6 Search Results for "Simpson, Michael"


Document
Invited Talk
A Tour on Ecumenical Systems (Invited Talk)

Authors: Elaine Pimentel and Luiz Carlos Pereira

Published in: LIPIcs, Volume 270, 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)


Abstract
Ecumenism can be understood as a pursuit of unity, where diverse thoughts, ideas, or points of view coexist harmoniously. In logic, ecumenical systems refer, in a broad sense, to proof systems for combining logics. One captivating area of research over the past few decades has been the exploration of seamlessly merging classical and intuitionistic connectives, allowing them to coexist peacefully. In this paper, we will embark on a journey through ecumenical systems, drawing inspiration from Prawitz' seminal work [Dag Prawitz, 2015]. We will begin by elucidating Prawitz' concept of "ecumenism" and present a pure sequent calculus version of his system. Building upon this foundation, we will expand our discussion to incorporate alethic modalities, leveraging Simpson’s meta-logical characterization. This will enable us to propose several proof systems for ecumenical modal logics. We will conclude our tour with some discussion towards a term calculus proposal for the implicational propositional fragment of the ecumenical logic, the quest of automation using a framework based in rewriting logic, and an ecumenical view of proof-theoretic semantics.

Cite as

Elaine Pimentel and Luiz Carlos Pereira. A Tour on Ecumenical Systems (Invited Talk). In 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 270, pp. 3:1-3:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{pimentel_et_al:LIPIcs.CALCO.2023.3,
  author =	{Pimentel, Elaine and Pereira, Luiz Carlos},
  title =	{{A Tour on Ecumenical Systems}},
  booktitle =	{10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-287-7},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{270},
  editor =	{Baldan, Paolo and de Paiva, Valeria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2023.3},
  URN =		{urn:nbn:de:0030-drops-188003},
  doi =		{10.4230/LIPIcs.CALCO.2023.3},
  annote =	{Keywords: Intuitionistic logic, classical logic, modal logic, ecumenical systems, proof theory}
}
Document
Simple Runs-Bounded FM-Index Designs Are Fast

Authors: Diego Díaz-Domínguez, Saska Dönges, Simon J. Puglisi, and Leena Salmela

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
Given a string X of length n on alphabet σ, the FM-index data structure allows counting all occurrences of a pattern P of length m in O(m) time via an algorithm called backward search. An important difficulty when searching with an FM-index is to support queries on L, the Burrows-Wheeler transform of X, while L is in compressed form. This problem has been the subject of intense research for 25 years now. Run-length encoding of L is an effective way to reduce index size, in particular when the data being indexed is highly-repetitive, which is the case in many types of modern data, including those arising from versioned document collections and in pangenomics. This paper takes a back-to-basics look at supporting backward search in FM-indexes, exploring and engineering two simple designs. The first divides the BWT string into blocks containing b symbols each and then run-length compresses each block separately, possibly introducing new runs (compared to applying run-length encoding once, to the whole string). Each block stores counts of each symbol that occurs before the block. This method supports the operation rank_c(L, i) (i.e., count the number of times c occurs in the prefix L[1..i]) by first determining the block i/b in which i falls and scanning the block to the appropriate position counting occurrences of c along the way. This partial answer to rank_c(L, i) is then added to the stored count of c symbols before the block to determine the final answer. Our second design has a similar structure, but instead divides the run-length-encoded version of L into blocks containing an equal number of runs. The trick then is to determine the block in which a query falls, which is achieved via a predecessor query over the block starting positions. We show via extensive experiments on a wide range of repetitive text collections that these FM-indexes are not only easy to implement, but also fast and space efficient in practice.

Cite as

Diego Díaz-Domínguez, Saska Dönges, Simon J. Puglisi, and Leena Salmela. Simple Runs-Bounded FM-Index Designs Are Fast. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 7:1-7:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{diazdominguez_et_al:LIPIcs.SEA.2023.7,
  author =	{D{\'\i}az-Dom{\'\i}nguez, Diego and D\"{o}nges, Saska and Puglisi, Simon J. and Salmela, Leena},
  title =	{{Simple Runs-Bounded FM-Index Designs Are Fast}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.7},
  URN =		{urn:nbn:de:0030-drops-183579},
  doi =		{10.4230/LIPIcs.SEA.2023.7},
  annote =	{Keywords: data structures, efficient algorithms}
}
Document
Higher-Dimensional Timed and Hybrid Automata

Authors: Uli Fahrenberg

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
We introduce a new formalism of higher-dimensional timed automata, based on Pratt and van Glabbeek’s higher-dimensional automata and Alur and Dill’s timed automata. We prove that their reachability is PSPACE-complete and can be decided using zone-based algorithms. We also extend the setting to higher-dimensional hybrid automata.The interest of our formalism is in modeling systems which exhibit both real-time behavior and concurrency. Other existing formalisms for real-time modeling identify concurrency and interleaving, which, as we shall argue, is problematic.

Cite as

Uli Fahrenberg. Higher-Dimensional Timed and Hybrid Automata. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 03:1-03:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{fahrenberg:LITES.8.2.3,
  author =	{Fahrenberg, Uli},
  title =	{{Higher-Dimensional Timed and Hybrid Automata}},
  booktitle =	{LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems},
  pages =	{03:1--03:16},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Fahrenberg, Uli},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.3},
  doi =		{10.4230/LITES.8.2.3},
  annote =	{Keywords: timed automaton, higher-dimensional automaton, precubical set, real time, non-interleaving concurrency, hybrid automaton}
}
Document
Revisiting Parameter Synthesis for One-Counter Automata

Authors: Guillermo A. Pérez and Ritam Raha

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
We study the synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. The synthesis problem for such automata asks whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some ω-regular property. Lechner showed that (the complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called ∀∃_RPAD^+, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of ∀∃_RPAD^+, (ii) we prove that the synthesis problem is decidable in general and in 2NEXP for several fixed ω-regular properties. Finally, (iii) we give polynomial-space algorithms for the special cases of the problem where parameters can only be used in counter tests.

Cite as

Guillermo A. Pérez and Ritam Raha. Revisiting Parameter Synthesis for One-Counter Automata. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 33:1-33:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{perez_et_al:LIPIcs.CSL.2022.33,
  author =	{P\'{e}rez, Guillermo A. and Raha, Ritam},
  title =	{{Revisiting Parameter Synthesis for One-Counter Automata}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{33:1--33:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.33},
  URN =		{urn:nbn:de:0030-drops-157534},
  doi =		{10.4230/LIPIcs.CSL.2022.33},
  annote =	{Keywords: Parametric one-counter automata, Reachability, Software Verification}
}
Document
Reverse Prevention Sampling for Misinformation Mitigation in Social Networks

Authors: Michael Simpson, Venkatesh Srinivasan, and Alex Thomo

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
In this work, we consider misinformation propagating through a social network and study the problem of its prevention. In this problem, a "bad" campaign starts propagating from a set of seed nodes in the network and we use the notion of a limiting (or "good") campaign to counteract the effect of misinformation. The goal is to identify a set of k users that need to be convinced to adopt the limiting campaign so as to minimize the number of people that adopt the "bad" campaign at the end of both propagation processes. This work presents RPS (Reverse Prevention Sampling), an algorithm that provides a scalable solution to the misinformation prevention problem. Our theoretical analysis shows that RPS runs in O((k + l)(n + m)(1/(1 - γ)) log n / ε²) expected time and returns a (1 - 1/e - ε)-approximate solution with at least 1 - n^{-l} probability (where γ is a typically small network parameter and l is a confidence parameter). The time complexity of RPS substantially improves upon the previously best-known algorithms that run in time Ω(m n k ⋅ POLY(ε^{-1})). We experimentally evaluate RPS on large datasets and show that it outperforms the state-of-the-art solution by several orders of magnitude in terms of running time. This demonstrates that misinformation prevention can be made practical while still offering strong theoretical guarantees.

Cite as

Michael Simpson, Venkatesh Srinivasan, and Alex Thomo. Reverse Prevention Sampling for Misinformation Mitigation in Social Networks. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 24:1-24:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{simpson_et_al:LIPIcs.ICDT.2020.24,
  author =	{Simpson, Michael and Srinivasan, Venkatesh and Thomo, Alex},
  title =	{{Reverse Prevention Sampling for Misinformation Mitigation in Social Networks}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.24},
  URN =		{urn:nbn:de:0030-drops-119484},
  doi =		{10.4230/LIPIcs.ICDT.2020.24},
  annote =	{Keywords: Graph Algorithms, Social Networks, Misinformation Prevention}
}
Document
A convenient category of domains

Authors: Ingo Battenfeld, Matthias Schröder, and Alex Simpson

Published in: Dagstuhl Seminar Proceedings, Volume 6341, Computational Structures for Modelling Space, Time and Causality (2007)


Abstract
We motivate and define a category of "topological domains", whose objects are certain topological spaces, generalising the usual $omega$-continuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, provides a model of parametric polymorphism, and can be used as the basis for a theory of computability. This answers a question of Gordon Plotkin, who asked whether it was possible to construct a category of domains combining such properties.

Cite as

Ingo Battenfeld, Matthias Schröder, and Alex Simpson. A convenient category of domains. In Computational Structures for Modelling Space, Time and Causality. Dagstuhl Seminar Proceedings, Volume 6341, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{battenfeld_et_al:DagSemProc.06341.2,
  author =	{Battenfeld, Ingo and Schr\"{o}der, Matthias and Simpson, Alex},
  title =	{{A convenient category of domains}},
  booktitle =	{Computational Structures for Modelling Space, Time and Causality},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{6341},
  editor =	{Ralph Kopperman and Prakash Panangaden and Michael B. Smyth and Dieter Spreen},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06341.2},
  URN =		{urn:nbn:de:0030-drops-8945},
  doi =		{10.4230/DagSemProc.06341.2},
  annote =	{Keywords: Domain theory, topology of datatypes}
}
  • Refine by Author
  • 1 Battenfeld, Ingo
  • 1 Díaz-Domínguez, Diego
  • 1 Dönges, Saska
  • 1 Fahrenberg, Uli
  • 1 Pereira, Luiz Carlos
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Logic and verification
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Concurrency
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 1 Domain theory
  • 1 Graph Algorithms
  • 1 Intuitionistic logic
  • 1 Misinformation Prevention
  • 1 Parametric one-counter automata
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 2 2022
  • 2 2023
  • 1 2007
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail