3 Search Results for "Sileikis, Matas"


Document
Fringe Trees for Random Trees with Given Vertex Degrees

Authors: Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We prove that the number of fringe subtrees, isomorphic to a given tree, in uniformly random trees with given vertex degrees, asymptotically follows a normal distribution. As an application, we establish the same asymptotic normality for random simply generated trees (conditioned Galton-Watson trees). Our approach relies on an extension of Gao and Wormald’s (2004) theorem to the multivariate setting.

Cite as

Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson. Fringe Trees for Random Trees with Given Vertex Degrees. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 1:1-1:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berzunzaojeda_et_al:LIPIcs.AofA.2024.1,
  author =	{Berzunza Ojeda, Gabriel and Holmgren, Cecilia and Janson, Svante},
  title =	{{Fringe Trees for Random Trees with Given Vertex Degrees}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{1:1--1:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.1},
  URN =		{urn:nbn:de:0030-drops-204369},
  doi =		{10.4230/LIPIcs.AofA.2024.1},
  annote =	{Keywords: Conditioned Galton-Watson trees, fringe trees, simply generated trees, uniformly random trees with given vertex degrees}
}
Document
On the Number of Distinct Fringe Subtrees in Binary Search Trees

Authors: Stephan Wagner

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
A fringe subtree of a rooted tree is a subtree that consists of a vertex and all its descendants. The number of distinct fringe subtrees in random trees has been studied by several authors, notably because of its connection to tree compaction algorithms. Here, we obtain a very precise result for binary search trees: it is shown that the number of distinct fringe subtrees in a binary search tree with n leaves is asymptotically equal to (c₁n)/(log n) for a constant c₁ ≈ 2.4071298335, both in expectation and with high probability. This was previously shown to be a lower bound, our main contribution is to prove a matching upper bound. The method is quite general and can also be applied to similar problems for other tree models.

Cite as

Stephan Wagner. On the Number of Distinct Fringe Subtrees in Binary Search Trees. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 13:1-13:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wagner:LIPIcs.AofA.2024.13,
  author =	{Wagner, Stephan},
  title =	{{On the Number of Distinct Fringe Subtrees in Binary Search Trees}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{13:1--13:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.13},
  URN =		{urn:nbn:de:0030-drops-204482},
  doi =		{10.4230/LIPIcs.AofA.2024.13},
  annote =	{Keywords: Fringe subtrees, binary search trees, tree compression, minimal DAG, asymptotics}
}
Document
Asymptotic Normality of Almost Local Functionals in Conditioned Galton-Watson Trees

Authors: Dimbinaina Ralaivaosaona, Matas Sileikis, and Stephan Wagner

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
An additive functional of a rooted tree is a functional that can be calculated recursively as the sum of the values of the functional over the branches, plus a certain toll function. Janson recently proved a central limit theorem for additive functionals of conditioned Galton-Watson trees under the assumption that the toll function is local, i.e. only depends on a fixed neighbourhood of the root. We extend his result to functionals that are almost local, thus covering a wider range of functionals. Our main result is illustrated by two explicit examples: the (logarithm of) the number of matchings, and a functional stemming from a tree reduction process that was studied by Hackl, Heuberger, Kropf, and Prodinger.

Cite as

Dimbinaina Ralaivaosaona, Matas Sileikis, and Stephan Wagner. Asymptotic Normality of Almost Local Functionals in Conditioned Galton-Watson Trees. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 33:1-33:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ralaivaosaona_et_al:LIPIcs.AofA.2018.33,
  author =	{Ralaivaosaona, Dimbinaina and Sileikis, Matas and Wagner, Stephan},
  title =	{{Asymptotic Normality of Almost Local Functionals in Conditioned Galton-Watson Trees}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{33:1--33:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.33},
  URN =		{urn:nbn:de:0030-drops-89262},
  doi =		{10.4230/LIPIcs.AofA.2018.33},
  annote =	{Keywords: Galton-Watson trees, central limit theorem, additive functional}
}
  • Refine by Author
  • 2 Wagner, Stephan
  • 1 Berzunza Ojeda, Gabriel
  • 1 Holmgren, Cecilia
  • 1 Janson, Svante
  • 1 Ralaivaosaona, Dimbinaina
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing
  • 1 Mathematics of computing → Enumeration
  • 1 Mathematics of computing → Trees
  • 1 Theory of computation → Data compression
  • 1 Theory of computation → Randomness, geometry and discrete structures

  • Refine by Keyword
  • 1 Conditioned Galton-Watson trees
  • 1 Fringe subtrees
  • 1 Galton-Watson trees
  • 1 additive functional
  • 1 asymptotics
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail