3 Search Results for "Sickert, Salomon"


Document
RobTL: Robustness Temporal Logic for CPS

Authors: Valentina Castiglioni, Michele Loreti, and Simone Tini

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We propose Robustness Temporal Logic (RobTL), a novel temporal logic for the specification and analysis of distances between the behaviours of Cyber-Physical Systems (CPS) over a finite time horizon. RobTL specifications allow us to measure the differences in the behaviours of systems with respect to various objectives and temporal constraints, and to study how those differences evolve in time. Specifically, the unique features of RobTL allow us to specify robustness properties of CPS against uncertainty and perturbations. As an example, we use RobTL to analyse the robustness of an engine system that is subject to attacks aimed at inflicting overstress of equipment.

Cite as

Valentina Castiglioni, Michele Loreti, and Simone Tini. RobTL: Robustness Temporal Logic for CPS. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{castiglioni_et_al:LIPIcs.CONCUR.2024.15,
  author =	{Castiglioni, Valentina and Loreti, Michele and Tini, Simone},
  title =	{{RobTL: Robustness Temporal Logic for CPS}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.15},
  URN =		{urn:nbn:de:0030-drops-207870},
  doi =		{10.4230/LIPIcs.CONCUR.2024.15},
  annote =	{Keywords: Cyber-physical systems, robustness, temporal logic, uncertainty}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Optimal Transformations of Games and Automata Using Muller Conditions

Authors: Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We consider the following question: given an automaton or a game with a Muller condition, how can we efficiently construct an equivalent one with a parity condition? There are several examples of such transformations in the literature, including in the determinisation of Büchi automata. We define a new transformation called the alternating cycle decomposition, inspired and extending Zielonka’s construction. Our transformation operates on transition systems, encompassing both automata and games, and preserves semantic properties through the existence of a locally bijective morphism. We show a strong optimality result: the obtained parity transition system is minimal both in number of states and number of priorities with respect to locally bijective morphisms. We give two applications: the first is related to the determinisation of Büchi automata, and the second is to give crisp characterisations on the possibility of relabelling automata with different acceptance conditions.

Cite as

Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. Optimal Transformations of Games and Automata Using Muller Conditions. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 123:1-123:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{casares_et_al:LIPIcs.ICALP.2021.123,
  author =	{Casares, Antonio and Colcombet, Thomas and Fijalkow, Nathana\"{e}l},
  title =	{{Optimal Transformations of Games and Automata Using Muller Conditions}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{123:1--123:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.123},
  URN =		{urn:nbn:de:0030-drops-141928},
  doi =		{10.4230/LIPIcs.ICALP.2021.123},
  annote =	{Keywords: Automata over infinite words, Omega regular languages, Determinisation of automata}
}
Document
A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

Authors: Julian Brunner, Benedikt Seidl, and Salomon Sickert

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
We present a formalisation of the unified translation approach from linear temporal logic (LTL) to omega-automata from [Javier Esparza et al., 2018]. This approach decomposes LTL formulas into "simple" languages and allows a clear separation of concerns: first, we formalise the purely logical result yielding this decomposition; second, we develop a generic, executable, and expressive automata library providing necessary operations on automata to re-combine the "simple" languages; third, we instantiate this generic theory to obtain a construction for deterministic Rabin automata (DRA). We extract from this particular instantiation an executable tool translating LTL to DRAs. To the best of our knowledge this is the first verified translation of LTL to DRAs that is proven to be double-exponential in the worst case which asymptotically matches the known lower bound.

Cite as

Julian Brunner, Benedikt Seidl, and Salomon Sickert. A Verified and Compositional Translation of LTL to Deterministic Rabin Automata. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{brunner_et_al:LIPIcs.ITP.2019.11,
  author =	{Brunner, Julian and Seidl, Benedikt and Sickert, Salomon},
  title =	{{A Verified and Compositional Translation of LTL to Deterministic Rabin Automata}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.11},
  URN =		{urn:nbn:de:0030-drops-110664},
  doi =		{10.4230/LIPIcs.ITP.2019.11},
  annote =	{Keywords: Automata Theory, Automata over Infinite Words, Deterministic Automata, Linear Temporal Logic, Model Checking, Verified Algorithms}
}
  • Refine by Author
  • 1 Brunner, Julian
  • 1 Casares, Antonio
  • 1 Castiglioni, Valentina
  • 1 Colcombet, Thomas
  • 1 Fijalkow, Nathanaël
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Automata Theory
  • 1 Automata over Infinite Words
  • 1 Automata over infinite words
  • 1 Cyber-physical systems
  • 1 Determinisation of automata
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2019
  • 1 2021
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail