9 Search Results for "Wang, Joshua R."


Document
Approximating Min-Diameter: Standard and Bichromatic

Authors: Aaron Berger, Jenny Kaufmann, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
The min-diameter of a directed graph G is a measure of the largest distance between nodes. It is equal to the maximum min-distance d_{min}(u,v) across all pairs u,v ∈ V(G), where d_{min}(u,v) = min(d(u,v), d(v,u)). Min-diameter approximation in directed graphs has attracted attention recently as an offshoot of the classical and well-studied diameter approximation problem. Our work provides a 3/2-approximation algorithm for min-diameter in DAGs running in time O(m^{1.426} n^{0.288}), and a faster almost-3/2-approximation variant which runs in time O(m^{0.713} n). (An almost-α-approximation algorithm determines the min-diameter to within a multiplicative factor of α plus constant additive error.) This is the first known algorithm to solve 3/2-approximation for min-diameter in sparse DAGs in truly subquadratic time O(m^{2-ε}) for ε > 0; previously only a 2-approximation was known. By a conditional lower bound result of [Abboud et al, SODA 2016], a better than 3/2-approximation can't be achieved in truly subquadratic time under the Strong Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a new conditional lower bound for min-diameter approximation in general directed graphs, showing that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time. Our work also presents the first study of approximating bichromatic min-diameter, which is the maximum min-distance between oppositely colored vertices in a 2-colored graph. We show that SETH implies that in DAGs, a better than 2 approximation cannot be achieved in truly subquadratic time, and that in general graphs, an approximation within a factor below 5/2 is similarly out of reach. We then obtain an O(m)-time algorithm which determines if bichromatic min-diameter is finite, and an almost-2-approximation algorithm for bichromatic min-diameter with runtime Õ(min(m^{4/3} n^{1/3}, m^{1/2} n^{3/2})).

Cite as

Aaron Berger, Jenny Kaufmann, and Virginia Vassilevska Williams. Approximating Min-Diameter: Standard and Bichromatic. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 17:1-17:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{berger_et_al:LIPIcs.ESA.2023.17,
  author =	{Berger, Aaron and Kaufmann, Jenny and Vassilevska Williams, Virginia},
  title =	{{Approximating Min-Diameter: Standard and Bichromatic}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{17:1--17:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.17},
  URN =		{urn:nbn:de:0030-drops-186705},
  doi =		{10.4230/LIPIcs.ESA.2023.17},
  annote =	{Keywords: diameter, min distances, fine-grained, approximation algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Efficient Caching with Reserves via Marking

Authors: Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Online caching is among the most fundamental and well-studied problems in the area of online algorithms. Innovative algorithmic ideas and analysis - including potential functions and primal-dual techniques - give insight into this still-growing area. Here, we introduce a new analysis technique that first uses a potential function to upper bound the cost of an online algorithm and then pairs that with a new dual-fitting strategy to lower bound the cost of an offline optimal algorithm. We apply these techniques to the Caching with Reserves problem recently introduced by Ibrahimpur et al. [Ibrahimpur et al., 2022] and give an O(log k)-competitive fractional online algorithm via a marking strategy, where k denotes the size of the cache. We also design a new online rounding algorithm that runs in polynomial time to obtain an O(log k)-competitive randomized integral algorithm. Additionally, we provide a new, simple proof for randomized marking for the classical unweighted paging problem.

Cite as

Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Efficient Caching with Reserves via Marking. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 80:1-80:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ibrahimpur_et_al:LIPIcs.ICALP.2023.80,
  author =	{Ibrahimpur, Sharat and Purohit, Manish and Svitkina, Zoya and Vee, Erik and Wang, Joshua R.},
  title =	{{Efficient Caching with Reserves via Marking}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{80:1--80:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.80},
  URN =		{urn:nbn:de:0030-drops-181328},
  doi =		{10.4230/LIPIcs.ICALP.2023.80},
  annote =	{Keywords: Approximation Algorithms, Online Algorithms, Caching}
}
Document
Introduction
Introduction to the Special Issue on Embedded Systems for Computer Vision

Authors: Samarjit Chakraborty and Qing Rao

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
We provide a broad overview of some of the current research directions at the intersection of embedded systems and computer vision, in addition to introducing the papers appearing in this special issue. Work at this intersection is steadily growing in importance, especially in the context of autonomous and cyber-physical systems design. Vision-based perception is almost a mandatory component in any autonomous system, but also adds myriad challenges like, how to efficiently implement vision processing algorithms on resource-constrained embedded architectures, and how to verify the functional and timing correctness of these algorithms. Computer vision is also crucial in implementing various smart functionality like security, e.g., using facial recognition, or monitoring events or traffic patterns. Some of these applications are reviewed in this introductory article. The remaining articles featured in this special issue dive into more depth on a few of them.

Cite as

LITES, Volume 8, Issue 1: Special Issue on Embedded Systems for Computer Vision, pp. 0:i-0:viii, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{chakraborty_et_al:LITES.8.1.0,
  author =	{Chakraborty, Samarjit and Rao, Qing},
  title =	{{Introduction to the Special Issue on Embedded Systems for Computer Vision}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{00:1--00:8},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Chakraborty, Samarjit and Rao, Qing},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.0},
  doi =		{10.4230/LITES.8.1.0},
  annote =	{Keywords: Embedded systems, Computer vision, Cyber-physical systems, Computer architecture}
}
Document
APPROX
Caching with Reserves

Authors: Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
Caching is among the most well-studied topics in algorithm design, in part because it is such a fundamental component of many computer systems. Much of traditional caching research studies cache management for a single-user or single-processor environment. In this paper, we propose two related generalizations of the classical caching problem that capture issues that arise in a multi-user or multi-processor environment. In the caching with reserves problem, a caching algorithm is required to maintain at least k_i pages belonging to user i in the cache at any time, for some given reserve capacities k_i. In the public-private caching problem, the cache of total size k is partitioned into subcaches, a private cache of size k_i for each user i and a shared public cache usable by any user. In both of these models, as in the classical caching framework, the objective of the algorithm is to dynamically maintain the cache so as to minimize the total number of cache misses. We show that caching with reserves and public-private caching models are equivalent up to constant factors, and thus focus on the former. Unlike classical caching, both of these models turn out to be NP-hard even in the offline setting, where the page sequence is known in advance. For the offline setting, we design a 2-approximation algorithm, whose analysis carefully keeps track of a potential function to bound the cost. In the online setting, we first design an O(ln k)-competitive fractional algorithm using the primal-dual framework, and then show how to convert it online to a randomized integral algorithm with the same guarantee.

Cite as

Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Caching with Reserves. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 52:1-52:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ibrahimpur_et_al:LIPIcs.APPROX/RANDOM.2022.52,
  author =	{Ibrahimpur, Sharat and Purohit, Manish and Svitkina, Zoya and Vee, Erik and Wang, Joshua R.},
  title =	{{Caching with Reserves}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{52:1--52:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.52},
  URN =		{urn:nbn:de:0030-drops-171741},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.52},
  annote =	{Keywords: Approximation Algorithms, Online Algorithms, Caching}
}
Document
Scheduling with Communication Delay in Near-Linear Time

Authors: Quanquan C. Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
We consider the problem of efficiently scheduling jobs with precedence constraints on a set of identical machines in the presence of a uniform communication delay. Such precedence-constrained jobs can be modeled as a directed acyclic graph, G = (V, E). In this setting, if two precedence-constrained jobs u and v, with v dependent on u (u ≺ v), are scheduled on different machines, then v must start at least ρ time units after u completes. The scheduling objective is to minimize makespan, i.e. the total time from when the first job starts to when the last job finishes. The focus of this paper is to provide an efficient approximation algorithm with near-linear running time. We build on the algorithm of Lepere and Rapine [STACS 2002] for this problem to give an O((ln ρ)/(ln ln ρ))-approximation algorithm that runs in Õ(|V|+|E|) time.

Cite as

Quanquan C. Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Scheduling with Communication Delay in Near-Linear Time. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 47:1-47:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.STACS.2022.47,
  author =	{Liu, Quanquan C. and Purohit, Manish and Svitkina, Zoya and Vee, Erik and Wang, Joshua R.},
  title =	{{Scheduling with Communication Delay in Near-Linear Time}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{47:1--47:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.47},
  URN =		{urn:nbn:de:0030-drops-158570},
  doi =		{10.4230/LIPIcs.STACS.2022.47},
  annote =	{Keywords: near-linear time scheduling, scheduling with duplication, precedence-constrained jobs, graph algorithms}
}
Document
1 X 1 Rush Hour with Fixed Blocks Is PSPACE-Complete

Authors: Josh Brunner, Lily Chung, Erik D. Demaine, Dylan Hendrickson, Adam Hesterberg, Adam Suhl, and Avi Zeff

Published in: LIPIcs, Volume 157, 10th International Conference on Fun with Algorithms (FUN 2021) (2020)


Abstract
Consider n²-1 unit-square blocks in an n × n square board, where each block is labeled as movable horizontally (only), movable vertically (only), or immovable - a variation of Rush Hour with only 1 × 1 cars and fixed blocks. We prove that it is PSPACE-complete to decide whether a given block can reach the left edge of the board, by reduction from Nondeterministic Constraint Logic via 2-color oriented Subway Shuffle. By contrast, polynomial-time algorithms are known for deciding whether a given block can be moved by one space, or when each block either is immovable or can move both horizontally and vertically. Our result answers a 15-year-old open problem by Tromp and Cilibrasi, and strengthens previous PSPACE-completeness results for Rush Hour with vertical 1 × 2 and horizontal 2 × 1 movable blocks and 4-color Subway Shuffle.

Cite as

Josh Brunner, Lily Chung, Erik D. Demaine, Dylan Hendrickson, Adam Hesterberg, Adam Suhl, and Avi Zeff. 1 X 1 Rush Hour with Fixed Blocks Is PSPACE-Complete. In 10th International Conference on Fun with Algorithms (FUN 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 157, pp. 7:1-7:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{brunner_et_al:LIPIcs.FUN.2021.7,
  author =	{Brunner, Josh and Chung, Lily and Demaine, Erik D. and Hendrickson, Dylan and Hesterberg, Adam and Suhl, Adam and Zeff, Avi},
  title =	{{1 X 1 Rush Hour with Fixed Blocks Is PSPACE-Complete}},
  booktitle =	{10th International Conference on Fun with Algorithms (FUN 2021)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-145-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{157},
  editor =	{Farach-Colton, Martin and Prencipe, Giuseppe and Uehara, Ryuhei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2021.7},
  URN =		{urn:nbn:de:0030-drops-127681},
  doi =		{10.4230/LIPIcs.FUN.2021.7},
  annote =	{Keywords: puzzles, sliding blocks, PSPACE-hardness}
}
Document
An Efficient Algorithm for Generalized Polynomial Partitioning and Its Applications

Authors: Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
In 2015, Guth proved that if S is a collection of n g-dimensional semi-algebraic sets in R^d and if D >= 1 is an integer, then there is a d-variate polynomial P of degree at most D so that each connected component of R^d \ Z(P) intersects O(n/D^{d-g}) sets from S. Such a polynomial is called a generalized partitioning polynomial. We present a randomized algorithm that computes such polynomials efficiently - the expected running time of our algorithm is linear in |S|. Our approach exploits the technique of quantifier elimination combined with that of epsilon-samples. We present four applications of our result. The first is a data structure for answering point-enclosure queries among a family of semi-algebraic sets in R^d in O(log n) time, with storage complexity and expected preprocessing time of O(n^{d+epsilon}). The second is a data structure for answering range search queries with semi-algebraic ranges in O(log n) time, with O(n^{t+epsilon}) storage and expected preprocessing time, where t > 0 is an integer that depends on d and the description complexity of the ranges. The third is a data structure for answering vertical ray-shooting queries among semi-algebraic sets in R^{d} in O(log^2 n) time, with O(n^{d+epsilon}) storage and expected preprocessing time. The fourth is an efficient algorithm for cutting algebraic planar curves into pseudo-segments.

Cite as

Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl. An Efficient Algorithm for Generalized Polynomial Partitioning and Its Applications. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 5:1-5:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2019.5,
  author =	{Agarwal, Pankaj K. and Aronov, Boris and Ezra, Esther and Zahl, Joshua},
  title =	{{An Efficient Algorithm for Generalized Polynomial Partitioning and Its Applications}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.5},
  URN =		{urn:nbn:de:0030-drops-104096},
  doi =		{10.4230/LIPIcs.SoCG.2019.5},
  annote =	{Keywords: Polynomial partitioning, quantifier elimination, semi-algebraic range spaces, epsilon-samples}
}
Document
Deterministic Time-Space Trade-Offs for k-SUM

Authors: Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
Given a set of numbers, the k-SUM problem asks for a subset of k numbers that sums to zero. When the numbers are integers, the time and space complexity of k-SUM is generally studied in the word-RAM model; when the numbers are reals, the complexity is studied in the real-RAM model, and space is measured by the number of reals held in memory at any point. We present a time and space efficient deterministic self-reduction for the k-SUM problem which holds for both models, and has many interesting consequences. To illustrate: - 3-SUM is in deterministic time O(n^2*lg(lg(n))/lg(n)) and space O(sqrt(n*lg(n)/lg(lg(n)))). In general, any polylogarithmic-time improvement over quadratic time for 3-SUM can be converted into an algorithm with an identical time improvement but low space complexity as well. - 3-SUM is in deterministic time O(n^2) and space O(sqrt(n)), derandomizing an algorithm of Wang. - A popular conjecture states that 3-SUM requires n^{2-o(1)} time on the word-RAM. We show that the 3-SUM Conjecture is in fact equivalent to the (seemingly weaker) conjecture that every O(n^{.51})-space algorithm for 3-SUM requires at least n^{2-o(1)} time on the word-RAM. - For k >= 4, k-SUM is in deterministic O(n^{k-2+2/k}) time and O(sqrt(n)) space.

Cite as

Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams. Deterministic Time-Space Trade-Offs for k-SUM. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 58:1-58:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{lincoln_et_al:LIPIcs.ICALP.2016.58,
  author =	{Lincoln, Andrea and Vassilevska Williams, Virginia and Wang, Joshua R. and Williams, R. Ryan},
  title =	{{Deterministic Time-Space Trade-Offs for k-SUM}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{58:1--58:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.58},
  URN =		{urn:nbn:de:0030-drops-62250},
  doi =		{10.4230/LIPIcs.ICALP.2016.58},
  annote =	{Keywords: 3SUM, kSUM, time-space tradeoff, algorithm}
}
Document
The Complexity of the k-means Method

Authors: Tim Roughgarden and Joshua R. Wang

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
The k-means method is a widely used technique for clustering points in Euclidean space. While it is extremely fast in practice, its worst-case running time is exponential in the number of data points. We prove that the k-means method can implicitly solve PSPACE-complete problems, providing a complexity-theoretic explanation for its worst-case running time. Our result parallels recent work on the complexity of the simplex method for linear programming.

Cite as

Tim Roughgarden and Joshua R. Wang. The Complexity of the k-means Method. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 78:1-78:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{roughgarden_et_al:LIPIcs.ESA.2016.78,
  author =	{Roughgarden, Tim and Wang, Joshua R.},
  title =	{{The Complexity of the k-means Method}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{78:1--78:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.78},
  URN =		{urn:nbn:de:0030-drops-64191},
  doi =		{10.4230/LIPIcs.ESA.2016.78},
  annote =	{Keywords: k-means, PSPACE-complete}
}
  • Refine by Author
  • 5 Wang, Joshua R.
  • 3 Purohit, Manish
  • 3 Svitkina, Zoya
  • 3 Vee, Erik
  • 2 Ibrahimpur, Sharat
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Caching and paging algorithms
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • 1 Mathematics of computing → Combinatorial algorithms
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Problems, reductions and completeness
  • Show More...

  • Refine by Keyword
  • 2 Approximation Algorithms
  • 2 Caching
  • 2 Online Algorithms
  • 1 3SUM
  • 1 Computer architecture
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 3 2022
  • 2 2016
  • 2 2023
  • 1 2019
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail