10 Search Results for "Werner, Martin"


Document
Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation

Authors: Hao Li, Zhendong Yuan, Gabriel Dax, Gefei Kong, Hongchao Fan, Alexander Zipf, and Martin Werner

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Accurate building height estimation is key to the automatic derivation of 3D city models from emerging big geospatial data, including Volunteered Geographical Information (VGI). However, an automatic solution for large-scale building height estimation based on low-cost VGI data is currently missing. The fast development of VGI data platforms, especially OpenStreetMap (OSM) and crowdsourced street-view images (SVI), offers a stimulating opportunity to fill this research gap. In this work, we propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OSM data to generate low-cost and open-source 3D city modeling in LoD1. The proposed method consists of three parts: first, we propose an SSL schema with the option of setting a different ratio of "pseudo label" during the supervised regression; second, we extract multi-level morphometric features from OSM data (i.e., buildings and streets) for the purposed of inferring building height; last, we design a building floor estimation workflow with a pre-trained facade object detection network to generate "pseudo label" from SVI and assign it to the corresponding OSM building footprint. In a case study, we validate the proposed SSL method in the city of Heidelberg, Germany and evaluate the model performance against the reference data of building heights. Based on three different regression models, namely Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN), the SSL method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters, which is competitive to state-of-the-art approaches. The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data, with possibilities in even regions and areas with diverse data quality and availability.

Cite as

Hao Li, Zhendong Yuan, Gabriel Dax, Gefei Kong, Hongchao Fan, Alexander Zipf, and Martin Werner. Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 7:1-7:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.GIScience.2023.7,
  author =	{Li, Hao and Yuan, Zhendong and Dax, Gabriel and Kong, Gefei and Fan, Hongchao and Zipf, Alexander and Werner, Martin},
  title =	{{Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.7},
  URN =		{urn:nbn:de:0030-drops-189028},
  doi =		{10.4230/LIPIcs.GIScience.2023.7},
  annote =	{Keywords: OpenStreetMap, Street-view Images, VGI, GeoAI, 3D city model, Facade parsing}
}
Document
Short Paper
Betweenness Centrality in Spatial Networks: A Spatially Normalised Approach (Short Paper)

Authors: Christian Werner and Martin Loidl

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Centrality metrics are essential to network analysis. They reveal important morphological properties of networks, indicating e.g. node or edge importance. Applications are manifold, ranging from biology to transport planning. However, while being commonly applied in spatial contexts such as urban analytics, the implications of the spatial configuration of network elements on these metrics are widely neglected. As a consequence, a systematic bias is introduced into spatial network analyses. When applied to real-world problems, unintended side effects and wrong conclusions might be the result. In this paper, we assess the impact of node density on betweenness centrality. Furthermore, we propose a method for computing spatially normalised betweenness centrality. We apply it to a theoretical case as well as real-world transport networks. Results show that spatial normalisation mitigates the prevalent bias of node density.

Cite as

Christian Werner and Martin Loidl. Betweenness Centrality in Spatial Networks: A Spatially Normalised Approach (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 83:1-83:6, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{werner_et_al:LIPIcs.GIScience.2023.83,
  author =	{Werner, Christian and Loidl, Martin},
  title =	{{Betweenness Centrality in Spatial Networks: A Spatially Normalised Approach}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{83:1--83:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.83},
  URN =		{urn:nbn:de:0030-drops-189781},
  doi =		{10.4230/LIPIcs.GIScience.2023.83},
  annote =	{Keywords: spatial network analysis, edge betweenness centrality, flow estimation, SIBC, spatial interaction, spatial centrality, urban analytics}
}
Document
A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Authors: Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Designing and modeling complex cyber-physical systems (CPS) faces the double challenge of combined discrete-continuous dynamics and concurrent behavior. Existing formal modeling and verification languages for CPS expose the underlying proof search technology. They lack high-level structuring elements and are not efficiently executable. The ensuing modeling gap renders formal CPS models hard to understand and to validate. We propose a high-level programming-based approach to formal modeling and verification of hybrid systems as a hybrid extension of an Active Objects language. Well-structured hybrid active programs and requirements allow automatic, reachability-preserving translation into differential dynamic logic, a logic for hybrid (discrete-continuous) programs. Verification is achieved by discharging the resulting formulas with the theorem prover KeYmaera X. We demonstrate the usability of our approach with case studies.

Cite as

Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle. A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 04:1-04:34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kamburjan_et_al:LITES.8.2.4,
  author =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  title =	{{A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems}},
  booktitle =	{LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems},
  pages =	{04:1--04:34},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.4},
  doi =		{10.4230/LITES.8.2.4},
  annote =	{Keywords: Active Objects, Differential Dynamic Logic, Hybrid Systems}
}
Document
Bayesian Hybrid Automata: A Formal Model of Justified Belief in Interacting Hybrid Systems Subject to Imprecise Observation

Authors: Paul Kröger and Martin Fränzle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Hybrid discrete-continuous system dynamics arises when discrete actions, e.g. by a decision algorithm, meet continuous behaviour, e.g. due to physical processes and continuous control. A natural domain of such systems are emerging smart technologies which add elements of intelligence, co-operation, and adaptivity to physical entities, enabling them to interact with each other and with humans as systems of (human-)cyber-physical systems or (H)CPSes.Various flavours of hybrid automata have been suggested as a means to formally analyse CPS dynamics. In a previous article, we demonstrated that all these variants of hybrid automata provide inaccurate, in the sense of either overly pessimistic or overly optimistic, verdicts for engineered systems operating under imprecise observation of their environment due to, e.g., measurement error. We suggested a revised formal model, called Bayesian hybrid automata, that is able to represent state tracking and estimation in hybrid systems and thereby enhances precision of verdicts obtained from the model in comparison to traditional model variants.In this article, we present an extended definition of Bayesian hybrid automata which incorporates a new class of guard and invariant functions that allow to evaluate traditional guards and invariants over probability distributions. The resulting framework allows to model observers with knowledge about the control strategy of an observed agent but with imprecise estimates of the data on which the control decisions are based.

Cite as

Paul Kröger and Martin Fränzle. Bayesian Hybrid Automata: A Formal Model of Justified Belief in Interacting Hybrid Systems Subject to Imprecise Observation. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 05:1-05:27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kroger_et_al:LITES.8.2.5,
  author =	{Kr\"{o}ger, Paul and Fr\"{a}nzle, Martin},
  title =	{{Bayesian Hybrid Automata: A Formal Model of Justified Belief in Interacting Hybrid Systems Subject to Imprecise Observation}},
  booktitle =	{LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems},
  pages =	{05:1--05:27},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Kr\"{o}ger, Paul and Fr\"{a}nzle, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.5},
  doi =		{10.4230/LITES.8.2.5},
  annote =	{Keywords: }
}
Document
Mobility Data Science (Dagstuhl Seminar 22021)

Authors: Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi

Published in: Dagstuhl Reports, Volume 12, Issue 1 (2022)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22021 "Mobility Data Science". This seminar was held January 9-14, 2022, including 47 participants from industry and academia. The goal of this Dagstuhl Seminar was to create a new research community of mobility data science in which the whole is greater than the sum of its parts by bringing together established leaders as well as promising young researchers from all fields related to mobility data science. Specifically, this report summarizes the main results of the seminar by (1) defining Mobility Data Science as a research domain, (2) by sketching its agenda in the coming years, and by (3) building a mobility data science community. (1) Mobility data science is defined as spatiotemporal data that additionally captures the behavior of moving entities (human, vehicle, animal, etc.). To understand, explain, and predict behavior, we note that a strong collaboration with research in behavioral and social sciences is needed. (2) Future research directions for mobility data science described in this report include a) mobility data acquisition and privacy, b) mobility data management and analysis, and c) applications of mobility data science. (3) We identify opportunities towards building a mobility data science community, towards collaborations between academic and industry, and towards a mobility data science curriculum.

Cite as

Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi. Mobility Data Science (Dagstuhl Seminar 22021). In Dagstuhl Reports, Volume 12, Issue 1, pp. 1-34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{mokbel_et_al:DagRep.12.1.1,
  author =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas and Almeida, Jussara and Anderson, Taylor and Aref, Walid and Andrienko, Gennady and Andrienko, Natalia and Cao, Yang and Chawla, Sanjay and Cheng, Reynold and Chrysanthis, Panos and Fei, Xiqi and Ghinita, Gabriel and Graser, Anita and Gunopulos, Dimitrios and Jensen, Christian and Kim, Joon-Sook and Kim, Kyoung-Sook and Kr\"{o}ger, Peer and Krumm, John and Lauer, Johannes and Magdy, Amr and Nascimento, Mario and Ravada, Siva and Renz, Matthias and Sacharidis, Dimitris and Shahabi, Cyrus and Salim, Flora and Sarwat, Mohamed and Schoemans, Maxime and Speckmann, Bettina and Tanin, Egemen and Theodoridis, Yannis and Torp, Kristian and Trajcevski, Goce and van Kreveld, Marc and Wenk, Carola and Werner, Martin and Wong, Raymond and Wu, Song and Xu, Jianqiu and Youssef, Moustafa and Zeinalipour, Demetris and Zhang, Mengxuan and Zim\'{a}nyi, Esteban},
  title =	{{Mobility Data Science (Dagstuhl Seminar 22021)}},
  pages =	{1--34},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{12},
  number =	{1},
  editor =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.1.1},
  URN =		{urn:nbn:de:0030-drops-169190},
  doi =		{10.4230/DagRep.12.1.1},
  annote =	{Keywords: Spatio-temporal, Tracking, Privacy, Behavior, Data cleaning, Data management, Analytics}
}
Document
Randomization as Mitigation of Directed Timing Inference Based Attacks on Time-Triggered Real-Time Systems with Task Replication

Authors: Kristin Krüger, Nils Vreman, Richard Pates, Martina Maggio, Marcus Völp, and Gerhard Fohler

Published in: LITES, Volume 7, Issue 1 (2021): Special Issue on Embedded System Security. Leibniz Transactions on Embedded Systems, Volume 7, Issue 1


Abstract
Time-triggered real-time systems achieve deterministic behavior using schedules that are constructed offline, based on scheduling constraints. Their deterministic behavior makes time-triggered systems suitable for usage in safety-critical environments, like avionics. However, this determinism also allows attackers to fine-tune attacks that can be carried out after studying the behavior of the system through side channels, targeting safety-critical victim tasks. Replication -- i.e., the execution of task variants across different cores -- is inherently able to tolerate both accidental and malicious faults (i.e. attacks) as long as these faults are independent of one another. Yet, targeted attacks on the timing behavior of tasks which utilize information gained about the system behavior violate the fault independence assumption fault tolerance is based on. This violation may give attackers the opportunity to compromise all replicas simultaneously, in particular if they can mount the attack from already compromised components. In this paper, we analyze vulnerabilities of time-triggered systems, focusing on safety-certified multicore real-time systems. We introduce two runtime mitigation strategies to withstand directed timing inference based attacks: (i) schedule randomization at slot level, and (ii) randomization within a set of offline constructed schedules. We evaluate these mitigation strategies with synthetic experiments and a real case study to show their effectiveness and practicality.

Cite as

Kristin Krüger, Nils Vreman, Richard Pates, Martina Maggio, Marcus Völp, and Gerhard Fohler. Randomization as Mitigation of Directed Timing Inference Based Attacks on Time-Triggered Real-Time Systems with Task Replication. In LITES, Volume 7, Issue 1 (2021): Special Issue on Embedded System Security. Leibniz Transactions on Embedded Systems, Volume 7, Issue 1, pp. 01:1-01:29, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Article{kruger_et_al:LITES.7.1.1,
  author =	{Kr\"{u}ger, Kristin and Vreman, Nils and Pates, Richard and Maggio, Martina and V\"{o}lp, Marcus and Fohler, Gerhard},
  title =	{{Randomization as Mitigation of Directed Timing Inference Based Attacks on Time-Triggered Real-Time Systems with Task Replication}},
  booktitle =	{LITES, Volume 7, Issue 1 (2021): Special Issue on Embedded System Security},
  pages =	{01:1--01:29},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2021},
  volume =	{7},
  number =	{1},
  editor =	{Kr\"{u}ger, Kristin and Vreman, Nils and Pates, Richard and Maggio, Martina and V\"{o}lp, Marcus and Fohler, Gerhard},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.7.1.1},
  doi =		{10.4230/LITES.7.1.1},
  annote =	{Keywords: real-time systems, time-triggered systems, security}
}
Document
Short Paper
Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper)

Authors: Martin Sudmanns, Stefan Lang, Dirk Tiede, Christian Werner, Hannah Augustin, and Andrea Baraldi

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
Abstract data types are a helpful framework to formalise analyses and make them more transparent, reproducible and comprehensible. We are revisiting an approach based on the space, time and theme dimensions of remotely sensed data, and extending it with a more differentiated understanding of space-time representations. In contrast to existing approaches and implementations that consider only fixed spatial units (e.g. pixels), our approach allows investigations of the spatial units' spatio-temporal characteristics, such as the size and shape of their geometry, and their relationships. Five different abstract data types are identified to describe geographical phenomenon, either directly or in combination: coverage, time series, trajectory, composition and evolution.

Cite as

Martin Sudmanns, Stefan Lang, Dirk Tiede, Christian Werner, Hannah Augustin, and Andrea Baraldi. Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 60:1-60:7, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{sudmanns_et_al:LIPIcs.GISCIENCE.2018.60,
  author =	{Sudmanns, Martin and Lang, Stefan and Tiede, Dirk and Werner, Christian and Augustin, Hannah and Baraldi, Andrea},
  title =	{{Abstract Data Types for Spatio-Temporal Remote Sensing Analysis}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{60:1--60:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.60},
  URN =		{urn:nbn:de:0030-drops-93881},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.60},
  annote =	{Keywords: Big Earth Data, Semantic Analysis, Data Cube}
}
Document
Similarity Search for Spatial Trajectories Using Online Lower Bounding DTW and Presorting Strategies

Authors: Marie Kiermeier and Martin Werner

Published in: LIPIcs, Volume 90, 24th International Symposium on Temporal Representation and Reasoning (TIME 2017)


Abstract
Similarity search with respect to time series has received much attention from research and industry in the last decade. Dynamic time warping is one of the most widely used distance measures in this context. This is due to the simplicity of its definition and the surprising quality of dynamic time warping for time series classification. However, dynamic time warping is not well-behaving with respect to many dimensionality reduction techniques as it does not fulfill the triangle inequality. Additionally, most research on dynamic time warping has been performed with one-dimensional time series or in multivariate cases of varying dimensions. With this paper, we propose three extensions to LB_Rotation for two-dimensional time series (trajectories). We simplify LB_Rotation and adapt it to the online and data streaming case and show how to tune the pruning ratio in similarity search by using presorting strategies based on simple summaries of trajectories. Finally, we provide a thorough valuation of these aspects on a large variety of datasets of spatial trajectories.

Cite as

Marie Kiermeier and Martin Werner. Similarity Search for Spatial Trajectories Using Online Lower Bounding DTW and Presorting Strategies. In 24th International Symposium on Temporal Representation and Reasoning (TIME 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 90, pp. 18:1-18:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{kiermeier_et_al:LIPIcs.TIME.2017.18,
  author =	{Kiermeier, Marie and Werner, Martin},
  title =	{{Similarity Search for Spatial Trajectories Using Online Lower Bounding DTW and Presorting Strategies}},
  booktitle =	{24th International Symposium on Temporal Representation and Reasoning (TIME 2017)},
  pages =	{18:1--18:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-052-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{90},
  editor =	{Schewe, Sven and Schneider, Thomas and Wijsen, Jef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2017.18},
  URN =		{urn:nbn:de:0030-drops-79190},
  doi =		{10.4230/LIPIcs.TIME.2017.18},
  annote =	{Keywords: Trajectory Computing, Similarity Search, Dynamic Time Warping, Lower Bounds, k Nearest Neighbor Search, Spatial Presorting}
}
Document
Quantitative Analysis of Consistency in NoSQL Key-Value Stores

Authors: Si Liu, Jatin Ganhotra, Muntasir Raihan Rahman, Son Nguyen, Indranil Gupta, and José Meseguer

Published in: LITES, Volume 4, Issue 1 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 1


Abstract
The promise of high scalability and availability has prompted many companies to replace traditional relational database management systems (RDBMS) with NoSQL key-value stores. This comes at the cost of relaxed consistency guarantees: key-value stores only guarantee eventual consistency in principle. In practice, however, many key-value stores seem to offer stronger consistency. Quantifying how well consistency properties are met is a non-trivial problem.  We address this problem by formally modeling key-value stores as probabilistic systems and quantitatively analyzing their consistency properties by both statistical model checking and implementation evaluation. We present for the first time a formal probabilistic model of Apache Cassandra, a popular NoSQL key-value store, and quantify how much Cassandra achieves various consistency guarantees under various conditions. To validate our model, we evaluate multiple consistency properties using two methods and compare them against each other. The two methods are: (1) an implementation-based evaluation of the source code; and (2) a statistical model checking analysis of our probabilistic model.

Cite as

Si Liu, Jatin Ganhotra, Muntasir Raihan Rahman, Son Nguyen, Indranil Gupta, and José Meseguer. Quantitative Analysis of Consistency in NoSQL Key-Value Stores. In LITES, Volume 4, Issue 1 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 1, pp. 03:1-03:26, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{liu_et_al:LITES-v004-i001-a003,
  author =	{Liu, Si and Ganhotra, Jatin and Rahman, Muntasir Raihan and Nguyen, Son and Gupta, Indranil and Meseguer, Jos\'{e}},
  title =	{{Quantitative Analysis of Consistency in NoSQL Key-Value Stores}},
  booktitle =	{LITES, Volume 4, Issue 1 (2017)},
  pages =	{03:1--03:26},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2017},
  volume =	{4},
  number =	{1},
  editor =	{Liu, Si and Ganhotra, Jatin and Rahman, Muntasir Raihan and Nguyen, Son and Gupta, Indranil and Meseguer, Jos\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v004-i001-a003},
  doi =		{10.4230/LITES-v004-i001-a003},
  annote =	{Keywords: NoSQL Key-value Store, Consistency, Statistical Model Checking, Rewriting Logic, Maude}
}
Document
A Service-Oriented Operating System and an Application Development Infrastructure for Distributed Embedded Systems

Authors: Martin Lipphardt, Nils Glombitza, Jana Neumann, Christian Werner, and Stefan Fischer

Published in: OASIcs, Volume 17, 17th GI/ITG Conference on Communication in Distributed Systems (KiVS 2011)


Abstract
The paradigm of service-orientation promises a significant ease of use in creating and managing distributed software systems. A very important aspect here is that also application domain experts and stakeholders, who are not necessarily skilled in computer programming, get a chance to create, analyze, and adapt distributed applications. However, up to now, service-oriented architectures have been mainly discussed in the context of complex business applications. In this paper we will investigate how to transfer the benefits of a service-oriented architecture into the field of embedded systems, so that this technology gets accessible to a much wider range of users. As an example, we will demonstrate this scheme for sensor network applications. In order to address the problem of limited device resources we will introduce a minimal operating system for such devices. It organizes all pieces of code running on a sensor node in a service-oriented fashion and also features the relocation of code to a different node at runtime. We will demonstrate that it is possible to design a sensor network application from a set of already existing services in a highly modular way by employing already existing technologies and standards.

Cite as

Martin Lipphardt, Nils Glombitza, Jana Neumann, Christian Werner, and Stefan Fischer. A Service-Oriented Operating System and an Application Development Infrastructure for Distributed Embedded Systems. In 17th GI/ITG Conference on Communication in Distributed Systems (KiVS 2011). Open Access Series in Informatics (OASIcs), Volume 17, pp. 26-37, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{lipphardt_et_al:OASIcs.KiVS.2011.26,
  author =	{Lipphardt, Martin and Glombitza, Nils and Neumann, Jana and Werner, Christian and Fischer, Stefan},
  title =	{{A Service-Oriented Operating System and an Application Development Infrastructure for Distributed Embedded Systems}},
  booktitle =	{17th GI/ITG Conference on Communication in Distributed Systems (KiVS 2011)},
  pages =	{26--37},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-27-9},
  ISSN =	{2190-6807},
  year =	{2011},
  volume =	{17},
  editor =	{Luttenberger, Norbert and Peters, Hagen},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.KiVS.2011.26},
  URN =		{urn:nbn:de:0030-drops-29550},
  doi =		{10.4230/OASIcs.KiVS.2011.26},
  annote =	{Keywords: service-oriented OS, sensor network, distributed embedded systems}
}
  • Refine by Author
  • 3 Werner, Christian
  • 3 Werner, Martin
  • 1 Almeida, Jussara
  • 1 Anderson, Taylor
  • 1 Andrienko, Gennady
  • Show More...

  • Refine by Classification
  • 2 Information systems → Geographic information systems
  • 1 Computer systems organization → Cloud computing
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • 1 Computer systems organization → Real-time systems
  • 1 Computer systems organization → Redundancy
  • Show More...

  • Refine by Keyword
  • 1 3D city model
  • 1 Active Objects
  • 1 Analytics
  • 1 Behavior
  • 1 Big Earth Data
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 3 2022
  • 2 2017
  • 2 2023
  • 1 2011
  • 1 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail