3 Search Results for "Seppelt, Tim"


Document
Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors

Authors: Tim Seppelt

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Two graphs G and H are homomorphism indistinguishable over a class of graphs ℱ if for all graphs F ∈ ℱ the number of homomorphisms from F to G is equal to the number of homomorphisms from F to H. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, spectral, and logical equivalences can be characterised as homomorphism indistinguishability relations over certain graph classes. Abstracting from the wealth of such instances, we show in this paper that equivalences w.r.t. any self-complementarity logic admitting a characterisation as homomorphism indistinguishability relation can be characterised by homomorphism indistinguishability over a minor-closed graph class. Self-complementarity is a mild property satisfied by most well-studied logics. This result follows from a correspondence between closure properties of a graph class and preservation properties of its homomorphism indistinguishability relation. Furthermore, we classify all graph classes which are in a sense finite (essentially profinite) and satisfy the maximality condition of being homomorphism distinguishing closed, i.e. adding any graph to the class strictly refines its homomorphism indistinguishability relation. Thereby, we answer various questions raised by Roberson (2022) on general properties of the homomorphism distinguishing closure.

Cite as

Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 82:1-82:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{seppelt:LIPIcs.MFCS.2023.82,
  author =	{Seppelt, Tim},
  title =	{{Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{82:1--82:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.82},
  URN =		{urn:nbn:de:0030-drops-186161},
  doi =		{10.4230/LIPIcs.MFCS.2023.82},
  annote =	{Keywords: homomorphism indistinguishability, graph minor, logic}
}
Document
Track A: Algorithms, Complexity and Games
Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

Authors: David E. Roberson and Tim Seppelt

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We show that feasibility of the t^th level of the Lasserre semidefinite programming hierarchy for graph isomorphism can be expressed as a homomorphism indistinguishability relation. In other words, we define a class ℒ_t of graphs such that graphs G and H are not distinguished by the t^th level of the Lasserre hierarchy if and only if they admit the same number of homomorphisms from any graph in ℒ_t. By analysing the treewidth of graphs in ℒ_t we prove that the 3t^th level of Sherali-Adams linear programming hierarchy is as strong as the t^th level of Lasserre. Moreover, we show that this is best possible in the sense that 3t cannot be lowered to 3t-1 for any t. The same result holds for the Lasserre hierarchy with non-negativity constraints, which we similarly characterise in terms of homomorphism indistinguishability over a family ℒ_t^+ of graphs. Additionally, we give characterisations of level-t Lasserre with non-negativity constraints in terms of logical equivalence and via a graph colouring algorithm akin to the Weisfeiler-Leman algorithm. This provides a polynomial time algorithm for determining if two given graphs are distinguished by the t^th level of the Lasserre hierarchy with non-negativity constraints.

Cite as

David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 101:1-101:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{roberson_et_al:LIPIcs.ICALP.2023.101,
  author =	{Roberson, David E. and Seppelt, Tim},
  title =	{{Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{101:1--101:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.101},
  URN =		{urn:nbn:de:0030-drops-181531},
  doi =		{10.4230/LIPIcs.ICALP.2023.101},
  annote =	{Keywords: Lasserre hierarchy, homomorphism indistinguishability, Sherali-Adams hierarchy, treewidth, semidefinite programming, linear programming, graph isomorphism}
}
Document
Track A: Algorithms, Complexity and Games
Homomorphism Tensors and Linear Equations

Authors: Martin Grohe, Gaurav Rattan, and Tim Seppelt

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Lovász (1967) showed that two graphs G and H are isomorphic if and only if they are homomorphism indistinguishable over the class of all graphs, i.e. for every graph F, the number of homomorphisms from F to G equals the number of homomorphisms from F to H. Recently, homomorphism indistinguishability over restricted classes of graphs such as bounded treewidth, bounded treedepth and planar graphs, has emerged as a surprisingly powerful framework for capturing diverse equivalence relations on graphs arising from logical equivalence and algebraic equation systems. In this paper, we provide a unified algebraic framework for such results by examining the linear-algebraic and representation-theoretic structure of tensors counting homomorphisms from labelled graphs. The existence of certain linear transformations between such homomorphism tensor subspaces can be interpreted both as homomorphism indistinguishability over a graph class and as feasibility of an equational system. Following this framework, we obtain characterisations of homomorphism indistinguishability over several natural graph classes, namely trees of bounded degree, graphs of bounded pathwidth (answering a question of Dell et al. (2018)), and graphs of bounded treedepth.

Cite as

Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 70:1-70:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICALP.2022.70,
  author =	{Grohe, Martin and Rattan, Gaurav and Seppelt, Tim},
  title =	{{Homomorphism Tensors and Linear Equations}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{70:1--70:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.70},
  URN =		{urn:nbn:de:0030-drops-164113},
  doi =		{10.4230/LIPIcs.ICALP.2022.70},
  annote =	{Keywords: homomorphisms, labelled graphs, treewidth, pathwidth, treedepth, linear equations, Sherali-Adams relaxation, Wiegmann-Specht Theorem, Weisfeiler-Leman}
}
  • Refine by Author
  • 3 Seppelt, Tim
  • 1 Grohe, Martin
  • 1 Rattan, Gaurav
  • 1 Roberson, David E.

  • Refine by Classification
  • 2 Mathematics of computing → Combinatorics
  • 2 Mathematics of computing → Graph theory
  • 1 Mathematics of computing → Discrete mathematics

  • Refine by Keyword
  • 2 homomorphism indistinguishability
  • 2 treewidth
  • 1 Lasserre hierarchy
  • 1 Sherali-Adams hierarchy
  • 1 Sherali-Adams relaxation
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2023
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail