10 Search Results for "Veltri, Niccolò"


Document
A Sound and Complete Substitution Algorithm for Multimode Type Theory

Authors: Joris Ceulemans, Andreas Nuyts, and Dominique Devriese

Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)


Abstract
Multimode Type Theory (MTT) is a generic type theory that can be instantiated with an arbitrary mode theory to model features like parametricity, cohesion and guarded recursion. However, the presence of modalities in MTT significantly complicates the substitution calculus of this system. Moreover, MTT’s syntax has explicit substitutions with an axiomatic system - not an algorithm - governing the connection between an explicitly substituted term and the resulting term in which variables have actually been replaced. So far, the only results on eliminating explicit substitutions in MTT rely on normalisation by evaluation and hence also immediately normalise a term. In this paper, we present a substitution algorithm for MTT that is completely separated from normalisation. To this end, we introduce Substitution-Free Multimode Type Theory (SFMTT): a formulation of MTT without explicit substitutions, but for which we are able to give a structurally recursive substitution algorithm, suitable for implementation in a total programming language or proof assistant. On the usual formulation of MTT, we consider σ-equality, the congruence generated solely by equality rules for explicit substitutions. There is a trivial embedding from SFMTT to MTT, and a converse translation that eliminates the explicit substitutions. We prove soundness and completeness of our algorithm with respect to σ-equivalence and thus establish that MTT with σ-equality has computable σ-normal forms, given by the terms of SFMTT.

Cite as

Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. A Sound and Complete Substitution Algorithm for Multimode Type Theory. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 4:1-4:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ceulemans_et_al:LIPIcs.TYPES.2023.4,
  author =	{Ceulemans, Joris and Nuyts, Andreas and Devriese, Dominique},
  title =	{{A Sound and Complete Substitution Algorithm for Multimode Type Theory}},
  booktitle =	{29th International Conference on Types for Proofs and Programs (TYPES 2023)},
  pages =	{4:1--4:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-332-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{303},
  editor =	{Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.4},
  URN =		{urn:nbn:de:0030-drops-204826},
  doi =		{10.4230/LIPIcs.TYPES.2023.4},
  annote =	{Keywords: dependent type theory, modalities, multimode type theory, explicit substitutions, substitution algorithm}
}
Document
Univalent Enriched Categories and the Enriched Rezk Completion

Authors: Niels van der Weide

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Enriched categories are categories whose sets of morphisms are enriched with extra structure. Such categories play a prominent role in the study of higher categories, homotopy theory, and the semantics of programming languages. In this paper, we study univalent enriched categories. We prove that all essentially surjective and fully faithful functors between univalent enriched categories are equivalences, and we show that every enriched category admits a Rezk completion. Finally, we use the Rezk completion for enriched categories to construct univalent enriched Kleisli categories.

Cite as

Niels van der Weide. Univalent Enriched Categories and the Enriched Rezk Completion. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderweide:LIPIcs.FSCD.2024.4,
  author =	{van der Weide, Niels},
  title =	{{Univalent Enriched Categories and the Enriched Rezk Completion}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.4},
  URN =		{urn:nbn:de:0030-drops-203337},
  doi =		{10.4230/LIPIcs.FSCD.2024.4},
  annote =	{Keywords: enriched categories, univalent categories, homotopy type theory, univalent foundations, Rezk completion}
}
Document
Optimizing a Non-Deterministic Abstract Machine with Environments

Authors: Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, and Alan Schmitt

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Non-deterministic abstract machine (NDAM) is a recent implementation model for programming languages where one must choose among several redexes at each reduction step, like process calculi. These machines can be derived from a zipper semantics, a mix between structural operational semantics and context-based reduction semantics. Such a machine has been generated also for the λ-calculus without a fixed reduction strategy, i.e., with the full non-deterministic β-reduction. In that machine, substitution is an external operation that replaces all the occurrences of a variable at once. Implementing substitution with environments is more low-level and more efficient as variables are replaced only when needed. In this paper, we define a NDAM with environments for the λ-calculus without a fixed reduction strategy. We also introduce other optimizations, including a form of refocusing, and we show that we can restrict our optimized NDAM to recover some of the usual λ-calculus machines, e.g., the Krivine Abstract Machine. Most of the improvements we propose in this work could be applied to other NDAMs as well.

Cite as

Małgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, and Alan Schmitt. Optimizing a Non-Deterministic Abstract Machine with Environments. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{biernacka_et_al:LIPIcs.FSCD.2024.11,
  author =	{Biernacka, Ma{\l}gorzata and Biernacki, Dariusz and Lenglet, Sergue\"{i} and Schmitt, Alan},
  title =	{{Optimizing a Non-Deterministic Abstract Machine with Environments}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.11},
  URN =		{urn:nbn:de:0030-drops-203409},
  doi =		{10.4230/LIPIcs.FSCD.2024.11},
  annote =	{Keywords: Abstract machine, Explicit substitutions, Refocusing}
}
Document
Semantics for a Turing-Complete Reversible Programming Language with Inductive Types

Authors: Kostia Chardonnet, Louis Lemonnier, and Benoît Valiron

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
This paper is concerned with the expressivity and denotational semantics of a functional higher-order reversible programming language based on Theseus. In this language, pattern-matching is used to ensure the reversibility of functions. We show how one can encode any Reversible Turing Machine in said language. We then build a sound and adequate categorical semantics based on join inverse categories, with additional structures to capture pattern-matching and to interpret inductive types and recursion. We then derive a notion of completeness in the sense that any computable, partial, first-order injective function is the image of a term in the language.

Cite as

Kostia Chardonnet, Louis Lemonnier, and Benoît Valiron. Semantics for a Turing-Complete Reversible Programming Language with Inductive Types. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 19:1-19:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chardonnet_et_al:LIPIcs.FSCD.2024.19,
  author =	{Chardonnet, Kostia and Lemonnier, Louis and Valiron, Beno\^{i}t},
  title =	{{Semantics for a Turing-Complete Reversible Programming Language with Inductive Types}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{19:1--19:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.19},
  URN =		{urn:nbn:de:0030-drops-203487},
  doi =		{10.4230/LIPIcs.FSCD.2024.19},
  annote =	{Keywords: Reversible programming, functional programming, Computability, Denotational Semantics}
}
Document
IMELL Cut Elimination with Linear Overhead

Authors: Beniamino Accattoli and Claudio Sacerdoti Coen

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Recently, Accattoli introduced the Exponential Substitution Calculus (ESC) given by untyped proof terms for Intuitionistic Multiplicative Exponential Linear Logic (IMELL), endowed with rewriting rules at-a-distance for cut elimination. He also introduced a new cut elimination strategy, dubbed the good strategy, and showed that its number of steps is a time cost model with polynomial overhead for ESC/IMELL, and the first such one. Here, we refine Accattoli’s result by introducing an abstract machine for ESC and proving that it implements the good strategy and computes cut-free terms/proofs within a linear overhead.

Cite as

Beniamino Accattoli and Claudio Sacerdoti Coen. IMELL Cut Elimination with Linear Overhead. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 24:1-24:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{accattoli_et_al:LIPIcs.FSCD.2024.24,
  author =	{Accattoli, Beniamino and Sacerdoti Coen, Claudio},
  title =	{{IMELL Cut Elimination with Linear Overhead}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{24:1--24:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.24},
  URN =		{urn:nbn:de:0030-drops-203539},
  doi =		{10.4230/LIPIcs.FSCD.2024.24},
  annote =	{Keywords: Lambda calculus, linear logic, abstract machines}
}
Document
Constructive Final Semantics of Finite Bags

Authors: Philipp Joram and Niccolò Veltri

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
Finitely-branching and unlabelled dynamical systems are typically modelled as coalgebras for the finite powerset functor. If states are reachable in multiple ways, coalgebras for the finite bag functor provide a more faithful representation. The final coalgebra of this functor is employed as a denotational domain for the evaluation of such systems. Elements of the final coalgebra are non-wellfounded trees with finite unordered branching, representing the evolution of systems starting from a given initial state. This paper is dedicated to the construction of the final coalgebra of the finite bag functor in homotopy type theory (HoTT). We first compare various equivalent definitions of finite bags employing higher inductive types, both as sets and as groupoids (in the sense of HoTT). We then analyze a few well-known, classical set-theoretic constructions of final coalgebras in our constructive setting. We show that, in the case of set-based definitions of finite bags, some constructions are intrinsically classical, in the sense that they are equivalent to some weak form of excluded middle. Nevertheless, a type satisfying the universal property of the final coalgebra can be constructed in HoTT employing the groupoid-based definition of finite bags. We conclude by discussing generalizations of our constructions to the wider class of analytic functors.

Cite as

Philipp Joram and Niccolò Veltri. Constructive Final Semantics of Finite Bags. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 20:1-20:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{joram_et_al:LIPIcs.ITP.2023.20,
  author =	{Joram, Philipp and Veltri, Niccol\`{o}},
  title =	{{Constructive Final Semantics of Finite Bags}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{20:1--20:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.20},
  URN =		{urn:nbn:de:0030-drops-183954},
  doi =		{10.4230/LIPIcs.ITP.2023.20},
  annote =	{Keywords: finite bags, final coalgebra, homotopy type theory, Cubical Agda}
}
Document
How to Take the Inverse of a Type

Authors: Danielle Marshall and Dominic Orchard

Published in: LIPIcs, Volume 222, 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
In functional programming, regular types are a subset of algebraic data types formed from products and sums with their respective units. One can view regular types as forming a commutative semiring but where the usual axioms are isomorphisms rather than equalities. In this pearl, we show that regular types in a linear setting permit a useful notion of multiplicative inverse, allowing us to "divide" one type by another. Our adventure begins with an exploration of the properties and applications of this construction, visiting various topics from the literature including program calculation, Laurent polynomials, and derivatives of data types. Examples are given throughout using Haskell’s linear types extension to demonstrate the ideas. We then step through the looking glass to discover what might be possible in richer settings; the functional language Granule offers linear functions that incorporate local side effects, which allow us to demonstrate further algebraic structure. Lastly, we discuss whether dualities in linear logic might permit the related notion of an additive inverse.

Cite as

Danielle Marshall and Dominic Orchard. How to Take the Inverse of a Type. In 36th European Conference on Object-Oriented Programming (ECOOP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 222, pp. 5:1-5:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{marshall_et_al:LIPIcs.ECOOP.2022.5,
  author =	{Marshall, Danielle and Orchard, Dominic},
  title =	{{How to Take the Inverse of a Type}},
  booktitle =	{36th European Conference on Object-Oriented Programming (ECOOP 2022)},
  pages =	{5:1--5:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-225-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{222},
  editor =	{Ali, Karim and Vitek, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2022.5},
  URN =		{urn:nbn:de:0030-drops-162339},
  doi =		{10.4230/LIPIcs.ECOOP.2022.5},
  annote =	{Keywords: linear types, regular types, algebra of programming, derivatives}
}
Document
Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor

Authors: Niccolò Veltri

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
The finite powerset functor is a construct frequently employed for the specification of nondeterministic transition systems as coalgebras. The final coalgebra of the finite powerset functor, whose elements characterize the dynamical behavior of transition systems, is a well-understood object which enjoys many equivalent presentations in set-theoretic foundations based on classical logic. In this paper, we discuss various constructions of the final coalgebra of the finite powerset functor in constructive type theory, and we formalize our results in the Cubical Agda proof assistant. Using setoids, the final coalgebra of the finite powerset functor can be defined from the final coalgebra of the list functor. Using types instead of setoids, as it is common in homotopy type theory, one can specify the finite powerset datatype as a higher inductive type and define its final coalgebra as a coinductive type. Another construction is obtained by quotienting the final coalgebra of the list functor, but the proof of finality requires the assumption of the axiom of choice. We conclude the paper with an analysis of a classical construction by James Worrell, and show that its adaptation to our constructive setting requires the presence of classical axioms such as countable choice and the lesser limited principle of omniscience.

Cite as

Niccolò Veltri. Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor. In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{veltri:LIPIcs.FSCD.2021.22,
  author =	{Veltri, Niccol\`{o}},
  title =	{{Type-Theoretic Constructions of the Final Coalgebra of the Finite Powerset Functor}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.22},
  URN =		{urn:nbn:de:0030-drops-142601},
  doi =		{10.4230/LIPIcs.FSCD.2021.22},
  annote =	{Keywords: type theory, finite powerset, final coalgebra, Cubical Agda}
}
Document
Bicategories in Univalent Foundations

Authors: Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of those, we develop the notion of "displayed bicategories", an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. Displayed bicategories allow us to construct univalent bicategories in a modular fashion. To demonstrate the applicability of this notion, we prove several bicategories are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Our work is formalized in the UniMath library of univalent mathematics.

Cite as

Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide. Bicategories in Univalent Foundations. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ahrens_et_al:LIPIcs.FSCD.2019.5,
  author =	{Ahrens, Benedikt and Frumin, Dan and Maggesi, Marco and van der Weide, Niels},
  title =	{{Bicategories in Univalent Foundations}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.5},
  URN =		{urn:nbn:de:0030-drops-105124},
  doi =		{10.4230/LIPIcs.FSCD.2019.5},
  annote =	{Keywords: bicategory theory, univalent mathematics, dependent type theory, Coq}
}
Document
Guarded Recursion in Agda via Sized Types

Authors: Niccolò Veltri and Niels van der Weide

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
In type theory, programming and reasoning with possibly non-terminating programs and potentially infinite objects is achieved using coinductive types. Recursively defined programs of these types need to be productive to guarantee the consistency of the type system. Proof assistants such as Agda and Coq traditionally employ strict syntactic productivity checks, which often make programming with coinductive types convoluted. One way to overcome this issue is by encoding productivity at the level of types so that the type system forbids the implementation of non-productive corecursive programs. In this paper we compare two different approaches to type-based productivity: guarded recursion and sized types. More specifically, we show how to simulate guarded recursion in Agda using sized types. We formalize the syntax of a simple type theory for guarded recursion, which is a variant of Atkey and McBride’s calculus for productive coprogramming. Then we give a denotational semantics using presheaves over the preorder of sizes. Sized types are fundamentally used to interpret the characteristic features of guarded recursion, notably the fixpoint combinator.

Cite as

Niccolò Veltri and Niels van der Weide. Guarded Recursion in Agda via Sized Types. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 32:1-32:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{veltri_et_al:LIPIcs.FSCD.2019.32,
  author =	{Veltri, Niccol\`{o} and van der Weide, Niels},
  title =	{{Guarded Recursion in Agda via Sized Types}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{32:1--32:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.32},
  URN =		{urn:nbn:de:0030-drops-105391},
  doi =		{10.4230/LIPIcs.FSCD.2019.32},
  annote =	{Keywords: guarded recursion, type theory, semantics, coinduction, sized types}
}
  • Refine by Author
  • 3 Veltri, Niccolò
  • 3 van der Weide, Niels
  • 1 Accattoli, Beniamino
  • 1 Ahrens, Benedikt
  • 1 Biernacka, Małgorzata
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Type theory
  • 2 Theory of computation → Constructive mathematics
  • 1 Software and its engineering → Syntax
  • 1 Theory of computation → Abstract machines
  • 1 Theory of computation → Categorical semantics
  • Show More...

  • Refine by Keyword
  • 2 Cubical Agda
  • 2 dependent type theory
  • 2 final coalgebra
  • 2 homotopy type theory
  • 2 type theory
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 5 2024
  • 2 2019
  • 1 2021
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail