17 Search Results for "Singla, Sahil"


Document
APPROX
Approximation Algorithms for Correlated Knapsack Orienteering

Authors: David Alemán Espinosa and Chaitanya Swamy

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We consider the correlated knapsack orienteering (CorrKO) problem: we are given a travel budget B, processing-time budget W, finite metric space (V,d) with root ρ ∈ V, where each vertex is associated with a job with possibly correlated random size and random reward that become known only when the job completes. Random variables are independent across different vertices. The goal is to compute a ρ-rooted path of length at most B, in a possibly adaptive fashion, that maximizes the reward collected from jobs that processed by time W. To our knowledge, CorrKO has not been considered before, though prior work has considered the uncorrelated problem, stochastic knapsack orienteering, and correlated orienteering, which features only one budget constraint on the sum of travel-time and processing-times. Gupta et al. [Gupta et al., 2015] showed that the uncorrelated version of this problem has a constant-factor adaptivity gap. We show that, perhaps surprisingly and in stark contrast to the uncorrelated problem, the adaptivity gap of CorrKO is is at least Ω(max{√log(B),√(log log(W))}). Complementing this result, we devise non-adaptive algorithms that obtain: (a) O(log log W)-approximation in quasi-polytime; and (b) O(log W)-approximation in polytime. This also establishes that the adaptivity gap for CorrKO is at most O(log log W). We obtain similar guarantees for CorrKO with cancellations, wherein a job can be cancelled before its completion time, foregoing its reward. We show that an α-approximation for CorrKO implies an O(α)-approximation for CorrKO with cancellations. We also consider the special case of CorrKO where job sizes are weighted Bernoulli distributions, and more generally where the distributions are supported on at most two points (2CorrKO). Although weighted Bernoulli distributions suffice to yield an Ω(√{log log B}) adaptivity-gap lower bound for (uncorrelated) stochastic orienteering, we show that they are easy instances for CorrKO. We develop non-adaptive algorithms that achieve O(1)-approximation, in polytime for weighted Bernoulli distributions, and in (n+log B)^O(log W)-time for 2CorrKO. (Thus, our adaptivity-gap lower-bound example, which uses distributions of support-size 3, is tight in terms of support-size of the distributions.) Finally, we leverage our techniques to provide a quasi-polynomial time O(log log B) approximation algorithm for correlated orienteering improving upon the approximation guarantee in [Bansal and Nagarajan, 2015].

Cite as

David Alemán Espinosa and Chaitanya Swamy. Approximation Algorithms for Correlated Knapsack Orienteering. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 29:1-29:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alemanespinosa_et_al:LIPIcs.APPROX/RANDOM.2024.29,
  author =	{Alem\'{a}n Espinosa, David and Swamy, Chaitanya},
  title =	{{Approximation Algorithms for Correlated Knapsack Orienteering}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{29:1--29:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.29},
  URN =		{urn:nbn:de:0030-drops-210224},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.29},
  annote =	{Keywords: Approximation algorithms, Stochastic orienteering, Adaptivity gap, Vehicle routing problems, LP rounding algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Cut Sparsification and Succinct Representation of Submodular Hypergraphs

Authors: Yotam Kenneth and Robert Krauthgamer

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In cut sparsification, all cuts of a hypergraph H = (V,E,w) are approximated within 1±ε factor by a small hypergraph H'. This widely applied method was generalized recently to a setting where the cost of cutting each hyperedge e is provided by a splitting function g_e: 2^e → ℝ_+. This generalization is called a submodular hypergraph when the functions {g_e}_{e ∈ E} are submodular, and it arises in machine learning, combinatorial optimization, and algorithmic game theory. Previous work studied the setting where H' is a reweighted sub-hypergraph of H, and measured the size of H' by the number of hyperedges in it. In this setting, we present two results: (i) all submodular hypergraphs admit sparsifiers of size polynomial in n = |V| and ε^{-1}; (ii) we propose a new parameter, called spread, and use it to obtain smaller sparsifiers in some cases. We also show that for a natural family of splitting functions, relaxing the requirement that H' be a reweighted sub-hypergraph of H yields a substantially smaller encoding of the cuts of H (almost a factor n in the number of bits). This is in contrast to graphs, where the most succinct representation is attained by reweighted subgraphs. A new tool in our construction of succinct representation is the notion of deformation, where a splitting function g_e is decomposed into a sum of functions of small description, and we provide upper and lower bounds for deformation of common splitting functions.

Cite as

Yotam Kenneth and Robert Krauthgamer. Cut Sparsification and Succinct Representation of Submodular Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 97:1-97:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kenneth_et_al:LIPIcs.ICALP.2024.97,
  author =	{Kenneth, Yotam and Krauthgamer, Robert},
  title =	{{Cut Sparsification and Succinct Representation of Submodular Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{97:1--97:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.97},
  URN =		{urn:nbn:de:0030-drops-202406},
  doi =		{10.4230/LIPIcs.ICALP.2024.97},
  annote =	{Keywords: Cut Sparsification, Submodular Hypergraphs, Succinct Representation}
}
Document
Track A: Algorithms, Complexity and Games
Subquadratic Submodular Maximization with a General Matroid Constraint

Authors: Yusuke Kobayashi and Tatsuya Terao

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider fast algorithms for monotone submodular maximization with a general matroid constraint. We present a randomized (1 - 1/e - ε)-approximation algorithm that requires Õ_{ε}(√r n) independence oracle and value oracle queries, where n is the number of elements in the matroid and r ≤ n is the rank of the matroid. This improves upon the previously best algorithm by Buchbinder-Feldman-Schwartz [Mathematics of Operations Research 2017] that requires Õ_{ε}(r² + √rn) queries. Our algorithm is based on continuous relaxation, as with other submodular maximization algorithms in the literature. To achieve subquadratic query complexity, we develop a new rounding algorithm, which is our main technical contribution. The rounding algorithm takes as input a point represented as a convex combination of t bases of a matroid and rounds it to an integral solution. Our rounding algorithm requires Õ(r^{3/2} t) independence oracle queries, while the previously best rounding algorithm by Chekuri-Vondrák-Zenklusen [FOCS 2010] requires O(r² t) independence oracle queries. A key idea in our rounding algorithm is to use a directed cycle of arbitrary length in an auxiliary graph, while the algorithm of Chekuri-Vondrák-Zenklusen focused on directed cycles of length two.

Cite as

Yusuke Kobayashi and Tatsuya Terao. Subquadratic Submodular Maximization with a General Matroid Constraint. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 100:1-100:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kobayashi_et_al:LIPIcs.ICALP.2024.100,
  author =	{Kobayashi, Yusuke and Terao, Tatsuya},
  title =	{{Subquadratic Submodular Maximization with a General Matroid Constraint}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{100:1--100:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.100},
  URN =		{urn:nbn:de:0030-drops-202437},
  doi =		{10.4230/LIPIcs.ICALP.2024.100},
  annote =	{Keywords: submodular maximization, matroid constraint, approximation algorithm, rounding algorithm, query complexity}
}
Document
Track A: Algorithms, Complexity and Games
Adaptive Sparsification for Matroid Intersection

Authors: Kent Quanrud

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the matroid intersection problem in the independence oracle model. Given two matroids over n common elements such that the intersection has rank k, our main technique reduces approximate matroid intersection to logarithmically many primal-dual instances over subsets of size Õ(k). This technique is inspired by recent work by [Assadi, 2024] and requires additional insight into structuring and efficiently approximating the dual LP. This combination of ideas leads to faster approximate maximum cardinality and maximum weight matroid intersection algorithms in the independence oracle model. We obtain the first nearly linear time/query approximation schemes for the regime where k ≤ n^{2/3}.

Cite as

Kent Quanrud. Adaptive Sparsification for Matroid Intersection. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 118:1-118:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{quanrud:LIPIcs.ICALP.2024.118,
  author =	{Quanrud, Kent},
  title =	{{Adaptive Sparsification for Matroid Intersection}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{118:1--118:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.118},
  URN =		{urn:nbn:de:0030-drops-202614},
  doi =		{10.4230/LIPIcs.ICALP.2024.118},
  annote =	{Keywords: Matroid intersection, adaptive sparsification, multiplicative-weight udpates, primal-dual}
}
Document
APPROX
Submodular Norms with Applications To Online Facility Location and Stochastic Probing

Authors: Kalen Patton, Matteo Russo, and Sahil Singla

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Optimization problems often involve vector norms, which has led to extensive research on developing algorithms that can handle objectives beyond 𝓁_p norms. Our work introduces the concept of submodular norms, which are a versatile type of norms that possess marginal properties similar to submodular set functions. We show that submodular norms can either accurately represent or approximate well-known classes of norms, such as 𝓁_p norms, ordered norms, and symmetric norms. Furthermore, we establish that submodular norms can be applied to optimization problems such as online facility location and stochastic probing. This allows us to develop a logarithmic-competitive algorithm for online facility location with symmetric norms, and to prove logarithmic adaptivity gap for stochastic probing with symmetric norms.

Cite as

Kalen Patton, Matteo Russo, and Sahil Singla. Submodular Norms with Applications To Online Facility Location and Stochastic Probing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{patton_et_al:LIPIcs.APPROX/RANDOM.2023.23,
  author =	{Patton, Kalen and Russo, Matteo and Singla, Sahil},
  title =	{{Submodular Norms with Applications To Online Facility Location and Stochastic Probing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{23:1--23:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.23},
  URN =		{urn:nbn:de:0030-drops-188484},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.23},
  annote =	{Keywords: Submodularity, Monotone Norms, Online Facility Location, Stochastic Probing}
}
Document
APPROX
Submodular Dominance and Applications

Authors: Frederick Qiu and Sahil Singla

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
In submodular optimization we often deal with the expected value of a submodular function f on a distribution 𝒟 over sets of elements. In this work we study such submodular expectations for negatively dependent distributions. We introduce a natural notion of negative dependence, which we call Weak Negative Regression (WNR), that generalizes both Negative Association and Negative Regression. We observe that WNR distributions satisfy Submodular Dominance, whereby the expected value of f under 𝒟 is at least the expected value of f under a product distribution with the same element-marginals. Next, we give several applications of Submodular Dominance to submodular optimization. In particular, we improve the best known submodular prophet inequalities, we develop new rounding techniques for polytopes of set systems that admit negatively dependent distributions, and we prove existence of contention resolution schemes for WNR distributions.

Cite as

Frederick Qiu and Sahil Singla. Submodular Dominance and Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 44:1-44:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{qiu_et_al:LIPIcs.APPROX/RANDOM.2022.44,
  author =	{Qiu, Frederick and Singla, Sahil},
  title =	{{Submodular Dominance and Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{44:1--44:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.44},
  URN =		{urn:nbn:de:0030-drops-171666},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.44},
  annote =	{Keywords: Submodular Optimization, Negative Dependence, Negative Association, Weak Negative Regression, Submodular Dominance, Submodular Prophet Inequality}
}
Document
Track A: Algorithms, Complexity and Games
Smoothed Analysis of the Komlós Conjecture

Authors: Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
The well-known Komlós conjecture states that given n vectors in ℝ^d with Euclidean norm at most one, there always exists a ± 1 coloring such that the 𝓁_∞ norm of the signed-sum vector is a constant independent of n and d. We prove this conjecture in a smoothed analysis setting where the vectors are perturbed by adding a small Gaussian noise and when the number of vectors n = ω(d log d). The dependence of n on d is the best possible even in a completely random setting. Our proof relies on a weighted second moment method, where instead of considering uniformly randomly colorings we apply the second moment method on an implicit distribution on colorings obtained by applying the Gram-Schmidt walk algorithm to a suitable set of vectors. The main technical idea is to use various properties of these colorings, including subgaussianity, to control the second moment.

Cite as

Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha. Smoothed Analysis of the Komlós Conjecture. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.ICALP.2022.14,
  author =	{Bansal, Nikhil and Jiang, Haotian and Meka, Raghu and Singla, Sahil and Sinha, Makrand},
  title =	{{Smoothed Analysis of the Koml\'{o}s Conjecture}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{14:1--14:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.14},
  URN =		{urn:nbn:de:0030-drops-163556},
  doi =		{10.4230/LIPIcs.ICALP.2022.14},
  annote =	{Keywords: Koml\'{o}s conjecture, smoothed analysis, weighted second moment method, subgaussian coloring}
}
Document
Prefix Discrepancy, Smoothed Analysis, and Combinatorial Vector Balancing

Authors: Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
A well-known result of Banaszczyk in discrepancy theory concerns the prefix discrepancy problem (also known as the signed series problem): given a sequence of T unit vectors in ℝ^d, find ± signs for each of them such that the signed sum vector along any prefix has a small 𝓁_∞-norm? This problem is central to proving upper bounds for the Steinitz problem, and the popular Komlós problem is a special case where one is only concerned with the final signed sum vector instead of all prefixes. Banaszczyk gave an O(√{log d+ log T}) bound for the prefix discrepancy problem. We investigate the tightness of Banaszczyk’s bound and consider natural generalizations of prefix discrepancy: - We first consider a smoothed analysis setting, where a small amount of additive noise perturbs the input vectors. We show an exponential improvement in T compared to Banaszczyk’s bound. Using a primal-dual approach and a careful chaining argument, we show that one can achieve a bound of O(√{log d+ log log T}) with high probability in the smoothed setting. Moreover, this smoothed analysis bound is the best possible without further improvement on Banaszczyk’s bound in the worst case. - We also introduce a generalization of the prefix discrepancy problem to arbitrary DAGs. Here, vertices correspond to unit vectors, and the discrepancy constraints correspond to paths on a DAG on T vertices - prefix discrepancy is precisely captured when the DAG is a simple path. We show that an analog of Banaszczyk’s O(√{log d+ log T}) bound continues to hold in this setting for adversarially given unit vectors and that the √{log T} factor is unavoidable for DAGs. We also show that unlike for prefix discrepancy, the dependence on T cannot be improved significantly in the smoothed case for DAGs. - We conclude by exploring a more general notion of vector balancing, which we call combinatorial vector balancing. In this problem, the discrepancy constraints are generalized from paths of a DAG to an arbitrary set system. We obtain near-optimal bounds in this setting, up to poly-logarithmic factors.

Cite as

Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha. Prefix Discrepancy, Smoothed Analysis, and Combinatorial Vector Balancing. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.ITCS.2022.13,
  author =	{Bansal, Nikhil and Jiang, Haotian and Meka, Raghu and Singla, Sahil and Sinha, Makrand},
  title =	{{Prefix Discrepancy, Smoothed Analysis, and Combinatorial Vector Balancing}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.13},
  URN =		{urn:nbn:de:0030-drops-156092},
  doi =		{10.4230/LIPIcs.ITCS.2022.13},
  annote =	{Keywords: Prefix discrepancy, smoothed analysis, combinatorial vector balancing}
}
Document
APPROX
Bag-Of-Tasks Scheduling on Related Machines

Authors: Anupam Gupta, Amit Kumar, and Sahil Singla

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
We consider online scheduling to minimize weighted completion time on related machines, where each job consists of several tasks that can be concurrently executed. A job gets completed when all its component tasks finish. We obtain an O(K³ log² K)-competitive algorithm in the non-clairvoyant setting, where K denotes the number of distinct machine speeds. The analysis is based on dual-fitting on a precedence-constrained LP relaxation that may be of independent interest.

Cite as

Anupam Gupta, Amit Kumar, and Sahil Singla. Bag-Of-Tasks Scheduling on Related Machines. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 3:1-3:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.APPROX/RANDOM.2021.3,
  author =	{Gupta, Anupam and Kumar, Amit and Singla, Sahil},
  title =	{{Bag-Of-Tasks Scheduling on Related Machines}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{3:1--3:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.3},
  URN =		{urn:nbn:de:0030-drops-146967},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.3},
  annote =	{Keywords: approximation algorithms, scheduling, bag-of-tasks, related machines}
}
Document
Online Carpooling Using Expander Decompositions

Authors: Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Sahil Singla

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
We consider the online carpooling problem: given n vertices, a sequence of edges arrive over time. When an edge e_t = (u_t, v_t) arrives at time step t, the algorithm must orient the edge either as v_t → u_t or u_t → v_t, with the objective of minimizing the maximum discrepancy of any vertex, i.e., the absolute difference between its in-degree and out-degree. Edges correspond to pairs of persons wanting to ride together, and orienting denotes designating the driver. The discrepancy objective then corresponds to every person driving close to their fair share of rides they participate in. In this paper, we design efficient algorithms which can maintain polylog(n,T) maximum discrepancy (w.h.p) over any sequence of T arrivals, when the arriving edges are sampled independently and uniformly from any given graph G. This provides the first polylogarithmic bounds for the online (stochastic) carpooling problem. Prior to this work, the best known bounds were O(√{n log n})-discrepancy for any adversarial sequence of arrivals, or O(log log n)-discrepancy bounds for the stochastic arrivals when G is the complete graph. The technical crux of our paper is in showing that the simple greedy algorithm, which has provably good discrepancy bounds when the arriving edges are drawn uniformly at random from the complete graph, also has polylog discrepancy when G is an expander graph. We then combine this with known expander-decomposition results to design our overall algorithm.

Cite as

Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Sahil Singla. Online Carpooling Using Expander Decompositions. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.FSTTCS.2020.23,
  author =	{Gupta, Anupam and Krishnaswamy, Ravishankar and Kumar, Amit and Singla, Sahil},
  title =	{{Online Carpooling Using Expander Decompositions}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.23},
  URN =		{urn:nbn:de:0030-drops-132647},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.23},
  annote =	{Keywords: Online Algorithms, Discrepancy Minimization, Carpooling}
}
Document
Robust Algorithms for the Secretary Problem

Authors: Domagoj Bradac, Anupam Gupta, Sahil Singla, and Goran Zuzic

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
In classical secretary problems, a sequence of n elements arrive in a uniformly random order, and we want to choose a single item, or a set of size K. The random order model allows us to escape from the strong lower bounds for the adversarial order setting, and excellent algorithms are known in this setting. However, one worrying aspect of these results is that the algorithms overfit to the model: they are not very robust. Indeed, if a few "outlier" arrivals are adversarially placed in the arrival sequence, the algorithms perform poorly. E.g., Dynkin’s popular 1/e-secretary algorithm is sensitive to even a single adversarial arrival: if the adversary gives one large bid at the beginning of the stream, the algorithm does not select any element at all. We investigate a robust version of the secretary problem. In the Byzantine Secretary model, we have two kinds of elements: green (good) and red (rogue). The values of all elements are chosen by the adversary. The green elements arrive at times uniformly randomly drawn from [0,1]. The red elements, however, arrive at adversarially chosen times. Naturally, the algorithm does not see these colors: how well can it solve secretary problems? We show that selecting the highest value red set, or the single largest green element is not possible with even a small fraction of red items. However, on the positive side, we show that these are the only bad cases, by giving algorithms which get value comparable to the value of the optimal green set minus the largest green item. (This benchmark reminds us of regret minimization and digital auctions, where we subtract an additive term depending on the "scale" of the problem.) Specifically, we give an algorithm to pick K elements, which gets within (1-ε) factor of the above benchmark, as long as K ≥ poly(ε^{-1} log n). We extend this to the knapsack secretary problem, for large knapsack size K. For the single-item case, an analogous benchmark is the value of the second-largest green item. For value-maximization, we give a poly log^* n-competitive algorithm, using a multi-layered bucketing scheme that adaptively refines our estimates of second-max over time. For probability-maximization, we show the existence of a good randomized algorithm, using the minimax principle. We hope that this work will spur further research on robust algorithms for the secretary problem, and for other problems in sequential decision-making, where the existing algorithms are not robust and often tend to overfit to the model.

Cite as

Domagoj Bradac, Anupam Gupta, Sahil Singla, and Goran Zuzic. Robust Algorithms for the Secretary Problem. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 32:1-32:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bradac_et_al:LIPIcs.ITCS.2020.32,
  author =	{Bradac, Domagoj and Gupta, Anupam and Singla, Sahil and Zuzic, Goran},
  title =	{{Robust Algorithms for the Secretary Problem}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{32:1--32:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.32},
  URN =		{urn:nbn:de:0030-drops-117171},
  doi =		{10.4230/LIPIcs.ITCS.2020.32},
  annote =	{Keywords: stochastic optimization, robust optimization, secretary problem, matroid secretary, robust secretary}
}
Document
Algorithms and Adaptivity Gaps for Stochastic k-TSP

Authors: Haotian Jiang, Jian Li, Daogao Liu, and Sahil Singla

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Given a metric (V,d) and a root ∈ V, the classic k-TSP problem is to find a tour originating at the root of minimum length that visits at least k nodes in V. In this work, motivated by applications where the input to an optimization problem is uncertain, we study two stochastic versions of k-TSP. In Stoch-Reward k-TSP, originally defined by Ene-Nagarajan-Saket [Ene et al., 2018], each vertex v in the given metric (V,d) contains a stochastic reward R_v. The goal is to adaptively find a tour of minimum expected length that collects at least reward k; here "adaptively" means our next decision may depend on previous outcomes. Ene et al. give an O(log k)-approximation adaptive algorithm for this problem, and left open if there is an O(1)-approximation algorithm. We totally resolve their open question, and even give an O(1)-approximation non-adaptive algorithm for Stoch-Reward k-TSP. We also introduce and obtain similar results for the Stoch-Cost k-TSP problem. In this problem each vertex v has a stochastic cost C_v, and the goal is to visit and select at least k vertices to minimize the expected sum of tour length and cost of selected vertices. Besides being a natural stochastic generalization of k-TSP, this problem is also interesting because it generalizes the Price of Information framework [Singla, 2018] from deterministic probing costs to metric probing costs. Our techniques are based on two crucial ideas: "repetitions" and "critical scaling". In general, replacing a random variable with its expectation leads to very poor results. We show that for our problems, if we truncate the random variables at an ideal threshold, then their expected values form a good surrogate. Here, we rely on running several repetitions of our algorithm with the same threshold, and then argue concentration using Freedman’s and Jogdeo-Samuels' inequalities. Unfortunately, this ideal threshold depends on how far we are from achieving our target k, which a non-adaptive algorithm does not know. To overcome this barrier, we truncate the random variables at various different scales and identify a "critical" scale.

Cite as

Haotian Jiang, Jian Li, Daogao Liu, and Sahil Singla. Algorithms and Adaptivity Gaps for Stochastic k-TSP. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 45:1-45:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:LIPIcs.ITCS.2020.45,
  author =	{Jiang, Haotian and Li, Jian and Liu, Daogao and Singla, Sahil},
  title =	{{Algorithms and Adaptivity Gaps for Stochastic k-TSP}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{45:1--45:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.45},
  URN =		{urn:nbn:de:0030-drops-117308},
  doi =		{10.4230/LIPIcs.ITCS.2020.45},
  annote =	{Keywords: approximation algorithms, stochastic optimization, travelling salesman problem}
}
Document
Implementation in Advised Strategies: Welfare Guarantees from Posted-Price Mechanisms When Demand Queries Are NP-Hard

Authors: Linda Cai, Clay Thomas, and S. Matthew Weinberg

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
State-of-the-art posted-price mechanisms for submodular bidders with m items achieve approximation guarantees of O((log log m)^3) [Sepehr Assadi and Sahil Singla, 2019]. Their truthfulness, however, requires bidders to compute an NP-hard demand-query. Some computational complexity of this form is unavoidable, as it is NP-hard for truthful mechanisms to guarantee even an m^(1/2-ε)-approximation for any ε > 0 [Shahar Dobzinski and Jan Vondrák, 2016]. Together, these establish a stark distinction between computationally-efficient and communication-efficient truthful mechanisms. We show that this distinction disappears with a mild relaxation of truthfulness, which we term implementation in advised strategies. Specifically, advice maps a tentative strategy either to that same strategy itself, or one that dominates it. We say that a player follows advice as long as they never play actions which are dominated by advice. A poly-time mechanism guarantees an α-approximation in implementation in advised strategies if there exists advice (which runs in poly-time) for each player such that an α-approximation is achieved whenever all players follow advice. Using an appropriate bicriterion notion of approximate demand queries (which can be computed in poly-time), we establish that (a slight modification of) the [Sepehr Assadi and Sahil Singla, 2019] mechanism achieves the same O((log log m)^3)-approximation in implementation in advised strategies.

Cite as

Linda Cai, Clay Thomas, and S. Matthew Weinberg. Implementation in Advised Strategies: Welfare Guarantees from Posted-Price Mechanisms When Demand Queries Are NP-Hard. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 61:1-61:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.ITCS.2020.61,
  author =	{Cai, Linda and Thomas, Clay and Weinberg, S. Matthew},
  title =	{{Implementation in Advised Strategies: Welfare Guarantees from Posted-Price Mechanisms When Demand Queries Are NP-Hard}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{61:1--61:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.61},
  URN =		{urn:nbn:de:0030-drops-117464},
  doi =		{10.4230/LIPIcs.ITCS.2020.61},
  annote =	{Keywords: Combinatorial auctions, Posted-Price mechanisms, Submodular valuations, Incentive compatible}
}
Document
APPROX
Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under Uncertainty

Authors: David Ellis Hershkowitz, R. Ravi, and Sahil Singla

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
In this paper we study how to optimally balance cheap inflexible resources with more expensive, reconfigurable resources despite uncertainty in the input problem. Specifically, we introduce the MinEMax model to study "build versus rent" problems. In our model different scenarios appear independently. Before knowing which scenarios appear, we may build rigid resources that cannot be changed for different scenarios. Once we know which scenarios appear, we are allowed to rent reconfigurable but expensive resources to use across scenarios. Although computing the objective in our model might seem to require enumerating exponentially-many possibilities, we show it is well estimated by a surrogate objective which is representable by a polynomial-size LP. In this surrogate objective we pay for each scenario only to the extent that it exceeds a certain threshold. Using this objective we design algorithms that approximately-optimally balance inflexible and reconfigurable resources for several NP-hard covering problems. For example, we study variants of minimum spanning and Steiner trees, minimum cuts, and facility location. Up to constants, our approximation guarantees match those of previously-studied algorithms for demand-robust and stochastic two-stage models. Lastly, we demonstrate that our problem is sufficiently general to smoothly interpolate between previous demand-robust and stochastic two-stage problems.

Cite as

David Ellis Hershkowitz, R. Ravi, and Sahil Singla. Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under Uncertainty. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{hershkowitz_et_al:LIPIcs.APPROX-RANDOM.2019.4,
  author =	{Hershkowitz, David Ellis and Ravi, R. and Singla, Sahil},
  title =	{{Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under Uncertainty}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.4},
  URN =		{urn:nbn:de:0030-drops-112196},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.4},
  annote =	{Keywords: Approximation Algorithms, Optimization Under Uncertainty, Two-Stage Optimization, Expected Max}
}
Document
RANDOM
(Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

Authors: Domagoj Bradac, Sahil Singla, and Goran Zuzic

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
Consider a kidney-exchange application where we want to find a max-matching in a random graph. To find whether an edge e exists, we need to perform an expensive test, in which case the edge e appears independently with a known probability p_e. Given a budget on the total cost of the tests, our goal is to find a testing strategy that maximizes the expected maximum matching size. The above application is an example of the stochastic probing problem. In general the optimal stochastic probing strategy is difficult to find because it is adaptive - decides on the next edge to probe based on the outcomes of the probed edges. An alternate approach is to show the adaptivity gap is small, i.e., the best non-adaptive strategy always has a value close to the best adaptive strategy. This allows us to focus on designing non-adaptive strategies that are much simpler. Previous works, however, have focused on Bernoulli random variables that can only capture whether an edge appears or not. In this work we introduce a multi-value stochastic probing problem, which can also model situations where the weight of an edge has a probability distribution over multiple values. Our main technical contribution is to obtain (near) optimal bounds for the (worst-case) adaptivity gaps for multi-value stochastic probing over prefix-closed constraints. For a monotone submodular function, we show the adaptivity gap is at most 2 and provide a matching lower bound. For a weighted rank function of a k-extendible system (a generalization of intersection of k matroids), we show the adaptivity gap is between O(k log k) and k. None of these results were known even in the Bernoulli case where both our upper and lower bounds also apply, thereby resolving an open question of Gupta et al. [Gupta et al., 2017].

Cite as

Domagoj Bradac, Sahil Singla, and Goran Zuzic. (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 49:1-49:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bradac_et_al:LIPIcs.APPROX-RANDOM.2019.49,
  author =	{Bradac, Domagoj and Singla, Sahil and Zuzic, Goran},
  title =	{{(Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{49:1--49:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.49},
  URN =		{urn:nbn:de:0030-drops-112641},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.49},
  annote =	{Keywords: stochastic programming, adaptivity gaps, stochastic multi-value probing, submodular functions, k-extendible systems, adaptive strategy, matroid intersection}
}
  • Refine by Author
  • 12 Singla, Sahil
  • 4 Gupta, Anupam
  • 3 Jiang, Haotian
  • 3 Kumar, Amit
  • 2 Bansal, Nikhil
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Approximation algorithms analysis
  • 4 Theory of computation → Online algorithms
  • 3 Theory of computation → Submodular optimization and polymatroids
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Packing and covering problems
  • Show More...

  • Refine by Keyword
  • 2 approximation algorithms
  • 2 smoothed analysis
  • 2 stochastic optimization
  • 1 Adaptivity gap
  • 1 Approximation Algorithms
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 4 2020
  • 4 2024
  • 3 2019
  • 3 2022
  • 1 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail