37 Search Results for "Watson, Thomas"


Document
Defining and Preserving More C Behaviors: Verified Compilation Using a Concrete Memory Model

Authors: Andrew Tolmach, Chris Chhak, and Sean Anderson

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We propose a concrete ("pointer as integer") memory semantics for C that supports verified compilation to a target environment having simple "public vs. private" data protection based on tagging or sandboxing (such as the WebAssembly virtual machine). Our semantics gives definition to a range of legacy programming idioms that cause undefined behavior in standard C, and are not covered by existing verified compilers, but that often work in practice. Compiler correctness in this context implies that target programs are secure against all control-flow attacks (although not against data-only attacks). To avoid tying our semantics too closely to particular compiler implementation choices, it is parameterized by a novel form of oracle that non-deterministically chooses the addresses of stack and heap allocations. As a proof-of-concept, we formalize a small RTL-like language and verify two-way refinement for a compiler from this language to a low-level machine and runtime system with hardware tagging. Our Coq formalization and proofs are provided as supplementary material.

Cite as

Andrew Tolmach, Chris Chhak, and Sean Anderson. Defining and Preserving More C Behaviors: Verified Compilation Using a Concrete Memory Model. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{tolmach_et_al:LIPIcs.ITP.2024.36,
  author =	{Tolmach, Andrew and Chhak, Chris and Anderson, Sean},
  title =	{{Defining and Preserving More C Behaviors: Verified Compilation Using a Concrete Memory Model}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{36:1--36:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.36},
  URN =		{urn:nbn:de:0030-drops-207643},
  doi =		{10.4230/LIPIcs.ITP.2024.36},
  annote =	{Keywords: Compiler verification, C language semantics, Coq proof assistant}
}
Document
An Efficient Local Search Solver for Mixed Integer Programming

Authors: Peng Lin, Mengchuan Zou, and Shaowei Cai

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Mixed integer programming (MIP) is a fundamental model in operations research. Local search is a powerful method for solving hard problems, but the development of local search solvers for MIP still needs to be explored. This work develops an efficient local search solver for solving MIP, called Local-MIP. We propose two new operators for MIP to adaptively modify variables for optimizing the objective function and satisfying constraints, respectively. Furthermore, we design a new weighting scheme to dynamically balance the priority between the objective function and each constraint, and propose a two-level scoring function structure to hierarchically guide the search for high-quality feasible solutions. Experiments are conducted on seven public benchmarks to compare Local-MIP with state-of-the-art MIP solvers, which demonstrate that Local-MIP significantly outperforms CPLEX, HiGHS, SCIP and Feasibility Jump, and is competitive with the most powerful commercial solver Gurobi. Moreover, Local-MIP establishes 4 new records for MIPLIB open instances.

Cite as

Peng Lin, Mengchuan Zou, and Shaowei Cai. An Efficient Local Search Solver for Mixed Integer Programming. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 19:1-19:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lin_et_al:LIPIcs.CP.2024.19,
  author =	{Lin, Peng and Zou, Mengchuan and Cai, Shaowei},
  title =	{{An Efficient Local Search Solver for Mixed Integer Programming}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{19:1--19:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.19},
  URN =		{urn:nbn:de:0030-drops-207041},
  doi =		{10.4230/LIPIcs.CP.2024.19},
  annote =	{Keywords: Mixed Integer Programming, Local Search, Operator, Scoring Function}
}
Document
A Unifying Taxonomy of Pattern Matching in Degenerate Strings and Founder Graphs

Authors: Rocco Ascone, Giulia Bernardini, Alessio Conte, Massimo Equi, Esteban Gabory, Roberto Grossi, and Nadia Pisanti

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Elastic Degenerate (ED) strings and Elastic Founder (EF) graphs are two versions of acyclic components of pangenomes. Both ED strings and EF graphs (which we collectively name variable strings) extend the well-known notion of indeterminate string. Recent work has extensively investigated algorithmic tasks over these structures, and over several other variable strings notions that they generalise. Among such tasks, the basic operation of matching a pattern into a text, which can serve as a toolkit for many pangenomic data analyses using these data structures, deserves special attention. In this paper we: (1) highlight a clear taxonomy within both ED strings and EF graphs ranging through variable strings of all types, from the linear string up to the most general one; (2) investigate the problem PvarT(X,Y) of matching a solid or variable pattern of type X into a variable text of type Y; (3) using as a reference the quadratic conditional lower bounds that are known for PvarT(solid,ED) and PvarT(solid,EF), for all possible types of variable strings X and Y we either prove the quadratic conditional lower bound for PvarT(X,Y), or provide non-trivial, often sub-quadratic, upper bounds, also exploiting the above-mentioned taxonomy.

Cite as

Rocco Ascone, Giulia Bernardini, Alessio Conte, Massimo Equi, Esteban Gabory, Roberto Grossi, and Nadia Pisanti. A Unifying Taxonomy of Pattern Matching in Degenerate Strings and Founder Graphs. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ascone_et_al:LIPIcs.WABI.2024.14,
  author =	{Ascone, Rocco and Bernardini, Giulia and Conte, Alessio and Equi, Massimo and Gabory, Esteban and Grossi, Roberto and Pisanti, Nadia},
  title =	{{A Unifying Taxonomy of Pattern Matching in Degenerate Strings and Founder Graphs}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.14},
  URN =		{urn:nbn:de:0030-drops-206586},
  doi =		{10.4230/LIPIcs.WABI.2024.14},
  annote =	{Keywords: Pangenomics, pattern matching, degenerate string, founder graph, fine-grained complexity}
}
Document
Parameterized Vertex Integrity Revisited

Authors: Tesshu Hanaka, Michael Lampis, Manolis Vasilakis, and Kanae Yoshiwatari

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Vertex integrity is a graph parameter that measures the connectivity of a graph. Informally, its meaning is that a graph has small vertex integrity if it has a small separator whose removal disconnects the graph into connected components which are themselves also small. Graphs with low vertex integrity are very structured; this renders many hard problems tractable and has recently attracted interest in this notion from the parameterized complexity community. In this paper we revisit the NP-complete problem of computing the vertex integrity of a given graph from the point of view of structural parameterizations. We present a number of new results, which also answer some recently posed open questions from the literature. Specifically, we show that unweighted vertex integrity is W[1]-hard parameterized by treedepth; we show that the problem remains W[1]-hard if we parameterize by feedback edge set size (via a reduction from a Bin Packing variant which may be of independent interest); and complementing this we show that the problem is FPT by max-leaf number. Furthermore, for weighted vertex integrity, we show that the problem admits a single-exponential FPT algorithm parameterized by vertex cover or by modular width, the latter result improving upon a previous algorithm which required weights to be polynomially bounded.

Cite as

Tesshu Hanaka, Michael Lampis, Manolis Vasilakis, and Kanae Yoshiwatari. Parameterized Vertex Integrity Revisited. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 58:1-58:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hanaka_et_al:LIPIcs.MFCS.2024.58,
  author =	{Hanaka, Tesshu and Lampis, Michael and Vasilakis, Manolis and Yoshiwatari, Kanae},
  title =	{{Parameterized Vertex Integrity Revisited}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{58:1--58:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.58},
  URN =		{urn:nbn:de:0030-drops-206141},
  doi =		{10.4230/LIPIcs.MFCS.2024.58},
  annote =	{Keywords: Parameterized Complexity, Treedepth, Vertex Integrity}
}
Document
Phase Transition for Tree-Rooted Maps

Authors: Marie Albenque, Éric Fusy, and Zéphyr Salvy

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We introduce a model of tree-rooted planar maps weighted by their number of 2-connected blocks. We study its enumerative properties and prove that it undergoes a phase transition. We give the distribution of the size of the largest 2-connected blocks in the three regimes (subcritical, critical and supercritical) and further establish that the scaling limit is the Brownian Continuum Random Tree in the critical and supercritical regimes, with respective rescalings √{n/log(n)} and √n.

Cite as

Marie Albenque, Éric Fusy, and Zéphyr Salvy. Phase Transition for Tree-Rooted Maps. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{albenque_et_al:LIPIcs.AofA.2024.6,
  author =	{Albenque, Marie and Fusy, \'{E}ric and Salvy, Z\'{e}phyr},
  title =	{{Phase Transition for Tree-Rooted Maps}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.6},
  URN =		{urn:nbn:de:0030-drops-204413},
  doi =		{10.4230/LIPIcs.AofA.2024.6},
  annote =	{Keywords: Asymptotic Enumeration, Planar maps, Random trees, Phase transition}
}
Document
Matching Algorithms in the Sparse Stochastic Block Model

Authors: Anna Brandenberger, Byron Chin, Nathan S. Sheffield, and Divya Shyamal

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
In sparse Erdős-Rényi graphs, it is known that a linear-time algorithm of Karp and Sipser achieves near-optimal matching sizes asymptotically almost surely, giving a law-of-large numbers for the matching numbers of such graphs in terms of solutions to an ODE [Jonathan Aronson et al., 1998]. We provide an extension of this analysis, identifying broad ranges of stochastic block model parameters for which the Karp-Sipser algorithm achieves near-optimal matching sizes, but demonstrating that it cannot perform optimally on general stochastic block model instances. We also consider the problem of constructing a matching online, in which the vertices of one half of a bipartite stochastic block model arrive one-at-a-time, and must be matched as they arrive. We show that, when the expected degrees in all communities are equal, the competitive ratio lower bound of 0.837 found by Mastin and Jaillet for the Erdős-Rényi case [Andrew Mastin and Patrick Jaillet, 2013] is achieved by a simple greedy algorithm, and this competitive ratio is optimal. We then propose and analyze a linear-time online matching algorithm with better performance in general stochastic block models.

Cite as

Anna Brandenberger, Byron Chin, Nathan S. Sheffield, and Divya Shyamal. Matching Algorithms in the Sparse Stochastic Block Model. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{brandenberger_et_al:LIPIcs.AofA.2024.16,
  author =	{Brandenberger, Anna and Chin, Byron and Sheffield, Nathan S. and Shyamal, Divya},
  title =	{{Matching Algorithms in the Sparse Stochastic Block Model}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.16},
  URN =		{urn:nbn:de:0030-drops-204515},
  doi =		{10.4230/LIPIcs.AofA.2024.16},
  annote =	{Keywords: Matching Algorithms, Online Matching, Stochastic Block Model}
}
Document
Lifting Dichotomies

Authors: Yaroslav Alekseev, Yuval Filmus, and Alexander Smal

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Lifting theorems are used for transferring lower bounds between Boolean function complexity measures. Given a lower bound on a complexity measure A for some function f, we compose f with a carefully chosen gadget function g and get essentially the same lower bound on a complexity measure B for the lifted function f ⋄ g. Lifting theorems have a number of applications in many different areas such as circuit complexity, communication complexity, proof complexity, etc. One of the main question in the context of lifting is how to choose a suitable gadget g. Generally, to get better results, i.e., to minimize the losses when transferring lower bounds, we need the gadget to be of a constant size (number of inputs). Unfortunately, in many settings we know lifting results only for gadgets of size that grows with the size of f, and it is unclear whether it can be improved to a constant size gadget. This motivates us to identify the properties of gadgets that make lifting possible. In this paper, we systematically study the question "For which gadgets does the lifting result hold?" in the following four settings: lifting from decision tree depth to decision tree size, lifting from conjunction DAG width to conjunction DAG size, lifting from decision tree depth to parity decision tree depth and size, and lifting from block sensitivity to deterministic and randomized communication complexities. In all the cases, we prove the complete classification of gadgets by exposing the properties of gadgets that make lifting results hold. The structure of the results shows that there is no intermediate cases - for every gadget there is either a polynomial lifting or no lifting at all. As a byproduct of our studies, we prove the log-rank conjecture for the class of functions that can be represented as f ⋄ OR ⋄ XOR for some function f. In this extended abstract, the proofs are omitted. Full proofs are given in the full version [Yaroslav Alekseev et al., 2024].

Cite as

Yaroslav Alekseev, Yuval Filmus, and Alexander Smal. Lifting Dichotomies. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alekseev_et_al:LIPIcs.CCC.2024.9,
  author =	{Alekseev, Yaroslav and Filmus, Yuval and Smal, Alexander},
  title =	{{Lifting Dichotomies}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.9},
  URN =		{urn:nbn:de:0030-drops-204051},
  doi =		{10.4230/LIPIcs.CCC.2024.9},
  annote =	{Keywords: decision trees, log-rank conjecture, lifting, parity decision trees}
}
Document
Exponential Separation Between Powers of Regular and General Resolution over Parities

Authors: Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formulas using resolution over parities is an outstanding problem that has received a lot of attention after its introduction by Itsykson and Sokolov [Dmitry Itsykson and Dmitry Sokolov, 2014]. Very recently, Efremenko, Garlík and Itsykson [Klim Efremenko et al., 2023] proved the first exponential lower bounds on the size of ResLin proofs that were additionally restricted to be bottom-regular. We show that there are formulas for which such regular ResLin proofs of unsatisfiability continue to have exponential size even though there exist short proofs of their unsatisfiability in ordinary, non-regular resolution. This is the first super-polynomial separation between the power of general ResLin and that of regular ResLin for any natural notion of regularity. Our argument, while building upon the work of Efremenko et al. [Klim Efremenko et al., 2023], uses additional ideas from the literature on lifting theorems.

Cite as

Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák. Exponential Separation Between Powers of Regular and General Resolution over Parities. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 23:1-23:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharya_et_al:LIPIcs.CCC.2024.23,
  author =	{Bhattacharya, Sreejata Kishor and Chattopadhyay, Arkadev and Dvo\v{r}\'{a}k, Pavel},
  title =	{{Exponential Separation Between Powers of Regular and General Resolution over Parities}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{23:1--23:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23},
  URN =		{urn:nbn:de:0030-drops-204191},
  doi =		{10.4230/LIPIcs.CCC.2024.23},
  annote =	{Keywords: Proof Complexity, Regular Reslin, Branching Programs, Lifting}
}
Document
Separator Based Data Reduction for the Maximum Cut Problem

Authors: Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel, and Lukas Schürmann

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Preprocessing is an important ingredient for solving the maximum cut problem to optimality on real-world graphs. In our work, we derive a new framework for data reduction rules based on vertex separators. Vertex separators are sets of vertices, whose removal increases the number of connected components of a graph. Certain small separators can be found in linear time, allowing for an efficient combination of our framework with existing data reduction rules. Additionally, we complement known data reduction rules for triangles with a new one. In our computational experiments on established benchmark instances, we clearly show the effectiveness and efficiency of our proposed data reduction techniques. The resulting graphs are significantly smaller than in earlier studies and sometimes no vertex is left, so preprocessing has fully solved the instance to optimality. The introduced techniques are also shown to offer significant speedup potential for an exact state-of-the-art solver and to help a state-of-the-art heuristic to produce solutions of higher quality.

Cite as

Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel, and Lukas Schürmann. Separator Based Data Reduction for the Maximum Cut Problem. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charfreitag_et_al:LIPIcs.SEA.2024.4,
  author =	{Charfreitag, Jonas and Dahn, Christine and Kaibel, Michael and Mayer, Philip and Mutzel, Petra and Sch\"{u}rmann, Lukas},
  title =	{{Separator Based Data Reduction for the Maximum Cut Problem}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.4},
  URN =		{urn:nbn:de:0030-drops-203698},
  doi =		{10.4230/LIPIcs.SEA.2024.4},
  annote =	{Keywords: Data Reduction, Maximum Cut, Vertex Separators}
}
Document
Track A: Algorithms, Complexity and Games
Learning Low-Degree Quantum Objects

Authors: Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of learning low-degree quantum objects up to ε-error in 𝓁₂-distance. We show the following results: (i) unknown n-qubit degree-d (in the Pauli basis) quantum channels and unitaries can be learned using O(1/ε^d) queries (which is independent of n), (ii) polynomials p:{-1,1}ⁿ → [-1,1] arising from d-query quantum algorithms can be learned from O((1/ε)^d ⋅ log n) many random examples (x,p(x)) (which implies learnability even for d = O(log n)), and (iii) degree-d polynomials p:{-1,1}ⁿ → [-1,1] can be learned through O(1/ε^d) queries to a quantum unitary U_p that block-encodes p. Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely bounded polynomials.

Cite as

Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos. Learning Low-Degree Quantum Objects. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.ICALP.2024.13,
  author =	{Arunachalam, Srinivasan and Dutt, Arkopal and Escudero Guti\'{e}rrez, Francisco and Palazuelos, Carlos},
  title =	{{Learning Low-Degree Quantum Objects}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.13},
  URN =		{urn:nbn:de:0030-drops-201563},
  doi =		{10.4230/LIPIcs.ICALP.2024.13},
  annote =	{Keywords: Tomography}
}
Document
Track A: Algorithms, Complexity and Games
Oracle Separation of QMA and QCMA with Bounded Adaptivity

Authors: Shalev Ben-David and Srijita Kundu

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give an oracle separation between QMA and QCMA for quantum algorithms that have bounded adaptivity in their oracle queries; that is, the number of rounds of oracle calls is small, though each round may involve polynomially many queries in parallel. Our oracle construction is a simplified version of the construction used recently by Li, Liu, Pelecanos, and Yamakawa (2023), who showed an oracle separation between QMA and QCMA when the quantum algorithms are only allowed to access the oracle classically. To prove our results, we introduce a property of relations called slipperiness, which may be useful for getting a fully general classical oracle separation between QMA and QCMA.

Cite as

Shalev Ben-David and Srijita Kundu. Oracle Separation of QMA and QCMA with Bounded Adaptivity. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bendavid_et_al:LIPIcs.ICALP.2024.21,
  author =	{Ben-David, Shalev and Kundu, Srijita},
  title =	{{Oracle Separation of QMA and QCMA with Bounded Adaptivity}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.21},
  URN =		{urn:nbn:de:0030-drops-201642},
  doi =		{10.4230/LIPIcs.ICALP.2024.21},
  annote =	{Keywords: Quantum computing, computational complexity}
}
Document
Track A: Algorithms, Complexity and Games
Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification

Authors: Esther Galby, Sándor Kisfaludi-Bak, Dániel Marx, and Roohani Sharma

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Directed Steiner Network problem, the input is a directed graph G, a set T ⊆ V(G) of k terminals, and a demand graph D on T. The task is to find a subgraph H ⊆ G with the minimum number of edges such that for every (s,t) ∈ E(D), the solution H contains a directed s → t path. The goal of this paper is to investigate how the complexity of the problem depends on the demand pattern in planar graphs. Formally, if 𝒟 is a class of directed graphs, then the 𝒟-Steiner Network (𝒟-DSN) problem is the special case where the demand graph D is restricted to be from 𝒟. We give a complete characterization of the behavior of every 𝒟-DSN problem on planar graphs. We classify every class 𝒟 closed under transitive equivalence and identification of vertices into three cases: assuming ETH, either the problem is 1) solvable in time 2^O(k)⋅n^O(1), i.e., FPT parameterized by the number k of terminals, but not solvable in time 2^o(k)⋅n^O(1), 2) solvable in time f(k)⋅n^O(√k), but cannot be solved in time f(k)⋅n^o(√k), or 3) solvable in time f(k)⋅n^O(k), but cannot be solved in time f(k)⋅n^o(k). Our result is a far-reaching generalization and unification of earlier results on Directed Steiner Tree, Directed Steiner Network, and Strongly Connected Steiner Subgraph on planar graphs. As an important step of our lower bound proof, we discover a rare example of a genuinely planar problem (i.e., described by a planar graph and two sets of vertices) that cannot be solved in time f(k)⋅n^o(k): given two sets of terminals S and T with |S|+|T| = k, find a subgraph with minimum number of edges such that every vertex of T is reachable from every vertex of S.

Cite as

Esther Galby, Sándor Kisfaludi-Bak, Dániel Marx, and Roohani Sharma. Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{galby_et_al:LIPIcs.ICALP.2024.67,
  author =	{Galby, Esther and Kisfaludi-Bak, S\'{a}ndor and Marx, D\'{a}niel and Sharma, Roohani},
  title =	{{Subexponential Parameterized Directed Steiner Network Problems on Planar Graphs: A Complete Classification}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.67},
  URN =		{urn:nbn:de:0030-drops-202104},
  doi =		{10.4230/LIPIcs.ICALP.2024.67},
  annote =	{Keywords: Directed Steiner Network, Sub-exponential algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents

Authors: Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and Simon Weber

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide polynomial-time reductions between three search problems from three distinct areas: the P-matrix linear complementarity problem (P-LCP), finding the sink of a unique sink orientation (USO), and a variant of the α-Ham Sandwich problem. For all three settings, we show that "two choices are enough", meaning that the general non-binary version of the problem can be reduced in polynomial time to the binary version. This specifically means that generalized P-LCPs are equivalent to P-LCPs, and grid USOs are equivalent to cube USOs. These results are obtained by showing that both the P-LCP and our α-Ham Sandwich variant are equivalent to a new problem we introduce, P-Lin-Bellman. This problem can be seen as a new tool for formulating problems as P-LCPs.

Cite as

Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and Simon Weber. Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{borzechowski_et_al:LIPIcs.ICALP.2024.32,
  author =	{Borzechowski, Michaela and Fearnley, John and Gordon, Spencer and Savani, Rahul and Schnider, Patrick and Weber, Simon},
  title =	{{Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.32},
  URN =		{urn:nbn:de:0030-drops-201751},
  doi =		{10.4230/LIPIcs.ICALP.2024.32},
  annote =	{Keywords: P-LCP, Unique Sink Orientation, \alpha-Ham Sandwich, search complexity, TFNP, UEOPL}
}
Document
Optimal Algorithms for Learning Quantum Phase States

Authors: Srinivasan Arunachalam, Sergey Bravyi, Arkopal Dutt, and Theodore J. Yoder

Published in: LIPIcs, Volume 266, 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)


Abstract
We analyze the complexity of learning n-qubit quantum phase states. A degree-d phase state is defined as a superposition of all 2ⁿ basis vectors x with amplitudes proportional to (-1)^{f(x)}, where f is a degree-d Boolean polynomial over n variables. We show that the sample complexity of learning an unknown degree-d phase state is Θ(n^d) if we allow separable measurements and Θ(n^{d-1}) if we allow entangled measurements. Our learning algorithm based on separable measurements has runtime poly(n) (for constant d) and is well-suited for near-term demonstrations as it requires only single-qubit measurements in the Pauli X and Z bases. We show similar bounds on the sample complexity for learning generalized phase states with complex-valued amplitudes. We further consider learning phase states when f has sparsity-s, degree-d in its 𝔽₂ representation (with sample complexity O(2^d sn)), f has Fourier-degree-t (with sample complexity O(2^{2t})), and learning quadratic phase states with ε-global depolarizing noise (with sample complexity O(n^{1+ε})). These learning algorithms give us a procedure to learn the diagonal unitaries of the Clifford hierarchy and IQP circuits.

Cite as

Srinivasan Arunachalam, Sergey Bravyi, Arkopal Dutt, and Theodore J. Yoder. Optimal Algorithms for Learning Quantum Phase States. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 266, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.TQC.2023.3,
  author =	{Arunachalam, Srinivasan and Bravyi, Sergey and Dutt, Arkopal and Yoder, Theodore J.},
  title =	{{Optimal Algorithms for Learning Quantum Phase States}},
  booktitle =	{18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)},
  pages =	{3:1--3:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-283-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{266},
  editor =	{Fawzi, Omar and Walter, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2023.3},
  URN =		{urn:nbn:de:0030-drops-183139},
  doi =		{10.4230/LIPIcs.TQC.2023.3},
  annote =	{Keywords: Tomography, binary phase states, generalized phase states, IQP circuits}
}
Document
Complexity of Fault Tolerant Query Complexity

Authors: Ramita Maharjan and Thomas Watson

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
In the model of fault tolerant decision trees introduced by Kenyon and Yao, there is a known upper bound E on the total number of queries that may be faulty (i.e., get the wrong bit). We consider this computational problem: Given as input the truth table of a function f: {0,1}ⁿ → {0,1} and a value of E, find the minimum possible height (worst-case number of queries) of any decision tree that computes f while tolerating up to E many faults. We design an algorithm for this problem that runs in time Õ(binom(n+E,E)⋅(2E+3)ⁿ), which is polynomial in the size of the truth table when E is a constant. This generalizes a standard algorithm for the non-fault tolerant setting.

Cite as

Ramita Maharjan and Thomas Watson. Complexity of Fault Tolerant Query Complexity. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 26:1-26:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{maharjan_et_al:LIPIcs.FSTTCS.2022.26,
  author =	{Maharjan, Ramita and Watson, Thomas},
  title =	{{Complexity of Fault Tolerant Query Complexity}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{26:1--26:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.26},
  URN =		{urn:nbn:de:0030-drops-174185},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.26},
  annote =	{Keywords: Fault, Tolerant, Query, Complexity}
}
  • Refine by Author
  • 17 Watson, Thomas
  • 7 Göös, Mika
  • 4 Pitassi, Toniann
  • 3 Arunachalam, Srinivasan
  • 3 Rahman, Md Lutfar
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Communication complexity
  • 4 Theory of computation → Computational complexity and cryptography
  • 4 Theory of computation → Problems, reductions and completeness
  • 4 Theory of computation → Quantum complexity theory
  • 3 Theory of computation → Oracles and decision trees
  • Show More...

  • Refine by Keyword
  • 3 Complexity
  • 3 complexity
  • 3 query complexity
  • 2 Amplification
  • 2 Communication
  • Show More...

  • Refine by Type
  • 37 document

  • Refine by Publication Year
  • 13 2024
  • 5 2020
  • 3 2017
  • 3 2019
  • 3 2022
  • Show More...