and de Melo, Gerard and F\"{a}th, Christian and McCrae, John P. and Buitelaar, Paul and Chiarcos, Christian and Klimek, Bettina and Dojchinovski, Milan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2019.25},
  URN =		{urn:nbn:de:0030-drops-103895},
  doi =		{10.4230/OASIcs.LDK.2019.25},
  annote =	{Keywords: Natural language processing, math education, online tutoring systems, text analytics, click-stream variables}
}
Document
Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Authors: Scott Aaronson and Lijie Chen

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
In the near future, there will likely be special-purpose quantum computers with 40-50 high-quality qubits. This paper lays general theoretical foundations for how to use such devices to demonstrate "quantum supremacy": that is, a clear quantum speedup for some task, motivated by the goal of overturning the Extended Church-Turing Thesis as confidently as possible. First, we study the hardness of sampling the output distribution of a random quantum circuit, along the lines of a recent proposal by by the Quantum AI group at Google. We show that there's a natural average-case hardness assumption, which has nothing to do with sampling, yet implies that no polynomial-time classical algorithm can pass a statistical test that the quantum sampling procedure's outputs do pass. Compared to previous work - for example, on BosonSampling and IQP - the central advantage is that we can now talk directly about the observed outputs, rather than about the distribution being sampled. Second, in an attempt to refute our hardness assumption, we give a new algorithm, inspired by Savitch's Theorem, for simulating a general quantum circuit with n qubits and m gates in polynomial space and m^O(n) time. We then discuss why this and other known algorithms fail to refute our assumption. Third, resolving an open problem of Aaronson and Arkhipov, we show that any strong quantum supremacy theorem - of the form "if approximate quantum sampling is classically easy, then the polynomial hierarchy collapses" - must be non-relativizing. This sharply contrasts with the situation for exact sampling. Fourth, refuting a conjecture by Aaronson and Ambainis, we show that the Fourier Sampling problem achieves a constant versus linear separation between quantum and randomized query complexities. Fifth, in search of a "happy medium" between black-box and non-black-box arguments, we study quantum supremacy relative to oracles in P/poly. Previous work implies that, if one-way functions exist, then quantum supremacy is possible relative to such oracles. We show, conversely, that some computational assumption is needed: if SampBPP=SampBQP and NP is in BPP, then quantum supremacy is impossible relative to oracles with small circuits.

Cite as

Scott Aaronson and Lijie Chen. Complexity-Theoretic Foundations of Quantum Supremacy Experiments. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 22:1-22:67, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.CCC.2017.22,
  author =	{Aaronson, Scott and Chen, Lijie},
  title =	{{Complexity-Theoretic Foundations of Quantum Supremacy Experiments}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{22:1--22:67},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.22},
  URN =		{urn:nbn:de:0030-drops-75274},
  doi =		{10.4230/LIPIcs.CCC.2017.22},
  annote =	{Keywords: computational complexity, quantum computing, quantum supremacy}
}
  • Refine by Author
  • 1 Aaronson, Scott
  • 1 Baker, Ryan S.
  • 1 Bansal, Nikhil
  • 1 Chen, Lijie
  • 1 Crossley, Scott
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Computer-assisted instruction
  • 1 Applied computing → Mathematics and statistics
  • 1 Computing methodologies → Distributed programming languages
  • 1 Computing methodologies → Model verification and validation
  • 1 Computing methodologies → Natural language processing
  • Show More...

  • Refine by Keyword
  • 1 Aaronson-Ambainis conjecture
  • 1 Active Objects
  • 1 Analysis of Boolean functions
  • 1 Classical query complexity
  • 1 Completely bounded norm
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2022
  • 2 2023
  • 1 2017
  • 1 2019
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail