18 Search Results for "Song, Zhao"


Document
Short Paper
Evaluating the Effectiveness of Large Language Models in Representing Textual Descriptions of Geometry and Spatial Relations (Short Paper)

Authors: Yuhan Ji and Song Gao

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
This research focuses on assessing the ability of large language models (LLMs) in representing geometries and their spatial relations. We utilize LLMs including GPT-2 and BERT to encode the well-known text (WKT) format of geometries and then feed their embeddings into classifiers and regressors to evaluate the effectiveness of the LLMs-generated embeddings for geometric attributes. The experiments demonstrate that while the LLMs-generated embeddings can preserve geometry types and capture some spatial relations (up to 73% accuracy), challenges remain in estimating numeric values and retrieving spatially related objects. This research highlights the need for improvement in terms of capturing the nuances and complexities of the underlying geospatial data and integrating domain knowledge to support various GeoAI applications using foundation models.

Cite as

Yuhan Ji and Song Gao. Evaluating the Effectiveness of Large Language Models in Representing Textual Descriptions of Geometry and Spatial Relations (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 43:1-43:6, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ji_et_al:LIPIcs.GIScience.2023.43,
  author =	{Ji, Yuhan and Gao, Song},
  title =	{{Evaluating the Effectiveness of Large Language Models in Representing Textual Descriptions of Geometry and Spatial Relations}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{43:1--43:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.43},
  URN =		{urn:nbn:de:0030-drops-189381},
  doi =		{10.4230/LIPIcs.GIScience.2023.43},
  annote =	{Keywords: LLMs, foundation models, GeoAI}
}
Document
Short Paper
The Ethics of AI-Generated Maps: DALL·E 2 and AI’s Implications for Cartography (Short Paper)

Authors: Qianheng Zhang, Yuhao Kang, and Robert Roth

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
The rapid advancement of artificial intelligence (AI) such as the emergence of large language models ChatGPT and DALL·E 2 has brought both opportunities for improving productivity and raised ethical concerns. This paper investigates the ethics of using artificial intelligence (AI) in cartography, with a particular focus on the generation of maps using DALL·E 2. To accomplish this, we first created an open-sourced dataset that includes synthetic (AI-generated) and real-world (human-designed) maps at multiple scales with a variety of settings. We subsequently examined four potential ethical concerns that may arise from the characteristics of DALL·E 2 generated maps, namely inaccuracies, misleading information, unanticipated features, and irreproducibility. We then developed a deep learning-based model to identify those AI-generated maps. Our research emphasizes the importance of ethical considerations in the development and use of AI techniques in cartography, contributing to the growing body of work on trustworthy maps. We aim to raise public awareness of the potential risks associated with AI-generated maps and support the development of ethical guidelines for their future use.

Cite as

Qianheng Zhang, Yuhao Kang, and Robert Roth. The Ethics of AI-Generated Maps: DALL·E 2 and AI’s Implications for Cartography (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 93:1-93:6, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.GIScience.2023.93,
  author =	{Zhang, Qianheng and Kang, Yuhao and Roth, Robert},
  title =	{{The Ethics of AI-Generated Maps: DALL·E 2 and AI’s Implications for Cartography}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{93:1--93:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.93},
  URN =		{urn:nbn:de:0030-drops-189886},
  doi =		{10.4230/LIPIcs.GIScience.2023.93},
  annote =	{Keywords: Ethics, GeoAI, DALL-E, Cartography}
}
Document
Fast Reachability Using DAG Decomposition

Authors: Giorgos Kritikakis and Ioannis G. Tollis

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We present a fast and practical algorithm to compute the transitive closure (TC) of a directed graph. It is based on computing a reachability indexing scheme of a directed acyclic graph (DAG), G = (V, E). Given any path/chain decomposition of G we show how to compute in parameterized linear time such a reachability scheme that can answer reachability queries in constant time. The experimental results reveal that our method is significantly faster in practice than the theoretical bounds imply, indicating that path/chain decomposition algorithms can be applied to obtain fast and practical solutions to the transitive closure (TC) problem. Furthermore, we show that the number of non-transitive edges of a DAG G is ≤ width*|V| and that we can find a substantially large subset of the transitive edges of G in linear time using a path/chain decomposition. Our extensive experimental results show the interplay between these concepts in various models of DAGs.

Cite as

Giorgos Kritikakis and Ioannis G. Tollis. Fast Reachability Using DAG Decomposition. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 2:1-2:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kritikakis_et_al:LIPIcs.SEA.2023.2,
  author =	{Kritikakis, Giorgos and Tollis, Ioannis G.},
  title =	{{Fast Reachability Using DAG Decomposition}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{2:1--2:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.2},
  URN =		{urn:nbn:de:0030-drops-183526},
  doi =		{10.4230/LIPIcs.SEA.2023.2},
  annote =	{Keywords: graph algorithms, hierarchy, directed acyclic graphs (DAG), path/chain decomposition, transitive closure, transitive reduction, reachability, reachability indexing scheme}
}
Document
Track A: Algorithms, Complexity and Games
Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching

Authors: S. Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We study the problem of solving linear program in the streaming model. Given a constraint matrix A ∈ ℝ^{m×n} and vectors b ∈ ℝ^m, c ∈ ℝ^n, we develop a space-efficient interior point method that optimizes solely on the dual program. To this end, we obtain efficient algorithms for various different problems: - For general linear programs, we can solve them in Õ(√n log(1/ε)) passes and Õ(n²) space for an ε-approximate solution. To the best of our knowledge, this is the most efficient LP solver in streaming with no polynomial dependence on m for both space and passes. - For bipartite graphs, we can solve the minimum vertex cover and maximum weight matching problem in Õ(√m) passes and Õ(n) space. In addition to our space-efficient IPM, we also give algorithms for solving SDD systems and isolation lemma in Õ(n) spaces, which are the cornerstones for our graph results.

Cite as

S. Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 88:1-88:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.ICALP.2023.88,
  author =	{Liu, S. Cliff and Song, Zhao and Zhang, Hengjie and Zhang, Lichen and Zhou, Tianyi},
  title =	{{Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{88:1--88:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.88},
  URN =		{urn:nbn:de:0030-drops-181408},
  doi =		{10.4230/LIPIcs.ICALP.2023.88},
  annote =	{Keywords: Convex optimization, interior point method, streaming algorithm}
}
Document
A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Authors: Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Designing and modeling complex cyber-physical systems (CPS) faces the double challenge of combined discrete-continuous dynamics and concurrent behavior. Existing formal modeling and verification languages for CPS expose the underlying proof search technology. They lack high-level structuring elements and are not efficiently executable. The ensuing modeling gap renders formal CPS models hard to understand and to validate. We propose a high-level programming-based approach to formal modeling and verification of hybrid systems as a hybrid extension of an Active Objects language. Well-structured hybrid active programs and requirements allow automatic, reachability-preserving translation into differential dynamic logic, a logic for hybrid (discrete-continuous) programs. Verification is achieved by discharging the resulting formulas with the theorem prover KeYmaera X. We demonstrate the usability of our approach with case studies.

Cite as

Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle. A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 04:1-04:34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kamburjan_et_al:LITES.8.2.4,
  author =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  title =	{{A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{04:1--04:34},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.4},
  doi =		{10.4230/LITES.8.2.4},
  annote =	{Keywords: Active Objects, Differential Dynamic Logic, Hybrid Systems}
}
Document
Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness

Authors: Martin Knoche, Stefan Hörmann, and Gerhard Rigoll

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Many face recognition approaches expect the input images to have similar image resolution. However, in real-world applications, the image resolution varies due to different image capture mechanisms or sources, affecting the performance of face recognition systems. This work first analyzes the image resolution susceptibility of modern face recognition. Face verification on the very popular LFW dataset drops from 99.23% accuracy to almost 55% when image dimensions of both images are reduced to arguable very poor resolution. With cross-resolution image pairs (one HR and one LR image), face verification accuracy is even worse. This characteristic is investigated more in-depth by analyzing the feature distances utilized for face verification. To increase the robustness, we propose two training strategies applied to a state-of-the-art face recognition model: 1) Training with 50% low resolution images within each batch and 2) using the cosine distance loss between high and low resolution features in a siamese network structure. Both methods significantly boost face verification accuracy for matching training and testing image resolutions. Training a network with different resolutions simultaneously instead of adding only one specific low resolution showed improvements across all resolutions and made a single model applicable to unknown resolutions. However, models trained for one particular low resolution perform better when using the exact resolution for testing. We improve the face verification accuracy from 96.86% to 97.72% on the popular LFW database with uniformly distributed image dimensions between 112 × 112 px and 5 × 5 px. Our approaches improve face verification accuracy even more from 77.56% to 87.17% for distributions focusing on lower images resolutions. Lastly, we propose specific image dimension sets focusing on high, mid, and low resolution for five well-known datasets to benchmark face verification accuracy in cross-resolution scenarios.

Cite as

Martin Knoche, Stefan Hörmann, and Gerhard Rigoll. Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 01:1-01:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{knoche_et_al:LITES.8.1.1,
  author =	{Knoche, Martin and H\"{o}rmann, Stefan and Rigoll, Gerhard},
  title =	{{Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{01:1--01:20},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.1},
  doi =		{10.4230/LITES.8.1.1},
  annote =	{Keywords: recognition, resolution, cross, face, identification}
}
Document
HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Authors: Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Convolutional neural networks (CNNs) have produced unprecedented accuracy for many computer vision problems in the recent past. In power and compute-constrained embedded platforms, deploying modern CNNs can present many challenges. Most CNN architectures do not run in real-time due to the high number of computational operations involved during the inference phase. This emphasizes the role of CNN optimization techniques in early design space exploration. To estimate their efficacy in satisfying the target constraints, existing techniques are either hardware (HW) agnostic, pseudo-HW-aware by considering parameter and operation counts, or HW-aware through inflexible hardware-in-the-loop (HIL) setups. In this work, we introduce HW-Flow, a framework for optimizing and exploring CNN models based on three levels of hardware abstraction: Coarse, Mid and Fine. Through these levels, CNN design and optimization can be iteratively refined towards efficient execution on the target hardware platform. We present HW-Flow in the context of CNN pruning by augmenting a reinforcement learning agent with key metrics to understand the influence of its pruning actions on the inference hardware. With 2× reduction in energy and latency, we prune ResNet56, ResNet50, and DeepLabv3 with minimal accuracy degradation on the CIFAR-10, ImageNet, and CityScapes datasets, respectively.

Cite as

Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele. HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 03:1-03:30, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{vemparala_et_al:LITES.8.1.3,
  author =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  title =	{{HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:30},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.3},
  doi =		{10.4230/LITES.8.1.3},
  annote =	{Keywords: Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning}
}
Document
RANDOM
Hyperbolic Concentration, Anti-Concentration, and Discrepancy

Authors: Zhao Song and Ruizhe Zhang

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
Chernoff bound is a fundamental tool in theoretical computer science. It has been extensively used in randomized algorithm design and stochastic type analysis. Discrepancy theory, which deals with finding a bi-coloring of a set system such that the coloring of each set is balanced, has a huge number of applications in approximation algorithms design. Chernoff bound [Che52] implies that a random bi-coloring of any set system with n sets and n elements will have discrepancy O(√{n log n}) with high probability, while the famous result by Spencer [Spe85] shows that there exists an O(√n) discrepancy solution. The study of hyperbolic polynomials dates back to the early 20th century when used to solve PDEs by Gårding [Går59]. In recent years, more applications are found in control theory, optimization, real algebraic geometry, and so on. In particular, the breakthrough result by Marcus, Spielman, and Srivastava [MSS15] uses the theory of hyperbolic polynomials to prove the Kadison-Singer conjecture [KS59], which is closely related to discrepancy theory. In this paper, we present a list of new results for hyperbolic polynomials: - We show two nearly optimal hyperbolic Chernoff bounds: one for Rademacher sum of arbitrary vectors and another for random vectors in the hyperbolic cone. - We show a hyperbolic anti-concentration bound. - We generalize the hyperbolic Kadison-Singer theorem [Brä18] for vectors in sub-isotropic position, and prove a hyperbolic Spencer theorem for any constant hyperbolic rank vectors. The classical matrix Chernoff and discrepancy results are based on determinant polynomial which is a special case of hyperbolic polynomials. To the best of our knowledge, this paper is the first work that shows either concentration or anti-concentration results for hyperbolic polynomials. We hope our findings provide more insights into hyperbolic and discrepancy theories.

Cite as

Zhao Song and Ruizhe Zhang. Hyperbolic Concentration, Anti-Concentration, and Discrepancy. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 10:1-10:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{song_et_al:LIPIcs.APPROX/RANDOM.2022.10,
  author =	{Song, Zhao and Zhang, Ruizhe},
  title =	{{Hyperbolic Concentration, Anti-Concentration, and Discrepancy}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.10},
  URN =		{urn:nbn:de:0030-drops-171324},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.10},
  annote =	{Keywords: Hyperbolic polynomial, Chernoff bound, Concentration, Discrepancy theory, Anti-concentration}
}
Document
Symmetric Sparse Boolean Matrix Factorization and Applications

Authors: Sitan Chen, Zhao Song, Runzhou Tao, and Ruizhe Zhang

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
In this work, we study a variant of nonnegative matrix factorization where we wish to find a symmetric factorization of a given input matrix into a sparse, Boolean matrix. Formally speaking, given {𝐌} ∈ {ℤ}^{m× m}, we want to find {𝐖} ∈ {0,1}^{m× r} such that ‖ {𝐌} - {𝐖} {𝐖}^⊤ ‖₀ is minimized among all {𝐖} for which each row is k-sparse. This question turns out to be closely related to a number of questions like recovering a hypergraph from its line graph, as well as reconstruction attacks for private neural network training. As this problem is hard in the worst-case, we study a natural average-case variant that arises in the context of these reconstruction attacks: {𝐌} = {𝐖} {𝐖}^{⊤} for {𝐖} a random Boolean matrix with k-sparse rows, and the goal is to recover {𝐖} up to column permutation. Equivalently, this can be thought of as recovering a uniformly random k-uniform hypergraph from its line graph. Our main result is a polynomial-time algorithm for this problem based on bootstrapping higher-order information about {𝐖} and then decomposing an appropriate tensor. The key ingredient in our analysis, which may be of independent interest, is to show that such a matrix {𝐖} has full column rank with high probability as soon as m = Ω̃(r), which we do using tools from Littlewood-Offord theory and estimates for binary Krawtchouk polynomials.

Cite as

Sitan Chen, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Symmetric Sparse Boolean Matrix Factorization and Applications. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 46:1-46:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITCS.2022.46,
  author =	{Chen, Sitan and Song, Zhao and Tao, Runzhou and Zhang, Ruizhe},
  title =	{{Symmetric Sparse Boolean Matrix Factorization and Applications}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{46:1--46:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.46},
  URN =		{urn:nbn:de:0030-drops-156422},
  doi =		{10.4230/LIPIcs.ITCS.2022.46},
  annote =	{Keywords: Matrix factorization, tensors, random matrices, average-case complexity}
}
Document
Differentially Oblivious Database Joins: Overcoming the Worst-Case Curse of Fully Oblivious Algorithms

Authors: Shumo Chu, Danyang Zhuo, Elaine Shi, and T-H. Hubert Chan

Published in: LIPIcs, Volume 199, 2nd Conference on Information-Theoretic Cryptography (ITC 2021)


Abstract
Numerous high-profile works have shown that access patterns to even encrypted databases can leak secret information and sometimes even lead to reconstruction of the entire database. To thwart access pattern leakage, the literature has focused on oblivious algorithms, where obliviousness requires that the access patterns leak nothing about the input data. In this paper, we consider the Join operator, an important database primitive that has been extensively studied and optimized. Unfortunately, any fully oblivious Join algorithm would require always padding the result to the worst-case length which is quadratic in the data size N. In comparison, an insecure baseline incurs only O(R + N) cost where R is the true result length, and in the common case in practice, R is relatively short. As a typical example, when R = O(N), any fully oblivious algorithm must inherently incur a prohibitive, N-fold slowdown relative to the insecure baseline. Indeed, the (non-private) database and algorithms literature invariably focuses on studying the instance-specific rather than worst-case performance of database algorithms. Unfortunately, the stringent notion of full obliviousness precludes the design of efficient algorithms with non-trivial instance-specific performance. To overcome this worst-case performance barrier of full obliviousness and enable algorithms with good instance-specific performance, we consider a relaxed notion of access pattern privacy called (ε, δ)-differential obliviousness (DO), originally proposed in the seminal work of Chan et al. (SODA'19). Rather than insisting that the access patterns leak no information whatsoever, the relaxed DO notion requires that the access patterns satisfy (ε, δ)-differential privacy. We show that by adopting the relaxed DO notion, we can obtain efficient database Join mechanisms whose instance-specific performance approximately matches the insecure baseline, while still offering a meaningful notion of privacy to individual users. Complementing our upper bound results, we also prove new lower bounds regarding the performance of any DO Join algorithm. Differential obliviousness (DO) is a new notion and is a relatively unexplored territory. Following the pioneering investigations by Chan et al. and others, our work is among the very first to formally explore how DO can help overcome the worst-case performance curse of full obliviousness; moreover, we motivate our work with database applications. Our work shows new evidence why DO might be a promising notion, and opens up several exciting future directions.

Cite as

Shumo Chu, Danyang Zhuo, Elaine Shi, and T-H. Hubert Chan. Differentially Oblivious Database Joins: Overcoming the Worst-Case Curse of Fully Oblivious Algorithms. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 199, pp. 19:1-19:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chu_et_al:LIPIcs.ITC.2021.19,
  author =	{Chu, Shumo and Zhuo, Danyang and Shi, Elaine and Chan, T-H. Hubert},
  title =	{{Differentially Oblivious Database Joins: Overcoming the Worst-Case Curse of Fully Oblivious Algorithms}},
  booktitle =	{2nd Conference on Information-Theoretic Cryptography (ITC 2021)},
  pages =	{19:1--19:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-197-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{199},
  editor =	{Tessaro, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.19},
  URN =		{urn:nbn:de:0030-drops-143386},
  doi =		{10.4230/LIPIcs.ITC.2021.19},
  annote =	{Keywords: differentially oblivious, database join, instance-specific performance}
}
Document
Track A: Algorithms, Complexity and Games
Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks over Directed Graphs

Authors: Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
For a directed graph G with n vertices and a start vertex u_start, we wish to (approximately) sample an L-step random walk over G starting from u_start with minimum space using an algorithm that only makes few passes over the edges of the graph. This problem found many applications, for instance, in approximating the PageRank of a webpage. If only a single pass is allowed, the space complexity of this problem was shown to be Θ̃(n ⋅ L). Prior to our work, a better space complexity was only known with Õ(√L) passes. We essentially settle the space complexity of this random walk simulation problem for two-pass streaming algorithms, showing that it is Θ̃(n ⋅ √L), by giving almost matching upper and lower bounds. Our lower bound argument extends to every constant number of passes p, and shows that any p-pass algorithm for this problem uses Ω̃(n ⋅ L^{1/p}) space. In addition, we show a similar Θ̃(n ⋅ √L) bound on the space complexity of any algorithm (with any number of passes) for the related problem of sampling an L-step random walk from every vertex in the graph.

Cite as

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu. Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks over Directed Graphs. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 52:1-52:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2021.52,
  author =	{Chen, Lijie and Kol, Gillat and Paramonov, Dmitry and Saxena, Raghuvansh R. and Song, Zhao and Yu, Huacheng},
  title =	{{Near-Optimal Two-Pass Streaming Algorithm for Sampling Random Walks over Directed Graphs}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{52:1--52:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.52},
  URN =		{urn:nbn:de:0030-drops-141218},
  doi =		{10.4230/LIPIcs.ICALP.2021.52},
  annote =	{Keywords: streaming algorithms, random walk sampling}
}
Document
Training (Overparametrized) Neural Networks in Near-Linear Time

Authors: Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
The slow convergence rate and pathological curvature issues of first-order gradient methods for training deep neural networks, initiated an ongoing effort for developing faster second-order optimization algorithms beyond SGD, without compromising the generalization error. Despite their remarkable convergence rate (independent of the training batch size n), second-order algorithms incur a daunting slowdown in the cost per iteration (inverting the Hessian matrix of the loss function), which renders them impractical. Very recently, this computational overhead was mitigated by the works of [Zhang et al., 2019; Cai et al., 2019], yielding an O(mn²)-time second-order algorithm for training two-layer overparametrized neural networks of polynomial width m. We show how to speed up the algorithm of [Cai et al., 2019], achieving an Õ(mn)-time backpropagation algorithm for training (mildly overparametrized) ReLU networks, which is near-linear in the dimension (mn) of the full gradient (Jacobian) matrix. The centerpiece of our algorithm is to reformulate the Gauss-Newton iteration as an 𝓁₂-regression problem, and then use a Fast-JL type dimension reduction to precondition the underlying Gram matrix in time independent of M, allowing to find a sufficiently good approximate solution via first-order conjugate gradient. Our result provides a proof-of-concept that advanced machinery from randomized linear algebra - which led to recent breakthroughs in convex optimization (ERM, LPs, Regression) - can be carried over to the realm of deep learning as well.

Cite as

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (Overparametrized) Neural Networks in Near-Linear Time. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 63:1-63:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{vandenbrand_et_al:LIPIcs.ITCS.2021.63,
  author =	{van den Brand, Jan and Peng, Binghui and Song, Zhao and Weinstein, Omri},
  title =	{{Training (Overparametrized) Neural Networks in Near-Linear Time}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{63:1--63:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.63},
  URN =		{urn:nbn:de:0030-drops-136025},
  doi =		{10.4230/LIPIcs.ITCS.2021.63},
  annote =	{Keywords: Deep learning theory, Nonconvex optimization}
}
Document
Invited Talk
Convex Optimization and Dynamic Data Structure (Invited Talk)

Authors: Yin Tat Lee

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
In the last three years, there are many breakthroughs in optimization such as nearly quadratic time algorithms for bipartite matching, linear programming algorithms that are as fast as Ax = b. All of these algorithms are based on a careful combination of optimization techniques and dynamic data structures. In this talk, we will explain the framework underlying all the recent breakthroughs. Joint work with Jan van den Brand, Michael B. Cohen, Sally Dong, Haotian Jiang, Tarun Kathuria, Danupon Nanongkai, Swati Padmanabhan, Richard Peng, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, Di Wang, Sam Chiu-wai Wong, Guanghao Ye, Qiuyi Zhang.

Cite as

Yin Tat Lee. Convex Optimization and Dynamic Data Structure (Invited Talk). In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, p. 3:1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lee:LIPIcs.FSTTCS.2020.3,
  author =	{Lee, Yin Tat},
  title =	{{Convex Optimization and Dynamic Data Structure}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.3},
  URN =		{urn:nbn:de:0030-drops-132440},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.3},
  annote =	{Keywords: Convex Optimization, Dynamic Data Structure}
}
Document
Track A: Algorithms, Complexity and Games
Estimating the Frequency of a Clustered Signal

Authors: Xue Chen and Eric Price

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We consider the problem of locating a signal whose frequencies are "off grid" and clustered in a narrow band. Given noisy sample access to a function g(t) with Fourier spectrum in a narrow range [f_0 - Delta, f_0 + Delta], how accurately is it possible to identify f_0? We present generic conditions on g that allow for efficient, accurate estimates of the frequency. We then show bounds on these conditions for k-Fourier-sparse signals that imply recovery of f_0 to within Delta + O~(k^3) from samples on [-1, 1]. This improves upon the best previous bound of O(Delta + O~(k^5))^{1.5}. We also show that no algorithm can do better than Delta + O~(k^2). In the process we provide a new O~(k^3) bound on the ratio between the maximum and average value of continuous k-Fourier-sparse signals, which has independent application.

Cite as

Xue Chen and Eric Price. Estimating the Frequency of a Clustered Signal. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 36:1-36:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2019.36,
  author =	{Chen, Xue and Price, Eric},
  title =	{{Estimating the Frequency of a Clustered Signal}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{36:1--36:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.36},
  URN =		{urn:nbn:de:0030-drops-106128},
  doi =		{10.4230/LIPIcs.ICALP.2019.36},
  annote =	{Keywords: sublinear algorithms, Fourier transform}
}
Document
Fast Regression with an $ell_infty$ Guarantee

Authors: Eric Price, Zhao Song, and David P. Woodruff

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
Sketching has emerged as a powerful technique for speeding up problems in numerical linear algebra, such as regression. In the overconstrained regression problem, one is given an n x d matrix A, with n >> d, as well as an n x 1 vector b, and one wants to find a vector \hat{x} so as to minimize the residual error ||Ax-b||_2. Using the sketch and solve paradigm, one first computes S \cdot A and S \cdot b for a randomly chosen matrix S, then outputs x' = (SA)^{\dagger} Sb so as to minimize || SAx' - Sb||_2. The sketch-and-solve paradigm gives a bound on ||x'-x^*||_2 when A is well-conditioned. Our main result is that, when S is the subsampled randomized Fourier/Hadamard transform, the error x' - x^* behaves as if it lies in a "random" direction within this bound: for any fixed direction a in R^d, we have with 1 - d^{-c} probability that (1) \langle a, x'-x^* \rangle \lesssim \frac{ \|a\|_2\|x'-x^*\|_2}{d^{\frac{1}{2}-\gamma}}, where c, \gamma > 0 are arbitrary constants. This implies ||x'-x^*||_{\infty} is a factor d^{\frac{1}{2}-\gamma} smaller than ||x'-x^*||_2. It also gives a better bound on the generalization of x' to new examples: if rows of A correspond to examples and columns to features, then our result gives a better bound for the error introduced by sketch-and-solve when classifying fresh examples. We show that not all oblivious subspace embeddings S satisfy these properties. In particular, we give counterexamples showing that matrices based on Count-Sketch or leverage score sampling do not satisfy these properties. We also provide lower bounds, both on how small ||x'-x^*||_2 can be, and for our new guarantee (1), showing that the subsampled randomized Fourier/Hadamard transform is nearly optimal. Our lower bound on ||x'-x^*||_2 shows that there is an O(1/epsilon) separation in the dimension of the optimal oblivious subspace embedding required for outputting an x' for which ||x'-x^*||_2 <= epsilon ||Ax^*-b||_2 \cdot ||A^{\dagger}||_2$, compared to the dimension of the optimal oblivious subspace embedding required for outputting an x' for which ||Ax'-b||_2 <= (1+epsilon)||Ax^*-b||_2, that is, the former problem requires dimension Omega(d/epsilon^2) while the latter problem can be solved with dimension O(d/epsilon). This explains the reason known upper bounds on the dimensions of these two variants of regression have differed in prior work.

Cite as

Eric Price, Zhao Song, and David P. Woodruff. Fast Regression with an $ell_infty$ Guarantee. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 59:1-59:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{price_et_al:LIPIcs.ICALP.2017.59,
  author =	{Price, Eric and Song, Zhao and Woodruff, David P.},
  title =	{{Fast Regression with an \$ell\underlineinfty\$ Guarantee}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{59:1--59:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.59},
  URN =		{urn:nbn:de:0030-drops-74488},
  doi =		{10.4230/LIPIcs.ICALP.2017.59},
  annote =	{Keywords: Linear regression, Count-Sketch, Gaussians, Leverage scores, ell\underlineinfty-guarantee}
}
  • Refine by Author
  • 7 Song, Zhao
  • 2 Price, Eric
  • 2 Zhang, Ruizhe
  • 1 Banik, Aritra
  • 1 Bhattacharya, Binay
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Design and analysis of algorithms
  • 3 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 2 Computing methodologies → Artificial intelligence
  • 1 Computer systems organization → Cloud computing
  • 1 Computing methodologies → Distributed programming languages
  • Show More...

  • Refine by Keyword
  • 2 GeoAI
  • 1 Active Objects
  • 1 Anti-concentration
  • 1 Cartography
  • 1 Chernoff bound
  • Show More...

  • Refine by Type
  • 18 document

  • Refine by Publication Year
  • 5 2022
  • 4 2023
  • 3 2021
  • 2 2016
  • 2 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail