7 Search Results for "Smith, Siani"


Document
Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the "H"-Graphs

Authors: Vadim Lozin, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Mark Siggers, Siani Smith, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
For a fixed set H of graphs, a graph G is H-subgraph-free if G does not contain any H ∈ H as a (not necessarily induced) subgraph. A recent framework gives a complete classification on H-subgraph-free graphs (for finite sets H) for problems that are solvable in polynomial time on graph classes of bounded treewidth, NP-complete on subcubic graphs, and whose NP-hardness is preserved under edge subdivision. While a lot of problems satisfy these conditions, there are also many problems that do not satisfy all three conditions and for which the complexity in H-subgraph-free graphs is unknown. We study problems for which only the first two conditions of the framework hold (they are solvable in polynomial time on classes of bounded treewidth and NP-complete on subcubic graphs, but NP-hardness is not preserved under edge subdivision). In particular, we make inroads into the classification of the complexity of four such problems: Hamilton Cycle, k-Induced Disjoint Paths, C₅-Colouring and Star 3-Colouring. Although we do not complete the classifications, we show that the boundary between polynomial time and NP-complete differs among our problems and also from problems that do satisfy all three conditions of the framework, in particular when we forbid certain subdivisions of the "H"-graph (the graph that looks like the letter "H"). Hence, we exhibit a rich complexity landscape among problems for H-subgraph-free graph classes.

Cite as

Vadim Lozin, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Mark Siggers, Siani Smith, and Erik Jan van Leeuwen. Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the "H"-Graphs. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 47:1-47:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lozin_et_al:LIPIcs.ISAAC.2024.47,
  author =	{Lozin, Vadim and Martin, Barnaby and Pandey, Sukanya and Paulusma, Dani\"{e}l and Siggers, Mark and Smith, Siani and van Leeuwen, Erik Jan},
  title =	{{Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the "H"-Graphs}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{47:1--47:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.47},
  URN =		{urn:nbn:de:0030-drops-221747},
  doi =		{10.4230/LIPIcs.ISAAC.2024.47},
  annote =	{Keywords: forbidden subgraph, complexity dichotomy, edge subdivision, treewidth}
}
Document
Edge Multiway Cut and Node Multiway Cut Are Hard for Planar Subcubic Graphs

Authors: Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)


Abstract
It is known that the weighted version of Edge Multiway Cut (also known as Multiterminal Cut) is NP-complete on planar graphs of maximum degree 3. In contrast, for the unweighted version, NP-completeness is only known for planar graphs of maximum degree 11. In fact, the complexity of unweighted Edge Multiway Cut was open for graphs of maximum degree 3 for over twenty years. We prove that the unweighted version is NP-complete even for planar graphs of maximum degree 3. As weighted Edge Multiway Cut is polynomial-time solvable for graphs of maximum degree at most 2, we have now closed the complexity gap. We also prove that (unweighted) Node Multiway Cut (both with and without deletable terminals) is NP-complete for planar graphs of maximum degree 3. By combining our results with known results, we can apply two meta-classifications on graph containment from the literature. This yields full dichotomies for all three problems on H-topological-minor-free graphs and, should H be finite, on H-subgraph-free graphs as well. Previously, such dichotomies were only implied for H-minor-free graphs.

Cite as

Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Edge Multiway Cut and Node Multiway Cut Are Hard for Planar Subcubic Graphs. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{johnson_et_al:LIPIcs.SWAT.2024.29,
  author =	{Johnson, Matthew and Martin, Barnaby and Pandey, Sukanya and Paulusma, Dani\"{e}l and Smith, Siani and van Leeuwen, Erik Jan},
  title =	{{Edge Multiway Cut and Node Multiway Cut Are Hard for Planar Subcubic Graphs}},
  booktitle =	{19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-318-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{294},
  editor =	{Bodlaender, Hans L.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.29},
  URN =		{urn:nbn:de:0030-drops-200699},
  doi =		{10.4230/LIPIcs.SWAT.2024.29},
  annote =	{Keywords: multiway cut, planar subcubic graph, complexity dichotomy, graph containment}
}
Document
Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs

Authors: Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
For any finite set ℋ = {H_1,…,H_p} of graphs, a graph is ℋ-subgraph-free if it does not contain any of H_1,…,H_p as a subgraph. In recent work, meta-classifications have been studied: these show that if graph problems satisfy certain prescribed conditions, their complexity can be classified on classes of ℋ-subgraph-free graphs. We continue this work and focus on problems that have polynomial-time solutions on classes that have bounded treewidth or maximum degree at most 3 and examine their complexity on H-subgraph-free graph classes where H is a connected graph. With this approach, we obtain comprehensive classifications for (Independent) Feedback Vertex Set, Connected Vertex Cover, Colouring and Matching Cut. This resolves a number of open problems. We highlight that, to establish that Independent Feedback Vertex Set belongs to this collection of problems, we first show that it can be solved in polynomial time on graphs of maximum degree 3. We demonstrate that, with the exception of the complete graph on four vertices, each graph in this class has a minimum size feedback vertex set that is also an independent set.

Cite as

Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{johnson_et_al:LIPIcs.MFCS.2023.57,
  author =	{Johnson, Matthew and Martin, Barnaby and Pandey, Sukanya and Paulusma, Dani\"{e}l and Smith, Siani and van Leeuwen, Erik Jan},
  title =	{{Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{57:1--57:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.57},
  URN =		{urn:nbn:de:0030-drops-185914},
  doi =		{10.4230/LIPIcs.MFCS.2023.57},
  annote =	{Keywords: forbidden subgraphs, independent feedback vertex set, treewidth}
}
Document
Partitioning H-Free Graphs of Bounded Diameter

Authors: Christoph Brause, Petr Golovach, Barnaby Martin, Daniël Paulusma, and Siani Smith

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
A natural way of increasing our understanding of NP-complete graph problems is to restrict the input to a special graph class. Classes of H-free graphs, that is, graphs that do not contain some graph H as an induced subgraph, have proven to be an ideal testbed for such a complexity study. However, if the forbidden graph H contains a cycle or claw, then these problems often stay NP-complete. A recent complexity study (MFCS 2019) on the k-Colouring problem shows that we may still obtain tractable results if we also bound the diameter of the H-free input graph. We continue this line of research by initiating a complexity study on the impact of bounding the diameter for a variety of classical vertex partitioning problems restricted to H-free graphs. We prove that bounding the diameter does not help for Independent Set, but leads to new tractable cases for problems closely related to 3-Colouring. That is, we show that Near-Bipartiteness, Independent Feedback Vertex Set, Independent Odd Cycle Transversal, Acyclic 3-Colouring and Star 3-Colouring are all polynomial-time solvable for chair-free graphs of bounded diameter. To obtain these results we exploit a new structural property of 3-colourable chair-free graphs.

Cite as

Christoph Brause, Petr Golovach, Barnaby Martin, Daniël Paulusma, and Siani Smith. Partitioning H-Free Graphs of Bounded Diameter. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 21:1-21:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{brause_et_al:LIPIcs.ISAAC.2021.21,
  author =	{Brause, Christoph and Golovach, Petr and Martin, Barnaby and Paulusma, Dani\"{e}l and Smith, Siani},
  title =	{{Partitioning H-Free Graphs of Bounded Diameter}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{21:1--21:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.21},
  URN =		{urn:nbn:de:0030-drops-154543},
  doi =		{10.4230/LIPIcs.ISAAC.2021.21},
  annote =	{Keywords: vertex partitioning problem, H-free, diameter, complexity dichotomy}
}
Document
QCSP on Reflexive Tournaments

Authors: Benoît Larose, Petar Marković, Barnaby Martin, Daniël Paulusma, Siani Smith, and Stanislav Živný

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We give a complexity dichotomy for the Quantified Constraint Satisfaction Problem QCSP(H) when H is a reflexive tournament. It is well-known that reflexive tournaments can be split into a sequence of strongly connected components H₁,…,H_n so that there exists an edge from every vertex of H_i to every vertex of H_j if and only if i < j. We prove that if H has both its initial and final strongly connected component (possibly equal) of size 1, then QCSP(H) is in NL and otherwise QCSP(H) is NP-hard.

Cite as

Benoît Larose, Petar Marković, Barnaby Martin, Daniël Paulusma, Siani Smith, and Stanislav Živný. QCSP on Reflexive Tournaments. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 58:1-58:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{larose_et_al:LIPIcs.ESA.2021.58,
  author =	{Larose, Beno\^{i}t and Markovi\'{c}, Petar and Martin, Barnaby and Paulusma, Dani\"{e}l and Smith, Siani and \v{Z}ivn\'{y}, Stanislav},
  title =	{{QCSP on Reflexive Tournaments}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{58:1--58:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.58},
  URN =		{urn:nbn:de:0030-drops-146392},
  doi =		{10.4230/LIPIcs.ESA.2021.58},
  annote =	{Keywords: computational complexity, algorithmic graph theory, quantified constraints, universal algebra, constraint satisfaction}
}
Document
Acyclic, Star and Injective Colouring: A Complexity Picture for H-Free Graphs

Authors: Jan Bok, Nikola Jedlic̆ková, Barnaby Martin, Daniël Paulusma, and Siani Smith

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
A k-colouring c of a graph G is a mapping V(G) → {1,2,… k} such that c(u) ≠ c(v) whenever u and v are adjacent. The corresponding decision problem is Colouring. A colouring is acyclic, star, or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and edges, respectively. Hence, every injective colouring is a star colouring and every star colouring is an acyclic colouring. The corresponding decision problems are Acyclic Colouring, Star Colouring and Injective Colouring (the last problem is also known as L(1,1)-Labelling). A classical complexity result on Colouring is a well-known dichotomy for H-free graphs, which was established twenty years ago (in this context, a graph is H-free if and only if it does not contain H as an induced subgraph). Moreover, this result has led to a large collection of results, which helped us to better understand the complexity of Colouring. In contrast, there is no systematic study into the computational complexity of Acyclic Colouring, Star Colouring and Injective Colouring despite numerous algorithmic and structural results that have appeared over the years. We initiate such a systematic complexity study, and similar to the study of Colouring we use the class of H-free graphs as a testbed. We prove the following results: 1) We give almost complete classifications for the computational complexity of Acyclic Colouring, Star Colouring and Injective Colouring for H-free graphs. 2) If the number of colours k is fixed, that is, not part of the input, we give full complexity classifications for each of the three problems for H-free graphs. From our study we conclude that for fixed k the three problems behave in the same way, but this is no longer true if k is part of the input. To obtain several of our results we prove stronger complexity results that in particular involve the girth of a graph and the class of line graphs.

Cite as

Jan Bok, Nikola Jedlic̆ková, Barnaby Martin, Daniël Paulusma, and Siani Smith. Acyclic, Star and Injective Colouring: A Complexity Picture for H-Free Graphs. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 22:1-22:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bok_et_al:LIPIcs.ESA.2020.22,
  author =	{Bok, Jan and Jedlic̆kov\'{a}, Nikola and Martin, Barnaby and Paulusma, Dani\"{e}l and Smith, Siani},
  title =	{{Acyclic, Star and Injective Colouring: A Complexity Picture for H-Free Graphs}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{22:1--22:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.22},
  URN =		{urn:nbn:de:0030-drops-128885},
  doi =		{10.4230/LIPIcs.ESA.2020.22},
  annote =	{Keywords: acyclic colouring, star colouring, injective colouring, H-free, dichotomy}
}
Document
Colouring H-Free Graphs of Bounded Diameter

Authors: Barnaby Martin, Daniël Paulusma, and Siani Smith

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
The Colouring problem is to decide if the vertices of a graph can be coloured with at most k colours for an integer k, such that no two adjacent vertices are coloured alike. A graph G is H-free if G does not contain H as an induced subgraph. It is known that Colouring is NP-complete for H-free graphs if H contains a cycle or claw, even for fixed k >= 3. We examine to what extent the situation may change if in addition the input graph has bounded diameter.

Cite as

Barnaby Martin, Daniël Paulusma, and Siani Smith. Colouring H-Free Graphs of Bounded Diameter. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 14:1-14:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{martin_et_al:LIPIcs.MFCS.2019.14,
  author =	{Martin, Barnaby and Paulusma, Dani\"{e}l and Smith, Siani},
  title =	{{Colouring H-Free Graphs of Bounded Diameter}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{14:1--14:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.14},
  URN =		{urn:nbn:de:0030-drops-109584},
  doi =		{10.4230/LIPIcs.MFCS.2019.14},
  annote =	{Keywords: vertex colouring, H-free graph, diameter}
}
  • Refine by Author
  • 7 Martin, Barnaby
  • 7 Paulusma, Daniël
  • 7 Smith, Siani
  • 3 Pandey, Sukanya
  • 3 van Leeuwen, Erik Jan
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 complexity dichotomy
  • 2 H-free
  • 2 diameter
  • 2 treewidth
  • 1 H-free graph
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2021
  • 2 2024
  • 1 2019
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail