7 Search Results for "Vardi, Shai"


Document
Locally Computing Edge Orientations

Authors: Slobodan Mitrović, Ronitt Rubinfeld, and Mihir Singhal

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider the question of orienting the edges in a graph G such that every vertex has bounded out-degree. For graphs of arboricity α, there is an orientation in which every vertex has out-degree at most α and, moreover, the best possible maximum out-degree of an orientation is at least α - 1. We are thus interested in algorithms that can achieve a maximum out-degree of close to α. A widely studied approach for this problem in the distributed algorithms setting is a "peeling algorithm" that provides an orientation with maximum out-degree α(2+ε) in a logarithmic number of iterations. We consider this problem in the local computation algorithm (LCA) model, which quickly answers queries of the form "What is the orientation of edge (u,v)?" by probing the input graph. When the peeling algorithm is executed in the LCA setting by applying standard techniques, e.g., the Parnas-Ron paradigm, it requires Ω(n) probes per query on an n-vertex graph. In the case where G has unbounded degree, we show that any LCA that orients its edges to yield maximum out-degree r must use Ω(√ n/r) probes to G per query in the worst case, even if G is known to be a forest (that is, α = 1). We also show several algorithms with sublinear probe complexity when G has unbounded degree. When G is a tree such that the maximum degree Δ of G is bounded, we demonstrate an algorithm that uses Δ n^{1-log_Δ r + o(1)} probes to G per query. To obtain this result, we develop an edge-coloring approach that ultimately yields a graph-shattering-like result. We also use this shattering-like approach to demonstrate an LCA which 4-colors any tree using sublinear probes per query.

Cite as

Slobodan Mitrović, Ronitt Rubinfeld, and Mihir Singhal. Locally Computing Edge Orientations. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 89:1-89:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mitrovic_et_al:LIPIcs.ESA.2024.89,
  author =	{Mitrovi\'{c}, Slobodan and Rubinfeld, Ronitt and Singhal, Mihir},
  title =	{{Locally Computing Edge Orientations}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{89:1--89:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.89},
  URN =		{urn:nbn:de:0030-drops-211603},
  doi =		{10.4230/LIPIcs.ESA.2024.89},
  annote =	{Keywords: local computation algorithms, edge orientation, tree coloring}
}
Document
RANDOM
Nearly Optimal Local Algorithms for Constructing Sparse Spanners of Clusterable Graphs

Authors: Reut Levi, Moti Medina, and Omer Tubul

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In this paper, we study the problem of locally constructing a sparse spanning subgraph (LSSG), introduced by Levi, Ron, and Rubinfeld (ALGO'20). In this problem, the goal is to locally decide for each e ∈ E if it is in G' where G' is a connected subgraph of G (determined only by G and the randomness of the algorithm). We provide an LSSG that receives as a parameter a lower bound, ϕ, on the conductance of G whose query complexity is Õ(√n/ϕ²). This is almost optimal when ϕ is a constant since Ω(√n) queries are necessary even when G is an expander. Furthermore, this improves the state of the art of Õ(n^{2/3}) queries for ϕ = Ω(1/n^{1/12}). We then extend our result for (k, ϕ_in, ϕ_out)-clusterable graphs and provide an algorithm whose query complexity is Õ(√n + ϕ_out n) for constant k and ϕ_in. This bound is almost optimal when ϕ_out = O(1/√n).

Cite as

Reut Levi, Moti Medina, and Omer Tubul. Nearly Optimal Local Algorithms for Constructing Sparse Spanners of Clusterable Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 60:1-60:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{levi_et_al:LIPIcs.APPROX/RANDOM.2024.60,
  author =	{Levi, Reut and Medina, Moti and Tubul, Omer},
  title =	{{Nearly Optimal Local Algorithms for Constructing Sparse Spanners of Clusterable Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{60:1--60:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.60},
  URN =		{urn:nbn:de:0030-drops-210537},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.60},
  annote =	{Keywords: Locally Computable Algorithms, Sublinear algorithms, Spanning Subgraphs, Clusterbale Graphs}
}
Document
Track A: Algorithms, Complexity and Games
BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

Authors: Sevag Gharibian and Jonas Kamminga

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
What is the power of polynomial-time quantum computation with access to an NP oracle? In this work, we focus on two fundamental tasks from the study of Boolean satisfiability (SAT) problems: search-to-decision reductions, and approximate counting. We first show that, in strong contrast to the classical setting where a poly-time Turing machine requires Θ(n) queries to an NP oracle to compute a witness to a given SAT formula, quantumly Θ(log n) queries suffice. We then show this is tight in the black-box model - any quantum algorithm with "NP-like" query access to a formula requires Ω(log n) queries to extract a solution with constant probability. Moving to approximate counting of SAT solutions, by exploiting a quantum link between search-to-decision reductions and approximate counting, we show that existing classical approximate counting algorithms are likely optimal. First, we give a lower bound in the "NP-like" black-box query setting: Approximate counting requires Ω(log n) queries, even on a quantum computer. We then give a "white-box" lower bound (i.e. where the input formula is not hidden in the oracle) - if there exists a randomized poly-time classical or quantum algorithm for approximate counting making o(log n) NP queries, then BPP^NP[o(n)] contains a 𝖯^NP-complete problem if the algorithm is classical and FBQP^NP[o(n)] contains an FP^NP-complete problem if the algorithm is quantum.

Cite as

Sevag Gharibian and Jonas Kamminga. BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 70:1-70:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gharibian_et_al:LIPIcs.ICALP.2024.70,
  author =	{Gharibian, Sevag and Kamminga, Jonas},
  title =	{{BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{70:1--70:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.70},
  URN =		{urn:nbn:de:0030-drops-202134},
  doi =		{10.4230/LIPIcs.ICALP.2024.70},
  annote =	{Keywords: Approximate Counting, Search to Decision Reduction, BQP, NP, Oracle Complexity Class}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Randomly Coloring Graphs of Logarithmically Bounded Pathwidth

Authors: Shai Vardi

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We consider the problem of sampling a proper k-coloring of a graph of maximal degree Delta uniformly at random. We describe a new Markov chain for sampling colorings, and show that it mixes rapidly on graphs of logarithmically bounded pathwidth if k >=(1+epsilon)Delta, for any epsilon>0, using a hybrid paths argument.

Cite as

Shai Vardi. Randomly Coloring Graphs of Logarithmically Bounded Pathwidth. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 57:1-57:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{vardi:LIPIcs.APPROX-RANDOM.2018.57,
  author =	{Vardi, Shai},
  title =	{{Randomly Coloring Graphs of Logarithmically Bounded Pathwidth}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{57:1--57:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.57},
  URN =		{urn:nbn:de:0030-drops-94618},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.57},
  annote =	{Keywords: Random coloring, Glauber dynamics, Markov-chain Monte Carlo}
}
Document
On the Probe Complexity of Local Computation Algorithms

Authors: Uriel Feige, Boaz Patt-Shamir, and Shai Vardi

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
In the Local Computation Algorithms (LCA) model, the algorithm is asked to compute a part of the output by reading as little as possible from the input. For example, an LCA for coloring a graph is given a vertex name (as a "query"), and it should output the color assigned to that vertex after inquiring about some part of the graph topology using "probes"; all outputs must be consistent with the same coloring. LCAs are useful when the input is huge, and the output as a whole is not needed simultaneously. Most previous work on LCAs was limited to bounded-degree graphs, which seems inevitable because probes are of the form "what vertex is at the other end of edge i of vertex v?". In this work we study LCAs for unbounded-degree graphs. In particular, such LCAs are expected to probe the graph a number of times that is significantly smaller than the maximum, average, or even minimum degree. We show that there are problems that have very efficient LCAs on any graph - specifically, we show that there is an LCA for the weak coloring problem (where a coloring is legal if every vertex has a neighbor with a different color) that uses log^* n+O(1) probes to reply to any query. As another way of dealing with large degrees, we propose a more powerful type of probe which we call a strong probe: given a vertex name, it returns a list of its neighbors. Lower bounds for strong probes are stronger than ones in the edge probe model (which we call weak probes). Our main result in this model is that roughly Omega(sqrt{n}) strong probes are required to compute a maximal matching. Our findings include interesting separations between closely related problems. For weak probes, we show that while weak 3-coloring can be done with probe complexity log^* n+O(1), weak 2-coloring has probe complexity Omega(log n/log log n). For strong probes, our negative result for maximal matching is complemented by an LCA for (1-epsilon)-approximate maximum matching on regular graphs that uses O(1) strong probes, for any constant epsilon>0.

Cite as

Uriel Feige, Boaz Patt-Shamir, and Shai Vardi. On the Probe Complexity of Local Computation Algorithms. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 50:1-50:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{feige_et_al:LIPIcs.ICALP.2018.50,
  author =	{Feige, Uriel and Patt-Shamir, Boaz and Vardi, Shai},
  title =	{{On the Probe Complexity of Local Computation Algorithms}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{50:1--50:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.50},
  URN =		{urn:nbn:de:0030-drops-90543},
  doi =		{10.4230/LIPIcs.ICALP.2018.50},
  annote =	{Keywords: Local computation algorithms, sublinear algorithms}
}
Document
The Returning Secretary

Authors: Shai Vardi

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
In the online random-arrival model, an algorithm receives a sequence of $n$ requests that arrive in a random order. The algorithm is expected to make an irrevocable decision with regard to each request based only on the observed history. We consider the following natural extension of this model: each request arrives k times, and the arrival order is a random permutation of the kn arrivals; the algorithm is expected to make a decision regarding each request only upon its last arrival. We focus primarily on the case when k=2, which can also be interpreted as each request arriving at, and departing from the system, at a random time. We examine the secretary problem: the problem of selecting the best secretary when the secretaries are presented online according to a random permutation. We show that when each secretary arrives twice, we can achieve a competitive ratio of 0.767974... (compared to 1/e in the classical secretary problem), and that it is optimal. We also show that without any knowledge about the number of secretaries or their arrival times, we can still hire the best secretary with probability at least 2/3, in contrast to the impossibility of achieving a constant success probability in the classical setting. We extend our results to the matroid secretary problem, introduced by Babaioff et al. [3], and show a simple algorithm that achieves a 2-approximation to the maximal weighted basis in the new model (for k=2). We show that this approximation factor can be improved in special cases of the matroid secretary problem; in particular, we give a 16/9-competitive algorithm for the returning edge-weighted bipartite matching problem.

Cite as

Shai Vardi. The Returning Secretary. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 716-729, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{vardi:LIPIcs.STACS.2015.716,
  author =	{Vardi, Shai},
  title =	{{The Returning Secretary}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{716--729},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.716},
  URN =		{urn:nbn:de:0030-drops-49539},
  doi =		{10.4230/LIPIcs.STACS.2015.716},
  annote =	{Keywords: online algorithms, secretary problem, matroid secretary}
}
  • Refine by Author
  • 3 Vardi, Shai
  • 1 Delgrande, James P.
  • 1 Feige, Uriel
  • 1 Gharibian, Sevag
  • 1 Glimm, Birte
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Graph algorithms analysis
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • Show More...

  • Refine by Keyword
  • 1 Applications of logics
  • 1 Approximate Counting
  • 1 BQP
  • 1 Clusterbale Graphs
  • 1 Declarative representations
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 4 2024
  • 2 2018
  • 1 2015

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail