39 Search Results for "Wahlström, Magnus"


Volume

LIPIcs, Volume 285

18th International Symposium on Parameterized and Exact Computation (IPEC 2023)

IPEC 2023, September 6-8, 2023, Amsterdam, The Netherlands

Editors: Neeldhara Misra and Magnus Wahlström

Document
On Connections Between k-Coloring and Euclidean k-Means

Authors: Enver Aman, Karthik C. S., and Sharath Punna

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Euclidean k-means problems we are given as input a set of n points in ℝ^d and the goal is to find a set of k points C ⊆ ℝ^d, so as to minimize the sum of the squared Euclidean distances from each point in P to its closest center in C. In this paper, we formally explore connections between the k-coloring problem on graphs and the Euclidean k-means problem. Our results are as follows: - For all k ≥ 3, we provide a simple reduction from the k-coloring problem on regular graphs to the Euclidean k-means problem. Moreover, our technique extends to enable a reduction from a structured max-cut problem (which may be considered as a partial 2-coloring problem) to the Euclidean 2-means problem. Thus, we have a simple and alternate proof of the NP-hardness of Euclidean 2-means problem. - In the other direction, we mimic the O(1.7297ⁿ) time algorithm of Williams [TCS'05] for the max-cut of problem on n vertices to obtain an algorithm for the Euclidean 2-means problem with the same runtime, improving on the naive exhaustive search running in 2ⁿ⋅ poly(n,d) time. - We prove similar results and connections as above for the Euclidean k-min-sum problem.

Cite as

Enver Aman, Karthik C. S., and Sharath Punna. On Connections Between k-Coloring and Euclidean k-Means. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aman_et_al:LIPIcs.ESA.2024.9,
  author =	{Aman, Enver and Karthik C. S. and Punna, Sharath},
  title =	{{On Connections Between k-Coloring and Euclidean k-Means}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.9},
  URN =		{urn:nbn:de:0030-drops-210808},
  doi =		{10.4230/LIPIcs.ESA.2024.9},
  annote =	{Keywords: k-means, k-minsum, Euclidean space, fine-grained complexity}
}
Document
Cuts in Graphs with Matroid Constraints

Authors: Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Vertex (s, t)-Cut and Vertex Multiway Cut are two fundamental graph separation problems in algorithmic graph theory. We study matroidal generalizations of these problems, where in addition to the usual input, we are given a representation R ∈ 𝔽^{r × n} of a linear matroid ℳ = (V(G), ℐ) of rank r in the input, and the goal is to determine whether there exists a vertex subset S ⊆ V(G) that has the required cut properties, as well as is independent in the matroid ℳ. We refer to these problems as Independent Vertex (s, t){-cut}, and Independent Multiway Cut, respectively. We show that these problems are fixed-parameter tractable (FPT) when parameterized by the solution size (which can be assumed to be equal to the rank of the matroid ℳ). These results are obtained by exploiting the recent technique of flow augmentation [Kim et al. STOC '22], combined with a dynamic programming algorithm on flow-paths á la [Feige and Mahdian, STOC '06] that maintains a representative family of solutions w.r.t. the given matroid [Marx, TCS '06; Fomin et al., JACM]. As a corollary, we also obtain FPT algorithms for the independent version of Odd Cycle Transversal. Further, our results can be generalized to other variants of the problems, e.g., weighted versions, or edge-deletion versions.

Cite as

Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh. Cuts in Graphs with Matroid Constraints. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banik_et_al:LIPIcs.ESA.2024.17,
  author =	{Banik, Aritra and Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Jana, Satyabrata and Saurabh, Saket},
  title =	{{Cuts in Graphs with Matroid Constraints}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.17},
  URN =		{urn:nbn:de:0030-drops-210887},
  doi =		{10.4230/LIPIcs.ESA.2024.17},
  annote =	{Keywords: s-t-cut, multiway Cut, matroid, odd cycle transversal, feedback vertex set, fixed-parameter tractability}
}
Document
List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The goal of this paper is to investigate a family of optimization problems arising from list homomorphisms, and to understand what the best possible algorithms are if we restrict the problem to bounded-treewidth graphs. Given graphs G, H, and lists L(v) ⊆ V(H) for every v ∈ V(G), a list homomorphism from (G,L) to H is a function f:V(G) → V(H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). The graph H may have loops. For a fixed H, the input of the optimization problem LHomVD(H) is a graph G with lists L(v), and the task is to find a set X of vertices having minimum size such that (G-X,L) has a list homomorphism to H. We define analogously the edge-deletion variant LHomED(H), where we have to delete as few edges as possible from G to obtain a graph that has a list homomorphism. This expressive family of problems includes members that are essentially equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex Multiway Cut. For both variants, we first characterize those graphs H that make the problem polynomial-time solvable and show that the problem is NP-hard for every other fixed H. Second, as our main result, we determine for every graph H for which the problem is NP-hard, the smallest possible constant c_H such that the problem can be solved in time c^t_H⋅ n^{𝒪(1)} if a tree decomposition of G having width t is given in the input. Let i(H) be the maximum size of a set of vertices in H that have pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD(H), we show that the smallest possible constant is i(H)+1 for every H: - Given a tree decomposition of width t of G, LHomVD(H) can be solved in time (i(H)+1)^t⋅ n^{𝒪(1)}. - For any ε > 0 and H, an (i(H)+1-ε)^t⋅ n^{𝒪(1)} algorithm would violate the Strong Exponential-Time Hypothesis (SETH). The situation is more complex for the edge-deletion version. For every H, one can solve LHomED(H) in time i(H)^t⋅ n^{𝒪(1)} if a tree decomposition of width t is given. However, the existence of a specific type of decomposition of H shows that there are graphs H where LHomED(H) can be solved significantly more efficiently and the best possible constant can be arbitrarily smaller than i(H). Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight bounds for every fixed H.

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ESA.2024.39,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.39},
  URN =		{urn:nbn:de:0030-drops-211103},
  doi =		{10.4230/LIPIcs.ESA.2024.39},
  annote =	{Keywords: Graph Homomorphism, List Homomorphism, Vertex Deletion, Edge Deletion, Multiway Cut, Parameterized Complexity, Tight Bounds, Treewidth, SETH}
}
Document
Hitting Meets Packing: How Hard Can It Be?

Authors: Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Węgrzycki

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study a general family of problems that form a common generalization of classic hitting (also referred to as covering or transversal) and packing problems. An instance of 𝒳-HitPack asks: Can removing k (deletable) vertices of a graph G prevent us from packing 𝓁 vertex-disjoint objects of type 𝒳? This problem captures a spectrum of problems with standard hitting and packing on opposite ends. Our main motivating question is whether the combination 𝒳-HitPack can be significantly harder than these two base problems. Already for one particular choice of 𝒳, this question can be posed for many different complexity notions, leading to a large, so-far unexplored domain at the intersection of the areas of hitting and packing problems. At a high level, we present two case studies: (1) 𝒳 being all cycles, and (2) 𝒳 being all copies of a fixed graph H. In each, we explore the classical complexity as well as the parameterized complexity with the natural parameters k+𝓁 and treewidth. We observe that the combined problem can be drastically harder than the base problems: for cycles or for H being a connected graph on at least 3 vertices, the problem is Σ₂^𝖯-complete and requires double-exponential dependence on the treewidth of the graph (assuming the Exponential-Time Hypothesis). In contrast, the combined problem admits qualitatively similar running times as the base problems in some cases, although significant novel ideas are required. For 𝒳 being all cycles, we establish a 2^{poly(k+𝓁)}⋅ n^{𝒪(1)} algorithm using an involved branching method, for example. Also, for 𝒳 being all edges (i.e., H = K₂; this combines Vertex Cover and Maximum Matching) the problem can be solved in time 2^{poly(tw)}⋅ n^{𝒪(1)} on graphs of treewidth tw. The key step enabling this running time relies on a combinatorial bound obtained from an algebraic (linear delta-matroid) representation of possible matchings.

Cite as

Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and Karol Węgrzycki. Hitting Meets Packing: How Hard Can It Be?. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 55:1-55:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{focke_et_al:LIPIcs.ESA.2024.55,
  author =	{Focke, Jacob and Frei, Fabian and Li, Shaohua and Marx, D\'{a}niel and Schepper, Philipp and Sharma, Roohani and W\k{e}grzycki, Karol},
  title =	{{Hitting Meets Packing: How Hard Can It Be?}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{55:1--55:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.55},
  URN =		{urn:nbn:de:0030-drops-211261},
  doi =		{10.4230/LIPIcs.ESA.2024.55},
  annote =	{Keywords: Hitting, Packing, Covering, Parameterized Algorithms, Lower Bounds, Treewidth}
}
Document
Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set

Authors: Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
For a tree decomposition 𝒯 of a graph G, by μ(𝒯) we denote the size of a largest induced matching in G all of whose edges intersect one bag of 𝒯. The induced matching treewidth of a graph G is the minimum value of μ(𝒯) over all tree decompositions 𝒯 of G. Yolov [SODA 2018] proved that for graphs of bounded induced matching treewidth, tree decompositions with bounded μ(𝒯) can be computed in polynomial time and Max Weight Independent Set can be solved in polynomial time. In this paper we explore what other problems are tractable in such classes of graphs. As our main result, we give a polynomial-time algorithm for Min Weight Feedback Vertex Set. We also provide some positive results concerning packing induced subgraphs, which in particular imply a PTAS for the problem of finding a largest induced subgraph of bounded treewidth. These results suggest that in graphs of bounded induced matching treewidth, one could find in polynomial time a maximum-weight induced subgraph of bounded treewidth satisfying a given CMSO₂ formula. We conjecture that such a result indeed holds and prove it for graphs of bounded tree-independence number, which form a rich and important family of subclasses of graphs of bounded induced matching treewidth. We complement these algorithmic results with a number of complexity and structural results concerning induced matching treewidth, including a linear relation to treewidth for graphs with bounded degree.

Cite as

Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel. Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 85:1-85:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lima_et_al:LIPIcs.ESA.2024.85,
  author =	{Lima, Paloma T. and Milani\v{c}, Martin and Mur\v{s}i\v{c}, Peter and Okrasa, Karolina and Rz\k{a}\.{z}ewski, Pawe{\l} and \v{S}torgel, Kenny},
  title =	{{Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{85:1--85:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.85},
  URN =		{urn:nbn:de:0030-drops-211569},
  doi =		{10.4230/LIPIcs.ESA.2024.85},
  annote =	{Keywords: induced matching treewidth, tree-independence number, feedback vertex set, induced packing, algorithmic meta-theorem}
}
Document
Parameterized Complexity of MinCSP over the Point Algebra

Authors: George Osipov, Marcin Pilipczuk, and Magnus Wahlström

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The input in the Minimum-Cost Constraint Satisfaction Problem (MinCSP) over the Point Algebra contains a set of variables, a collection of constraints of the form x < y, x = y, x ≤ y and x ≠ y, and a budget k. The goal is to check whether it is possible to assign rational values to the variables while breaking constraints of total cost at most k. This problem generalizes several prominent graph separation and transversal problems: - MinCSP({<}) is equivalent to Directed Feedback Arc Set, - MinCSP({< , ≤}) is equivalent to Directed Subset Feedback Arc Set, - MinCSP({= ,≠}) is equivalent to Edge Multicut, and - MinCSP({≤ ,≠}) is equivalent to Directed Symmetric Multicut. Apart from trivial cases, MinCSP({Γ}) for Γ ⊆ {< , = , ≤ ,≠} is NP-hard even to approximate within any constant factor under the Unique Games Conjecture. Hence, we study parameterized complexity of this problem under a natural parameterization by the solution cost k. We obtain a complete classification: if Γ ⊆ {< , = , ≤ ,≠} contains both ≤ and ≠, then MinCSP({Γ}) is W[1]-hard, otherwise it is fixed-parameter tractable. For the positive cases, we solve MinCSP({< , = ,≠}), generalizing the FPT results for Directed Feedback Arc Set and Edge Multicut as well as their weighted versions. Our algorithm works by reducing the problem into a Boolean MinCSP, which is in turn solved by flow augmentation. For the lower bounds, we prove that Directed Symmetric Multicut is W[1]-hard, solving an open problem.

Cite as

George Osipov, Marcin Pilipczuk, and Magnus Wahlström. Parameterized Complexity of MinCSP over the Point Algebra. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 93:1-93:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{osipov_et_al:LIPIcs.ESA.2024.93,
  author =	{Osipov, George and Pilipczuk, Marcin and Wahlstr\"{o}m, Magnus},
  title =	{{Parameterized Complexity of MinCSP over the Point Algebra}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{93:1--93:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.93},
  URN =		{urn:nbn:de:0030-drops-211640},
  doi =		{10.4230/LIPIcs.ESA.2024.93},
  annote =	{Keywords: parameterized complexity, constraint satisfaction, point algebra, multicut, feedback arc set}
}
Document
Solving Directed Multiway Cut Faster Than 2ⁿ

Authors: Mingyu Xiao

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Directed Multiway Cut problem, we are given a directed graph G = (V,E) and a subset T ⊆ V, called the terminal set. The aim is to find a minimum sized set S ⊆ V⧵ T, such that after deleting S, no directed path exists from one terminal to another terminal in the remaining graph. It has been an open question whether Directed Multiway Cut can be solved faster than the trivial running-time bound O^*(2^{|V|}). In this paper, we provide a positive answer to this question, presenting an algorithm with a running-time bound O(1.9967^{|V|}).

Cite as

Mingyu Xiao. Solving Directed Multiway Cut Faster Than 2ⁿ. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 104:1-104:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{xiao:LIPIcs.ESA.2024.104,
  author =	{Xiao, Mingyu},
  title =	{{Solving Directed Multiway Cut Faster Than 2ⁿ}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{104:1--104:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.104},
  URN =		{urn:nbn:de:0030-drops-211758},
  doi =		{10.4230/LIPIcs.ESA.2024.104},
  annote =	{Keywords: Exact Algorithms, Parameterized Algorithms, Directed Multiway Cut, Directed Multicut, Directed Graphs}
}
Document
APPROX
Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3

Authors: Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In a disk graph, every vertex corresponds to a disk in ℝ² and two vertices are connected by an edge whenever the two corresponding disks intersect. Disk graphs form an important class of geometric intersection graphs, which generalizes both planar graphs and unit-disk graphs. We study a fundamental optimization problem in algorithmic graph theory, Bipartization (also known as Odd Cycle Transversal), on the class of disk graphs. The goal of Bipartization is to delete a minimum number of vertices from the input graph such that the resulting graph is bipartite. A folklore (polynomial-time) 3-approximation algorithm for Bipartization on disk graphs follows from the classical framework of Goemans and Williamson [Combinatorica'98] for cycle-hitting problems. For over two decades, this result has remained the best known approximation for the problem (in fact, even for Bipartization on unit-disk graphs). In this paper, we achieve the first improvement upon this result, by giving a (3-α)-approximation algorithm for Bipartization on disk graphs, for some constant α > 0. Our algorithm directly generalizes to the broader class of pseudo-disk graphs. Furthermore, our algorithm is robust in the sense that it does not require a geometric realization of the input graph to be given.

Cite as

Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lokshtanov_et_al:LIPIcs.APPROX/RANDOM.2024.6,
  author =	{Lokshtanov, Daniel and Panolan, Fahad and Saurabh, Saket and Xue, Jie and Zehavi, Meirav},
  title =	{{Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.6},
  URN =		{urn:nbn:de:0030-drops-209990},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.6},
  annote =	{Keywords: bipartization, geometric intersection graphs, approximation algorithms}
}
Document
CSPs with Few Alien Constraints

Authors: Peter Jonsson, Victor Lagerkvist, and George Osipov

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
The constraint satisfaction problem asks to decide if a set of constraints over a relational structure 𝒜 is satisfiable (CSP(𝒜)). We consider CSP(𝒜 ∪ ℬ) where 𝒜 is a structure and ℬ is an alien structure, and analyse its (parameterized) complexity when at most k alien constraints are allowed. We establish connections and obtain transferable complexity results to several well-studied problems that previously escaped classification attempts. Our novel approach, utilizing logical and algebraic methods, yields an FPT versus pNP dichotomy for arbitrary finite structures and sharper dichotomies for Boolean structures and first-order reducts of (ℕ, =) (equality CSPs), together with many partial results for general ω-categorical structures.

Cite as

Peter Jonsson, Victor Lagerkvist, and George Osipov. CSPs with Few Alien Constraints. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jonsson_et_al:LIPIcs.CP.2024.15,
  author =	{Jonsson, Peter and Lagerkvist, Victor and Osipov, George},
  title =	{{CSPs with Few Alien Constraints}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{15:1--15:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.15},
  URN =		{urn:nbn:de:0030-drops-207005},
  doi =		{10.4230/LIPIcs.CP.2024.15},
  annote =	{Keywords: Constraint satisfaction, parameterized complexity, hybrid theories}
}
Document
Breaking the Barrier 2^k for Subset Feedback Vertex Set in Chordal Graphs

Authors: Tian Bai and Mingyu Xiao

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
The Subset Feedback Vertex Set problem (SFVS) is to delete k vertices from a given graph such that in the remaining graph, any vertex in a subset T of vertices (called a terminal set) is not in a cycle. The famous Feedback Vertex Set problem is the special case of SFVS with T being the whole set of vertices. In this paper, we study exact algorithms for SFVS in Split Graphs (SFVS-S) and SFVS in Chordal Graphs (SFVS-C). SFVS-S generalizes the minimum vertex cover problem and the prize-collecting version of the maximum independent set problem in hypergraphs (PCMIS), and SFVS-C further generalizes SFVS-S. Both SFVS-S and SFVS-C are implicit 3-Hitting Set problems. However, it is not easy to solve them faster than 3-Hitting Set. In 2019, Philip, Rajan, Saurabh, and Tale (Algorithmica 2019) proved that SFVS-C can be solved in 𝒪^*(2^k) time, slightly improving the best result 𝒪^*(2.0755^k) for 3-Hitting Set. In this paper, we break the "2^k-barrier" for SFVS-S and SFVS-C by introducing an 𝒪^*(1.8192^k)-time algorithm. This achievement also indicates that PCMIS can be solved in 𝒪^*(1.8192ⁿ) time, marking the first exact algorithm for PCMIS that outperforms the trivial 𝒪^*(2ⁿ) threshold. Our algorithm uses reduction and branching rules based on the Dulmage-Mendelsohn decomposition and a divide-and-conquer method.

Cite as

Tian Bai and Mingyu Xiao. Breaking the Barrier 2^k for Subset Feedback Vertex Set in Chordal Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bai_et_al:LIPIcs.MFCS.2024.15,
  author =	{Bai, Tian and Xiao, Mingyu},
  title =	{{Breaking the Barrier 2^k for Subset Feedback Vertex Set in Chordal Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.15},
  URN =		{urn:nbn:de:0030-drops-205711},
  doi =		{10.4230/LIPIcs.MFCS.2024.15},
  annote =	{Keywords: Subset Feedback Vertex Set, Prize-Collecting Maximum Independent Set, Parameterized Algorithms, Split Graphs, Chordal Graphs, Dulmage-Mendelsohn Decomposition}
}
Document
On the Descriptive Complexity of Vertex Deletion Problems

Authors: Max Bannach, Florian Chudigiewitsch, and Till Tantau

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Vertex deletion problems for graphs are studied intensely in classical and parameterized complexity theory. They ask whether we can delete at most k vertices from an input graph such that the resulting graph has a certain property. Regarding k as the parameter, a dichotomy was recently shown based on the number of quantifier alternations of first-order formulas that describe the property. In this paper, we refine this classification by moving from quantifier alternations to individual quantifier patterns and from a dichotomy to a trichotomy, resulting in a complete classification of the complexity of vertex deletion problems based on their quantifier pattern. The more fine-grained approach uncovers new tractable fragments, which we show to not only lie in FPT, but even in parameterized constant-depth circuit complexity classes. On the other hand, we show that vertex deletion becomes intractable already for just one quantifier per alternation, that is, there is a formula of the form ∀ x∃ y∀ z (ψ), with ψ quantifier-free, for which the vertex deletion problem is W[1]-hard. The fine-grained analysis also allows us to uncover differences in the complexity landscape when we consider different kinds of graphs and more general structures: While basic graphs (undirected graphs without self-loops), undirected graphs, and directed graphs each have a different frontier of tractability, the frontier for arbitrary logical structures coincides with that of directed graphs.

Cite as

Max Bannach, Florian Chudigiewitsch, and Till Tantau. On the Descriptive Complexity of Vertex Deletion Problems. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 17:1-17:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bannach_et_al:LIPIcs.MFCS.2024.17,
  author =	{Bannach, Max and Chudigiewitsch, Florian and Tantau, Till},
  title =	{{On the Descriptive Complexity of Vertex Deletion Problems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{17:1--17:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.17},
  URN =		{urn:nbn:de:0030-drops-205733},
  doi =		{10.4230/LIPIcs.MFCS.2024.17},
  annote =	{Keywords: graph problems, fixed-parameter tractability, descriptive complexity, vertex deletion}
}
Document
Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs

Authors: Arnaud Casteigts, Nils Morawietz, and Petra Wolf

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
A temporal graph is a graph whose edges only appear at certain points in time. Reachability in these graphs is defined in terms of paths that traverse the edges in chronological order (temporal paths). This form of reachability is neither symmetric nor transitive, the latter having important consequences on the computational complexity of even basic questions, such as computing temporal connected components. In this paper, we introduce several parameters that capture how far a temporal graph 𝒢 is from being transitive, namely, vertex-deletion distance to transitivity and arc-modification distance to transitivity, both being applied to the reachability graph of 𝒢. We illustrate the impact of these parameters on the temporal connected component problem, obtaining several tractability results in terms of fixed-parameter tractability and polynomial kernels. Significantly, these results are obtained without restrictions of the underlying graph, the snapshots, or the lifetime of the input graph. As such, our results isolate the impact of non-transitivity and confirm the key role that it plays in the hardness of temporal graph problems.

Cite as

Arnaud Casteigts, Nils Morawietz, and Petra Wolf. Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{casteigts_et_al:LIPIcs.MFCS.2024.36,
  author =	{Casteigts, Arnaud and Morawietz, Nils and Wolf, Petra},
  title =	{{Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.36},
  URN =		{urn:nbn:de:0030-drops-205923},
  doi =		{10.4230/LIPIcs.MFCS.2024.36},
  annote =	{Keywords: Temporal graphs, Parameterized complexity, Reachability, Transitivity}
}
Document
Track A: Algorithms, Complexity and Games
Two-Sets Cut-Uncut on Planar Graphs

Authors: Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study Two-Sets Cut-Uncut on planar graphs. Therein, one is given an undirected planar graph G and two disjoint sets S and T of vertices as input. The question is, what is the minimum number of edges to remove from G, such that all vertices in S are separated from all vertices in T, while maintaining that every vertex in S, and respectively in T, stays in the same connected component. We show that this problem can be solved in 2^{|S|+|T|} n^𝒪(1) time with a one-sided-error randomized algorithm. Our algorithm implies a polynomial-time algorithm for the network diversion problem on planar graphs, which resolves an open question from the literature. More generally, we show that Two-Sets Cut-Uncut is fixed-parameter tractable when parameterized by the number r of faces in a planar embedding covering the terminals S ∪ T, by providing a 2^𝒪(r) n^𝒪(1)-time algorithm.

Cite as

Matthias Bentert, Pål Grønås Drange, Fedor V. Fomin, Petr A. Golovach, and Tuukka Korhonen. Two-Sets Cut-Uncut on Planar Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.ICALP.2024.22,
  author =	{Bentert, Matthias and Drange, P\r{a}l Gr{\o}n\r{a}s and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka},
  title =	{{Two-Sets Cut-Uncut on Planar Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.22},
  URN =		{urn:nbn:de:0030-drops-201654},
  doi =		{10.4230/LIPIcs.ICALP.2024.22},
  annote =	{Keywords: planar graphs, cut-uncut, group-constrained paths}
}
Document
Track A: Algorithms, Complexity and Games
Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations

Authors: Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For a fixed graph H, the H-Subgraph Hitting problem consists in deleting the minimum number of vertices from an input graph to obtain a graph without any occurrence of H as a subgraph. This problem can be seen as a generalization of Vertex Cover, which corresponds to the case H = K₂. We initiate a study of H-Subgraph Hitting from the point of view of characterizing structural parameterizations that allow for polynomial kernels, within the recently active framework of taking as the parameter the number of vertex deletions to obtain a graph in a "simple" class 𝒞. Our main contribution is to identify graph parameters that, when H-Subgraph Hitting is parameterized by the vertex-deletion distance to a class 𝒞 where any of these parameters is bounded, and assuming standard complexity assumptions and that H is biconnected, allow us to prove the following sharp dichotomy: the problem admits a polynomial kernel if and only if H is a clique. These new graph parameters are inspired by the notion of 𝒞-elimination distance introduced by Bulian and Dawar [Algorithmica 2016], and generalize it in two directions. Our results also apply to the version of the problem where one wants to hit H as an induced subgraph, and imply in particular, that the problems of hitting minors and hitting (induced) subgraphs have a substantially different behavior with respect to the existence of polynomial kernels under structural parameterizations.

Cite as

Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 33:1-33:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bougeret_et_al:LIPIcs.ICALP.2024.33,
  author =	{Bougeret, Marin and Jansen, Bart M. P. and Sau, Ignasi},
  title =	{{Kernelization Dichotomies for Hitting Subgraphs Under Structural Parameterizations}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{33:1--33:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.33},
  URN =		{urn:nbn:de:0030-drops-201766},
  doi =		{10.4230/LIPIcs.ICALP.2024.33},
  annote =	{Keywords: hitting subgraphs, hitting induced subgraphs, parameterized complexity, polynomial kernel, complexity dichotomy, elimination distance}
}
  • Refine by Author
  • 17 Wahlström, Magnus
  • 5 Marx, Dániel
  • 4 Gutin, Gregory
  • 4 Rzążewski, Paweł
  • 3 Focke, Jacob
  • Show More...

  • Refine by Classification
  • 16 Theory of computation → Parameterized complexity and exact algorithms
  • 9 Theory of computation → Fixed parameter tractability
  • 9 Theory of computation → Graph algorithms analysis
  • 4 Mathematics of computing → Graph algorithms
  • 3 Theory of computation → Algorithm design techniques
  • Show More...

  • Refine by Keyword
  • 6 Parameterized Algorithms
  • 6 parameterized complexity
  • 4 fixed-parameter tractability
  • 3 Parameterized complexity
  • 3 Treewidth
  • Show More...

  • Refine by Type
  • 38 document
  • 1 volume

  • Refine by Publication Year
  • 20 2024
  • 5 2020
  • 4 2023
  • 3 2017
  • 2 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail