15 Search Results for "Waingarten, Erik"


Document
Improved Space-Efficient Approximate Nearest Neighbor Search Using Function Inversion

Authors: Samuel McCauley

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Approximate nearest neighbor search (ANN) data structures have widespread applications in machine learning, computational biology, and text processing. The goal of ANN is to preprocess a set S so that, given a query q, we can find a point y whose distance from q approximates the smallest distance from q to any point in S. For most distance functions, the best-known ANN bounds for high-dimensional point sets are obtained using techniques based on locality-sensitive hashing (LSH). Unfortunately, space efficiency is a major challenge for LSH-based data structures. Classic LSH techniques require a very large amount of space, oftentimes polynomial in |S|. A long line of work has developed intricate techniques to reduce this space usage, but these techniques suffer from downsides: they must be hand tailored to each specific LSH, are often complicated, and their space reduction comes at the cost of significantly increased query times. In this paper we explore a new way to improve the space efficiency of LSH using function inversion techniques, originally developed in (Fiat and Naor 2000). We begin by describing how function inversion can be used to improve LSH data structures. This gives a fairly simple, black box method to reduce LSH space usage. Then, we give a data structure that leverages function inversion to improve the query time of the best known near-linear space data structure for approximate nearest neighbor search under Euclidean distance: the ALRW data structure of (Andoni, Laarhoven, Razenshteyn, and Waingarten 2017). ALRW was previously shown to be optimal among "list-of-points" data structures for both Euclidean and Manhattan ANN; thus, in addition to giving improved bounds, our results imply that list-of-points data structures are not optimal for Euclidean or Manhattan ANN .

Cite as

Samuel McCauley. Improved Space-Efficient Approximate Nearest Neighbor Search Using Function Inversion. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 88:1-88:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mccauley:LIPIcs.ESA.2024.88,
  author =	{McCauley, Samuel},
  title =	{{Improved Space-Efficient Approximate Nearest Neighbor Search Using Function Inversion}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{88:1--88:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.88},
  URN =		{urn:nbn:de:0030-drops-211590},
  doi =		{10.4230/LIPIcs.ESA.2024.88},
  annote =	{Keywords: similarity search, locality-sensitive hashing, randomized algorithms, data structures, space efficiency, function inversion}
}
Document
APPROX
Hybrid k-Clustering: Blending k-Median and k-Center

Authors: Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We propose a novel clustering model encompassing two well-known clustering models: k-center clustering and k-median clustering. In the Hybrid k-Clustering problem, given a set P of points in ℝ^d, an integer k, and a non-negative real r, our objective is to position k closed balls of radius r to minimize the sum of distances from points not covered by the balls to their closest balls. Equivalently, we seek an optimal L₁-fitting of a union of k balls of radius r to a set of points in the Euclidean space. When r = 0, this corresponds to k-median; when the minimum sum is zero, indicating complete coverage of all points, it is k-center. Our primary result is a bicriteria approximation algorithm that, for a given ε > 0, produces a hybrid k-clustering with balls of radius (1+ε)r. This algorithm achieves a cost at most 1+ε of the optimum, and it operates in time 2^{(kd/ε)^𝒪(1)} ⋅ n^𝒪(1). Notably, considering the established lower bounds on k-center and k-median, our bicriteria approximation stands as the best possible result for Hybrid k-Clustering.

Cite as

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi. Hybrid k-Clustering: Blending k-Median and k-Center. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.APPROX/RANDOM.2024.4,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Saurabh, Saket and Zehavi, Meirav},
  title =	{{Hybrid k-Clustering: Blending k-Median and k-Center}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.4},
  URN =		{urn:nbn:de:0030-drops-209975},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.4},
  annote =	{Keywords: clustering, k-center, k-median, Euclidean space, fpt approximation}
}
Document
RANDOM
Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions

Authors: Hadley Black

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study monotonicity testing of functions f : {0,1}^d → {0,1} using sample-based algorithms, which are only allowed to observe the value of f on points drawn independently from the uniform distribution. A classic result by Bshouty-Tamon (J. ACM 1996) proved that monotone functions can be learned with exp(Õ(min{(1/ε)√d,d})) samples and it is not hard to show that this bound extends to testing. Prior to our work the only lower bound for this problem was Ω(√{exp(d)/ε}) in the small ε parameter regime, when ε = O(d^{-3/2}), due to Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky (Combinatorica 2000). Thus, the sample complexity of monotonicity testing was wide open for ε ≫ d^{-3/2}. We resolve this question, obtaining a nearly tight lower bound of exp(Ω(min{(1/ε)√d,d})) for all ε at most a sufficiently small constant. In fact, we prove a much more general result, showing that the sample complexity of k-monotonicity testing and learning for functions f : {0,1}^d → [r] is exp(Ω(min{(rk/ε)√d,d})). For testing with one-sided error we show that the sample complexity is exp(Ω(d)). Beyond the hypercube, we prove nearly tight bounds (up to polylog factors of d,k,r,1/ε in the exponent) of exp(Θ̃(min{(rk/ε)√d,d})) on the sample complexity of testing and learning measurable k-monotone functions f : ℝ^d → [r] under product distributions. Our upper bound improves upon the previous bound of exp(Õ(min{(k/ε²)√d,d})) by Harms-Yoshida (ICALP 2022) for Boolean functions (r = 2).

Cite as

Hadley Black. Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 37:1-37:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{black:LIPIcs.APPROX/RANDOM.2024.37,
  author =	{Black, Hadley},
  title =	{{Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{37:1--37:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.37},
  URN =		{urn:nbn:de:0030-drops-210308},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.37},
  annote =	{Keywords: Property testing, learning, Boolean functions, monotonicity, k-monotonicity}
}
Document
RANDOM
Refining the Adaptivity Notion in the Huge Object Model

Authors: Tomer Adar and Eldar Fischer

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The Huge Object model for distribution testing, first defined by Goldreich and Ron in 2022, combines the features of classical string testing and distribution testing. In this model we are given access to independent samples from an unknown distribution P over the set of strings {0,1}ⁿ, but are only allowed to query a few bits from the samples. The distinction between adaptive and non-adaptive algorithms, which occurs naturally in the realm of string testing (while being irrelevant for classical distribution testing), plays a substantial role also in the Huge Object model. In this work we show that the full picture in the Huge Object model is much richer than just that of the adaptive vs. non-adaptive dichotomy. We define and investigate several models of adaptivity that lie between the fully-adaptive and the completely non-adaptive extremes. These models are naturally grounded by observing the querying process from each sample independently, and considering the "algorithmic flow" between them. For example, if we allow no information at all to cross over between samples (up to the final decision), then we obtain the locally bounded adaptive model, arguably the "least adaptive" one apart from being completely non-adaptive. A slightly stronger model allows only a "one-way" information flow. Even stronger (but still far from being fully adaptive) models follow by taking inspiration from the setting of streaming algorithms. To show that we indeed have a hierarchy, we prove a chain of exponential separations encompassing most of the models that we define.

Cite as

Tomer Adar and Eldar Fischer. Refining the Adaptivity Notion in the Huge Object Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 45:1-45:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{adar_et_al:LIPIcs.APPROX/RANDOM.2024.45,
  author =	{Adar, Tomer and Fischer, Eldar},
  title =	{{Refining the Adaptivity Notion in the Huge Object Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.45},
  URN =		{urn:nbn:de:0030-drops-210383},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.45},
  annote =	{Keywords: Huge-Object model, Property Testing}
}
Document
RANDOM
Improved Bounds for High-Dimensional Equivalence and Product Testing Using Subcube Queries

Authors: Tomer Adar, Eldar Fischer, and Amit Levi

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study property testing in the subcube conditional model introduced by Bhattacharyya and Chakraborty (2017). We obtain the first equivalence test for n-dimensional distributions that is quasi-linear in n, improving the previously known Õ(n²/ε²) query complexity bound to Õ(n/ε²). We extend this result to general finite alphabets with logarithmic cost in the alphabet size. By exploiting the specific structure of the queries that we use (which are more restrictive than general subcube queries), we obtain a cubic improvement over the best known test for distributions over {1,…,N} under the interval querying model of Canonne, Ron and Servedio (2015), attaining a query complexity of Õ((log N)/ε²), which for fixed ε almost matches the known lower bound of Ω((log N)/log log N). We also derive a product test for n-dimensional distributions with Õ(n/ε²) queries, and provide an Ω(√n/ε²) lower bound for this property.

Cite as

Tomer Adar, Eldar Fischer, and Amit Levi. Improved Bounds for High-Dimensional Equivalence and Product Testing Using Subcube Queries. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{adar_et_al:LIPIcs.APPROX/RANDOM.2024.48,
  author =	{Adar, Tomer and Fischer, Eldar and Levi, Amit},
  title =	{{Improved Bounds for High-Dimensional Equivalence and Product Testing Using Subcube Queries}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{48:1--48:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.48},
  URN =		{urn:nbn:de:0030-drops-210418},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.48},
  annote =	{Keywords: Distribution testing, conditional sampling, sub-cube sampling}
}
Document
Finer-Grained Hardness of Kernel Density Estimation

Authors: Josh Alman and Yunfeng Guan

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
In batch Kernel Density Estimation (KDE) for a kernel function f : ℝ^m × ℝ^m → ℝ, we are given as input 2n points x^{(1)}, …, x^{(n)}, y^{(1)}, …, y^{(n)} ∈ ℝ^m in dimension m, as well as a vector v ∈ ℝⁿ. These inputs implicitly define the n × n kernel matrix K given by K[i,j] = f(x^{(i)}, y^{(j)}). The goal is to compute a vector v ∈ ℝⁿ which approximates K w, i.e., with || Kw - v||_∞ < ε ||w||₁. For illustrative purposes, consider the Gaussian kernel f(x,y) : = e^{-||x-y||₂²}. The classic approach to this problem is the famous Fast Multipole Method (FMM), which runs in time n ⋅ O(log^m(ε^{-1})) and is particularly effective in low dimensions because of its exponential dependence on m. Recently, as the higher-dimensional case m ≥ Ω(log n) has seen more applications in machine learning and statistics, new algorithms have focused on this setting: an algorithm using discrepancy theory, which runs in time O(n / ε), and an algorithm based on the polynomial method, which achieves inverse polynomial accuracy in almost linear time when the input points have bounded square diameter B < o(log n). A recent line of work has proved fine-grained lower bounds, with the goal of showing that the "curse of dimensionality" arising in FMM is necessary assuming the Strong Exponential Time Hypothesis (SETH). Backurs et al. [NeurIPS 2017] first showed the hardness of a variety of Empirical Risk Minimization problems including KDE for Gaussian-like kernels in the case with high dimension m = Ω(log n) and large scale B = Ω(log n). Alman et al. [FOCS 2020] later developed new reductions in roughly this same parameter regime, leading to lower bounds for more general kernels, but only for very small error ε < 2^{- log^{Ω(1)} (n)}. In this paper, we refine the approach of Alman et al. to show new lower bounds in all parameter regimes, closing gaps between the known algorithms and lower bounds. For example: - In the setting where m = Clog n and B = o(log n), we prove Gaussian KDE requires n^{2-o(1)} time to achieve additive error ε < Ω(m/B)^{-m}, matching the performance of the polynomial method up to low-order terms. - In the low dimensional setting m = o(log n), we show that Gaussian KDE requires n^{2-o(1)} time to achieve ε such that log log (ε^{-1}) > ̃ Ω ((log n)/m), matching the error bound achievable by FMM up to low-order terms. To our knowledge, no nontrivial lower bound was previously known in this regime. Our approach also generalizes to any parameter regime and any kernel. For example, we achieve similar fine-grained hardness results for any kernel with slowly-decaying Taylor coefficients such as the Cauchy kernel. Our new lower bounds make use of an intricate analysis of the "counting matrix", a special case of the kernel matrix focused on carefully-chosen evaluation points. As a key technical lemma, we give a novel approach to bounding the entries of its inverse by using Schur polynomials from algebraic combinatorics.

Cite as

Josh Alman and Yunfeng Guan. Finer-Grained Hardness of Kernel Density Estimation. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 35:1-35:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alman_et_al:LIPIcs.CCC.2024.35,
  author =	{Alman, Josh and Guan, Yunfeng},
  title =	{{Finer-Grained Hardness of Kernel Density Estimation}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{35:1--35:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.35},
  URN =		{urn:nbn:de:0030-drops-204311},
  doi =		{10.4230/LIPIcs.CCC.2024.35},
  annote =	{Keywords: Kernel Density Estimation, Fine-Grained Complexity, Schur Polynomials}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Scalable MPC Algorithms for Clustering in High Dimension

Authors: Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be n^σ for arbitrarily small fixed σ > 0. Importantly, the local memory may be substantially smaller than the number of clusters k, yet all our algorithms are fast, i.e., run in O(1) rounds. We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location. This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering problem in general geometric setting; previous algorithms only provide poly(log n)-approximation or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this Facility Location result and devise a fast MPC algorithm that achieves O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ε)k clusters of cost within O(1/ε²)-factor of the optimum for k clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

Cite as

Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý. Fully-Scalable MPC Algorithms for Clustering in High Dimension. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2024.50,
  author =	{Czumaj, Artur and Gao, Guichen and Jiang, Shaofeng H.-C. and Krauthgamer, Robert and Vesel\'{y}, Pavel},
  title =	{{Fully-Scalable MPC Algorithms for Clustering in High Dimension}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.50},
  URN =		{urn:nbn:de:0030-drops-201938},
  doi =		{10.4230/LIPIcs.ICALP.2024.50},
  annote =	{Keywords: Massively parallel computing, high dimension, facility location, k-median, k-means}
}
Document
Track A: Algorithms, Complexity and Games
Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs

Authors: Holger Dell, John Lapinskas, and Kitty Meeks

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Consider a query model of computation in which an n-vertex k-hypergraph can be accessed only via its independence oracle or via its colourful independence oracle, and each oracle query may incur a cost depending on the size of the query. Several recent results (Dell and Lapinskas, STOC 2018; Dell, Lapinskas, and Meeks, SODA 2020) give efficient algorithms to approximately count the hypergraph’s edges in the colourful setting. These algorithms immediately imply fine-grained reductions from approximate counting to decision, with overhead only log^Θ(k) n over the running time n^α of the original decision algorithm, for many well-studied problems including k-Orthogonal Vectors, k-SUM, subgraph isomorphism problems including k-Clique and colourful-H, graph motifs, and k-variable first-order model checking. We explore the limits of what is achievable in this setting, obtaining unconditional lower bounds on the oracle cost of algorithms to approximately count the hypergraph’s edges in both the colourful and uncoloured settings. In both settings, we also obtain algorithms which essentially match these lower bounds; in the colourful setting, this requires significant changes to the algorithm of Dell, Lapinskas, and Meeks (SODA 2020) and reduces the total overhead to log^{Θ(k-α)}n. Our lower bound for the uncoloured setting shows that there is no fine-grained reduction from approximate counting to the corresponding uncoloured decision problem (except in the case α ≥ k-1): without an algorithm for the colourful decision problem, we cannot hope to avoid the much larger overhead of roughly n^{(k-α)²/4}. The uncoloured setting has previously been studied for the special case k = 2 (Peled, Ramamoorthy, Rashtchian, Sinha, ITCS 2018; Chen, Levi, and Waingarten, SODA 2020), and our work generalises the existing algorithms and lower bounds for this special case to k > 2 and to oracles with cost.

Cite as

Holger Dell, John Lapinskas, and Kitty Meeks. Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 54:1-54:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dell_et_al:LIPIcs.ICALP.2024.54,
  author =	{Dell, Holger and Lapinskas, John and Meeks, Kitty},
  title =	{{Nearly Optimal Independence Oracle Algorithms for Edge Estimation in Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{54:1--54:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.54},
  URN =		{urn:nbn:de:0030-drops-201977},
  doi =		{10.4230/LIPIcs.ICALP.2024.54},
  annote =	{Keywords: Graph oracles, Fine-grained complexity, Approximate counting, Hypergraphs}
}
Document
The Composition Complexity of Majority

Authors: Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We study the complexity of computing majority as a composition of local functions: Maj_n = h(g_1,…,g_m), where each g_j: {0,1}ⁿ → {0,1} is an arbitrary function that queries only k ≪ n variables and h: {0,1}^m → {0,1} is an arbitrary combining function. We prove an optimal lower bound of m ≥ Ω(n/k log k) on the number of functions needed, which is a factor Ω(log k) larger than the ideal m = n/k. We call this factor the composition overhead; previously, no superconstant lower bounds on it were known for majority. Our lower bound recovers, as a corollary and via an entirely different proof, the best known lower bound for bounded-width branching programs for majority (Alon and Maass '86, Babai et al. '90). It is also the first step in a plan that we propose for breaking a longstanding barrier in lower bounds for small-depth boolean circuits. Novel aspects of our proof include sharp bounds on the information lost as computation flows through the inner functions g_j, and the bootstrapping of lower bounds for a multi-output function (Hamming weight) into lower bounds for a single-output one (majority).

Cite as

Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The Composition Complexity of Majority. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 19:1-19:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lecomte_et_al:LIPIcs.CCC.2022.19,
  author =	{Lecomte, Victor and Ramakrishnan, Prasanna and Tan, Li-Yang},
  title =	{{The Composition Complexity of Majority}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{19:1--19:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.19},
  URN =		{urn:nbn:de:0030-drops-165818},
  doi =		{10.4230/LIPIcs.CCC.2022.19},
  annote =	{Keywords: computational complexity, circuit lower bounds}
}
Document
Track A: Algorithms, Complexity and Games
Finding Monotone Patterns in Sublinear Time, Adaptively

Authors: Omri Ben-Eliezer, Shoham Letzter, and Erik Waingarten

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We investigate adaptive sublinear algorithms for finding monotone patterns in sequential data. Given fixed 2 ≤ k ∈ m N and ε > 0, consider the problem of finding a length-k increasing subsequence in a sequence f : [n] → ℝ, provided that f is ε-far from free of such subsequences. It was shown by Ben-Eliezer et al. [FOCS 2019] that the non-adaptive query complexity of the above task is Θ((log n)^⌊log₂ k⌋). In this work, we break the non-adaptive lower bound, presenting an adaptive algorithm for this problem which makes O(log n) queries. This is optimal, matching the classical Ω(log n) adaptive lower bound by Fischer [Inf. Comp. 2004] for monotonicity testing (which corresponds to the case k = 2). Equivalently, our result implies that testing whether a sequence decomposes into k monotone subsequences can be done with O(log n) queries.

Cite as

Omri Ben-Eliezer, Shoham Letzter, and Erik Waingarten. Finding Monotone Patterns in Sublinear Time, Adaptively. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{beneliezer_et_al:LIPIcs.ICALP.2022.17,
  author =	{Ben-Eliezer, Omri and Letzter, Shoham and Waingarten, Erik},
  title =	{{Finding Monotone Patterns in Sublinear Time, Adaptively}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.17},
  URN =		{urn:nbn:de:0030-drops-163586},
  doi =		{10.4230/LIPIcs.ICALP.2022.17},
  annote =	{Keywords: property testing, monotone patterns, monotone decomposition, adaptivity}
}
Document
Track A: Algorithms, Complexity and Games
Polylogarithmic Sketches for Clustering

Authors: Moses Charikar and Erik Waingarten

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Given n points in 𝓁_p^d, we consider the problem of partitioning points into k clusters with associated centers. The cost of a clustering is the sum of p-th powers of distances of points to their cluster centers. For p ∈ [1,2], we design sketches of size poly(log(nd),k,1/ε) such that the cost of the optimal clustering can be estimated to within factor 1+ε, despite the fact that the compressed representation does not contain enough information to recover the cluster centers or the partition into clusters. This leads to a streaming algorithm for estimating the clustering cost with space poly(log(nd),k,1/ε). We also obtain a distributed memory algorithm, where the n points are arbitrarily partitioned amongst m machines, each of which sends information to a central party who then computes an approximation of the clustering cost. Prior to this work, no such streaming or distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1,2).

Cite as

Moses Charikar and Erik Waingarten. Polylogarithmic Sketches for Clustering. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 38:1-38:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{charikar_et_al:LIPIcs.ICALP.2022.38,
  author =	{Charikar, Moses and Waingarten, Erik},
  title =	{{Polylogarithmic Sketches for Clustering}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{38:1--38:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.38},
  URN =		{urn:nbn:de:0030-drops-163793},
  doi =		{10.4230/LIPIcs.ICALP.2022.38},
  annote =	{Keywords: sketching, clustering}
}
Document
Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs

Authors: Amit Levi and Erik Waingarten

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
We introduce a new model for testing graph properties which we call the rejection sampling model. We show that testing bipartiteness of n-nodes graphs using rejection sampling queries requires complexity Omega~(n^2). Via reductions from the rejection sampling model, we give three new lower bounds for tolerant testing of Boolean functions of the form f : {0,1}^n -> {0,1}: - Tolerant k-junta testing with non-adaptive queries requires Omega~(k^2) queries. - Tolerant unateness testing requires Omega~(n) queries. - Tolerant unateness testing with non-adaptive queries requires Omega~(n^{3/2}) queries. Given the O~(k^{3/2})-query non-adaptive junta tester of Blais [Eric Blais, 2008], we conclude that non-adaptive tolerant junta testing requires more queries than non-tolerant junta testing. In addition, given the O~(n^{3/4})-query unateness tester of Chen, Waingarten, and Xie [Xi Chen et al., 2017] and the O~(n)-query non-adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri [Roksana Baleshzar et al., 2017], we conclude that tolerant unateness testing requires more queries than non-tolerant unateness testing, in both adaptive and non-adaptive settings. These lower bounds provide the first separation between tolerant and non-tolerant testing for a natural property of Boolean functions.

Cite as

Amit Levi and Erik Waingarten. Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 52:1-52:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{levi_et_al:LIPIcs.ITCS.2019.52,
  author =	{Levi, Amit and Waingarten, Erik},
  title =	{{Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{52:1--52:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.52},
  URN =		{urn:nbn:de:0030-drops-101452},
  doi =		{10.4230/LIPIcs.ITCS.2019.52},
  annote =	{Keywords: Property Testing, Juntas, Tolerant Testing, Boolean functions}
}
Document
Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

Authors: Xi Chen, Rocco A. Servedio, Li-Yang Tan, and Erik Waingarten

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
We give a poly(log(n),1/epsilon)-query adaptive algorithm for testing whether an unknown Boolean function f:{-1, 1}^n -> {-1, 1}, which is promised to be a halfspace, is monotone versus epsilon-far from monotone. Since non-adaptive algorithms are known to require almost Omega(n^{1/2}) queries to test whether an unknown halfspace is monotone versus far from monotone, this shows that adaptivity enables an exponential improvement in the query complexity of monotonicity testing for halfspaces.

Cite as

Xi Chen, Rocco A. Servedio, Li-Yang Tan, and Erik Waingarten. Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 38:1-38:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX-RANDOM.2017.38,
  author =	{Chen, Xi and Servedio, Rocco A. and Tan, Li-Yang and Waingarten, Erik},
  title =	{{Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{38:1--38:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.38},
  URN =		{urn:nbn:de:0030-drops-75877},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.38},
  annote =	{Keywords: property testing, linear threshold functions, monotonicity, adaptivity}
}
Document
Settling the Query Complexity of Non-Adaptive Junta Testing

Authors: Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
We prove that any non-adaptive algorithm that tests whether an unknown Boolean function f is a k-junta or epsilon-far from every k-junta must make ~Omega(k^{3/2}/ epsilon) many queries for a wide range of parameters k and epsilon. Our result dramatically improves previous lower bounds from [BGSMdW13,STW15], and is essentially optimal given Blais's non-adaptive junta tester from [Blais08], which makes ~O(k^{3/2})/epsilon queries. Combined with the adaptive tester of [Blais09] which makes O(k log k + k / epsilon) queries, our result shows that adaptivity enables polynomial savings in query complexity for junta testing.

Cite as

Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the Query Complexity of Non-Adaptive Junta Testing. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CCC.2017.26,
  author =	{Chen, Xi and Servedio, Rocco A. and Tan, Li-Yang and Waingarten, Erik and Xie, Jinyu},
  title =	{{Settling the Query Complexity of Non-Adaptive Junta Testing}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.26},
  URN =		{urn:nbn:de:0030-drops-75283},
  doi =		{10.4230/LIPIcs.CCC.2017.26},
  annote =	{Keywords: property testing, juntas, query complexity}
}
Document
The Fewest Clues Problem

Authors: Erik D. Demaine, Fermi Ma, Ariel Schvartzman, Erik Waingarten, and Scott Aaronson

Published in: LIPIcs, Volume 49, 8th International Conference on Fun with Algorithms (FUN 2016)


Abstract
When analyzing the computational complexity of well-known puzzles, most papers consider the algorithmic challenge of solving a given instance of (a generalized form of) the puzzle. We take a different approach by analyzing the computational complexity of designing a "good" puzzle. We assume a puzzle maker designs part of an instance, but before publishing it, wants to ensure that the puzzle has a unique solution. Given a puzzle, we introduce the FCP (fewest clues problem) version of the problem: Given an instance to a puzzle, what is the minimum number of clues we must add in order to make the instance uniquely solvable? We analyze this question for the Nikoli puzzles Sudoku, Shakashaka, and Akari. Solving these puzzles is NP-complete, and we show their FCP versions are Sigma_2^P-complete. Along the way, we show that the FCP versions of 3SAT, 1-in-3SAT, Triangle Partition, Planar 3SAT, and Latin Square are all Sigma_2^P-complete. We show that even problems in P have difficult FCP versions, sometimes even Sigma_2^P-complete, though "closed under cluing" problems are in the (presumably) smaller class NP; for example, FCP 2SAT is NP-complete.

Cite as

Erik D. Demaine, Fermi Ma, Ariel Schvartzman, Erik Waingarten, and Scott Aaronson. The Fewest Clues Problem. In 8th International Conference on Fun with Algorithms (FUN 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 49, pp. 12:1-12:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{demaine_et_al:LIPIcs.FUN.2016.12,
  author =	{Demaine, Erik D. and Ma, Fermi and Schvartzman, Ariel and Waingarten, Erik and Aaronson, Scott},
  title =	{{The Fewest Clues Problem}},
  booktitle =	{8th International Conference on Fun with Algorithms (FUN 2016)},
  pages =	{12:1--12:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-005-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{49},
  editor =	{Demaine, Erik D. and Grandoni, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2016.12},
  URN =		{urn:nbn:de:0030-drops-58654},
  doi =		{10.4230/LIPIcs.FUN.2016.12},
  annote =	{Keywords: computational complexity, pencil-and-paper puzzles, hardness reductions}
}
  • Refine by Author
  • 6 Waingarten, Erik
  • 3 Tan, Li-Yang
  • 2 Adar, Tomer
  • 2 Chen, Xi
  • 2 Fischer, Eldar
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 2 Theory of computation → Facility location and clustering
  • 2 Theory of computation → Fixed parameter tractability
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Probabilistic algorithms
  • Show More...

  • Refine by Keyword
  • 3 property testing
  • 2 Boolean functions
  • 2 Property Testing
  • 2 adaptivity
  • 2 clustering
  • Show More...

  • Refine by Type
  • 15 document

  • Refine by Publication Year
  • 8 2024
  • 3 2022
  • 2 2017
  • 1 2016
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail