Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Andrew Aukerman, Mathieu Carrière, Chao Chen, Kevin Gardner, Raúl Rabadán, and Rami Vanguri. Persistent Homology Based Characterization of the Breast Cancer Immune Microenvironment: A Feasibility Study. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{aukerman_et_al:LIPIcs.SoCG.2020.11, author = {Aukerman, Andrew and Carri\`{e}re, Mathieu and Chen, Chao and Gardner, Kevin and Rabad\'{a}n, Ra\'{u}l and Vanguri, Rami}, title = {{Persistent Homology Based Characterization of the Breast Cancer Immune Microenvironment: A Feasibility Study}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {11:1--11:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.11}, URN = {urn:nbn:de:0030-drops-121695}, doi = {10.4230/LIPIcs.SoCG.2020.11}, annote = {Keywords: Topological data analysis, persistence diagrams} }