3 Search Results for "Soria, Michèle"


Document
Weighted Basic Parallel Processes and Combinatorial Enumeration

Authors: Lorenzo Clemente

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study weighted basic parallel processes (WBPP), a nonlinear recursive generalisation of weighted finite automata inspired from process algebra and Petri net theory. Our main result is an algorithm of 2-EXPSPACE complexity for the WBPP equivalence problem. While (unweighted) BPP language equivalence is undecidable, we can use this algorithm to decide multiplicity equivalence of BPP and language equivalence of unambiguous BPP, with the same complexity. These are long-standing open problems for the related model of weighted context-free grammars. Our second contribution is a connection between WBPP, power series solutions of systems of polynomial differential equations, and combinatorial enumeration. To this end we consider constructible differentially finite power series (CDF), a class of multivariate differentially algebraic series introduced by Bergeron and Reutenauer in order to provide a combinatorial interpretation to differential equations. CDF series generalise rational, algebraic, and a large class of D-finite (holonomic) series, for which no complexity upper bound for equivalence was known. We show that CDF series correspond to commutative WBPP series. As a consequence of our result on WBPP and commutativity, we show that equivalence of CDF power series can be decided with 2-EXPTIME complexity. In order to showcase the CDF equivalence algorithm, we show that CDF power series naturally arise from combinatorial enumeration, namely as the exponential generating series of constructible species of structures. Examples of such species include sequences, binary trees, ordered trees, Cayley trees, set partitions, series-parallel graphs, and many others. As a consequence of this connection, we obtain an algorithm to decide multiplicity equivalence of constructible species, decidability of which was not known before. The complexity analysis is based on effective bounds from algebraic geometry, namely on the length of chains of polynomial ideals constructed by repeated application of finitely many, not necessarily commuting derivations of a multivariate polynomial ring. This is obtained by generalising a result of Novikov and Yakovenko in the case of a single derivation, which is noteworthy since generic bounds on ideal chains are non-primitive recursive in general. On the way, we develop the theory of WBPP series and CDF power series, exposing several of their appealing properties.

Cite as

Lorenzo Clemente. Weighted Basic Parallel Processes and Combinatorial Enumeration. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{clemente:LIPIcs.CONCUR.2024.18,
  author =	{Clemente, Lorenzo},
  title =	{{Weighted Basic Parallel Processes and Combinatorial Enumeration}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.18},
  URN =		{urn:nbn:de:0030-drops-207903},
  doi =		{10.4230/LIPIcs.CONCUR.2024.18},
  annote =	{Keywords: weighted automata, combinatorial enumeration, shuffle, algebraic differential equations, process algebra, basic parallel processes, species of structures}
}
Document
Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

Authors: Cyril Banderier, Markus Kuba, Stephan Wagner, and Michael Wallner

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
Composition schemes are ubiquitous in combinatorics, statistical mechanics and probability theory. We give a unifying explanation to various phenomena observed in the combinatorial and statistical physics literature in the context of q-enumeration (this is a model where objects with a parameter of value k have a Gibbs measure/Boltzmann weight q^k). For structures enumerated by a composition scheme, we prove a phase transition for any parameter having such a Gibbs measure: for a critical value q = q_c, the limit law of the parameter is a two-parameter Mittag-Leffler distribution, while it is Gaussian in the supercritical regime (q > q_c), and it is a Boltzmann distribution in the subcritical regime (0 < q < q_c). We apply our results to fundamental statistics of lattice paths and quarter-plane walks. We also explain previously observed limit laws for pattern-restricted permutations, and a phenomenon uncovered by Krattenthaler for the wall contacts in watermelons.

Cite as

Cyril Banderier, Markus Kuba, Stephan Wagner, and Michael Wallner. Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banderier_et_al:LIPIcs.AofA.2024.7,
  author =	{Banderier, Cyril and Kuba, Markus and Wagner, Stephan and Wallner, Michael},
  title =	{{Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.7},
  URN =		{urn:nbn:de:0030-drops-204427},
  doi =		{10.4230/LIPIcs.AofA.2024.7},
  annote =	{Keywords: Composition schemes, q-enumeration, generating functions, Gibbs distribution, phase transitions, limit laws, Mittag-Leffler distribution, chi distribution, Boltzmann distribution}
}
Document
Uniform Sampling for Networks of Automata

Authors: Nicolas Basset, Jean Mairesse, and Michèle Soria

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
We call network of automata a family of partially synchronised automata, i.e. a family of deterministic automata which are synchronised via shared letters, and evolve independently otherwise. We address the problem of uniform random sampling of words recognised by a network of automata. To that purpose, we define the reduced automaton of the model, which involves only the product of the synchronised part of the component automata. We provide uniform sampling algorithms which are polynomial with respect to the size of the reduced automaton, greatly improving on the best known algorithms. Our sampling algorithms rely on combinatorial and probabilistic methods and are of three different types: exact, Boltzmann and Parry sampling.

Cite as

Nicolas Basset, Jean Mairesse, and Michèle Soria. Uniform Sampling for Networks of Automata. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{basset_et_al:LIPIcs.CONCUR.2017.36,
  author =	{Basset, Nicolas and Mairesse, Jean and Soria, Mich\`{e}le},
  title =	{{Uniform Sampling for Networks of Automata}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.36},
  URN =		{urn:nbn:de:0030-drops-77977},
  doi =		{10.4230/LIPIcs.CONCUR.2017.36},
  annote =	{Keywords: Partially synchronised automata, uniform sampling; recursive method, Boltzmann sampling, Parry measure}
}
  • Refine by Author
  • 1 Banderier, Cyril
  • 1 Basset, Nicolas
  • 1 Clemente, Lorenzo
  • 1 Kuba, Markus
  • 1 Mairesse, Jean
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Distribution functions
  • 1 Mathematics of computing → Enumeration
  • 1 Mathematics of computing → Generating functions
  • 1 Theory of computation → Concurrency
  • Show More...

  • Refine by Keyword
  • 1 Boltzmann distribution
  • 1 Boltzmann sampling
  • 1 Composition schemes
  • 1 Gibbs distribution
  • 1 Mittag-Leffler distribution
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2017

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail