181 Search Results for "Woodruff, David P."


Volume

LIPIcs, Volume 229

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)

ICALP 2022, July 4-8, 2022, Paris, France

Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff

Document
APPROX
Facility Location in the Sublinear Geometric Model

Authors: Morteza Monemizadeh

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
In the sublinear geometric model, we are provided with an oracle access to a point set P of n points in a bounded discrete space [Δ]², where Δ = n^O(1) is a polynomially bounded number in n. That is, we do not have direct access to the points, but we can make certain types of queries and there is an oracle that responds to our queries. The type of queries that we assume we can make in this paper, are range counting queries where ranges are axis-aligned rectangles (that are basic primitives in database [Srikanta Tirthapura and David P. Woodruff, 2012; Bentley, 1975; Mark de Berg et al., 2008], computational geometry [Pankaj K. Agarwal, 2004; Pankaj K. Agarwal et al., 1996; Boris Aronov et al., 2010; Boris Aronov et al., 2009], and machine learning [Menachem Sadigurschi and Uri Stemmer, 2021; Long and Tan, 1998; Michael J. Kearns and Umesh V. Vazirani, 1995; Michael J. Kearns and Umesh V. Vazirani, 1994]). The oracle then answers these queries by returning the number of points that are in queried ranges. Let {Alg} be an algorithm that (exactly or approximately) solves a problem 𝒫 in the sublinear geometric model. The query complexity of Alg is measured in terms of the number of queries that Alg makes to solve 𝒫. In this paper, we study the complexity of the (uniform) Euclidean facility location problem in the sublinear geometric model. We develop a randomized sublinear algorithm that with high probability, (1+ε)-approximates the cost of the Euclidean facility location problem of the point set P in the sublinear geometric model using Õ(√n) range counting queries. We complement this result by showing that approximating the cost of the Euclidean facility location problem within o(log(n))-factor in the sublinear geometric model using the sampling strategy that we propose for our sublinear algorithm needs Ω̃(n^{1/4}) RangeCount queries. We leave it as an open problem whether such a polynomial lower bound on the number of RangeCount queries exists for any randomized sublinear algorithm that approximates the cost of the facility location problem within a constant factor.

Cite as

Morteza Monemizadeh. Facility Location in the Sublinear Geometric Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 6:1-6:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{monemizadeh:LIPIcs.APPROX/RANDOM.2023.6,
  author =	{Monemizadeh, Morteza},
  title =	{{Facility Location in the Sublinear Geometric Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{6:1--6:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.6},
  URN =		{urn:nbn:de:0030-drops-188315},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.6},
  annote =	{Keywords: Facility Location, Sublinear Geometric Model, Range Counting Queries}
}
Document
Noisy Sorting Without Searching: Data Oblivious Sorting with Comparison Errors

Authors: Ramtin Afshar, Michael Dillencourt, Michael T. Goodrich, and Evrim Ozel

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We provide and study several algorithms for sorting an array of n comparable distinct elements subject to probabilistic comparison errors. In this model, the comparison of two elements returns the wrong answer according to a fixed probability, p_e < 1/2, and otherwise returns the correct answer. The dislocation of an element is the distance between its position in a given (current or output) array and its position in a sorted array. There are various algorithms that can be utilized for sorting or near-sorting elements subject to probabilistic comparison errors, but these algorithms are not data oblivious because they all make heavy use of noisy binary searching. In this paper, we provide new methods for sorting with comparison errors that are data oblivious while avoiding the use of noisy binary search methods. In addition, we experimentally compare our algorithms and other sorting algorithms.

Cite as

Ramtin Afshar, Michael Dillencourt, Michael T. Goodrich, and Evrim Ozel. Noisy Sorting Without Searching: Data Oblivious Sorting with Comparison Errors. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 8:1-8:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{afshar_et_al:LIPIcs.SEA.2023.8,
  author =	{Afshar, Ramtin and Dillencourt, Michael and Goodrich, Michael T. and Ozel, Evrim},
  title =	{{Noisy Sorting Without Searching: Data Oblivious Sorting with Comparison Errors}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.8},
  URN =		{urn:nbn:de:0030-drops-183585},
  doi =		{10.4230/LIPIcs.SEA.2023.8},
  annote =	{Keywords: sorting, algorithms, randomization, experimentation}
}
Document
Recovery from Non-Decomposable Distance Oracles

Authors: Zhuangfei Hu, Xinda Li, David P. Woodruff, Hongyang Zhang, and Shufan Zhang

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
A line of work has looked at the problem of recovering an input from distance queries. In this setting, there is an unknown sequence s ∈ {0,1}^{≤ n}, and one chooses a set of queries y ∈ {0,1}^𝒪(n) and receives d(s,y) for a distance function d. The goal is to make as few queries as possible to recover s. Although this problem is well-studied for decomposable distances, i.e., distances of the form d(s,y) = ∑_{i=1}^n f(s_i, y_i) for some function f, which includes the important cases of Hamming distance, 𝓁_p-norms, and M-estimators, to the best of our knowledge this problem has not been studied for non-decomposable distances, for which there are important special cases such as edit distance, dynamic time warping (DTW), Fréchet distance, earth mover’s distance, and so on. We initiate the study and develop a general framework for such distances. Interestingly, for some distances such as DTW or Fréchet, exact recovery of the sequence s is provably impossible, and so we show by allowing the characters in y to be drawn from a slightly larger alphabet this then becomes possible. In a number of cases we obtain optimal or near-optimal query complexity. We also study the role of adaptivity for a number of different distance functions. One motivation for understanding non-adaptivity is that the query sequence can be fixed and the distances of the input to the queries provide a non-linear embedding of the input, which can be used in downstream applications involving, e.g., neural networks for natural language processing.

Cite as

Zhuangfei Hu, Xinda Li, David P. Woodruff, Hongyang Zhang, and Shufan Zhang. Recovery from Non-Decomposable Distance Oracles. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 73:1-73:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.ITCS.2023.73,
  author =	{Hu, Zhuangfei and Li, Xinda and Woodruff, David P. and Zhang, Hongyang and Zhang, Shufan},
  title =	{{Recovery from Non-Decomposable Distance Oracles}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{73:1--73:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.73},
  URN =		{urn:nbn:de:0030-drops-175767},
  doi =		{10.4230/LIPIcs.ITCS.2023.73},
  annote =	{Keywords: Sequence Recovery, Edit Distance, DTW Distance, Fr\'{e}chet Distance}
}
Document
RANDOM
Streaming Algorithms with Large Approximation Factors

Authors: Yi Li, Honghao Lin, David P. Woodruff, and Yuheng Zhang

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We initiate a broad study of classical problems in the streaming model with insertions and deletions in the setting where we allow the approximation factor α to be much larger than 1. Such algorithms can use significantly less memory than the usual setting for which α = 1+ε for an ε ∈ (0,1). We study large approximations for a number of problems in sketching and streaming, assuming that the underlying n-dimensional vector has all coordinates bounded by M throughout the data stream: 1) For the 𝓁_p norm/quasi-norm, 0 < p ≤ 2, we show that obtaining a poly(n)-approximation requires the same amount of memory as obtaining an O(1)-approximation for any M = n^Θ(1), which holds even for randomly ordered streams or for streams in the bounded deletion model. 2) For estimating the 𝓁_p norm, p > 2, we show an upper bound of O(n^{1-2/p} (log n log M)/α²) bits for an α-approximation, and give a matching lower bound for linear sketches. 3) For the 𝓁₂-heavy hitters problem, we show that the known lower bound of Ω(k log nlog M) bits for identifying (1/k)-heavy hitters holds even if we are allowed to output items that are 1/(α k)-heavy, provided the algorithm succeeds with probability 1-O(1/n). We also obtain a lower bound for linear sketches that is tight even for constant failure probability algorithms. 4) For estimating the number 𝓁₀ of distinct elements, we give an n^{1/t}-approximation algorithm using O(tlog log M) bits of space, as well as a lower bound of Ω(t) bits, both excluding the storage of random bits, where n is the dimension of the underlying frequency vector and M is an upper bound on the magnitude of its coordinates. 5) For α-approximation to the Schatten-p norm, we give near-optimal Õ(n^{2-4/p}/α⁴) sketching dimension for every even integer p and every α ≥ 1, while for p not an even integer we obtain near-optimal sketching dimension once α = Ω(n^{1/q-1/p}), where q is the largest even integer less than p. The latter is surprising as it is unknown what the complexity of Schatten-p norm estimation is for constant approximation; we show once the approximation factor is at least n^{1/q-1/p}, we can obtain near-optimal sketching bounds.

Cite as

Yi Li, Honghao Lin, David P. Woodruff, and Yuheng Zhang. Streaming Algorithms with Large Approximation Factors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 13:1-13:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.APPROX/RANDOM.2022.13,
  author =	{Li, Yi and Lin, Honghao and Woodruff, David P. and Zhang, Yuheng},
  title =	{{Streaming Algorithms with Large Approximation Factors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{13:1--13:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.13},
  URN =		{urn:nbn:de:0030-drops-171354},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.13},
  annote =	{Keywords: streaming algorithms, 𝓁\underlinep norm, heavy hitters, distinct elements}
}
Document
RANDOM
Adaptive Sketches for Robust Regression with Importance Sampling

Authors: Sepideh Mahabadi, David P. Woodruff, and Samson Zhou

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We introduce data structures for solving robust regression through stochastic gradient descent (SGD) by sampling gradients with probability proportional to their norm, i.e., importance sampling. Although SGD is widely used for large scale machine learning, it is well-known for possibly experiencing slow convergence rates due to the high variance from uniform sampling. On the other hand, importance sampling can significantly decrease the variance but is usually difficult to implement because computing the sampling probabilities requires additional passes over the data, in which case standard gradient descent (GD) could be used instead. In this paper, we introduce an algorithm that approximately samples T gradients of dimension d from nearly the optimal importance sampling distribution for a robust regression problem over n rows. Thus our algorithm effectively runs T steps of SGD with importance sampling while using sublinear space and just making a single pass over the data. Our techniques also extend to performing importance sampling for second-order optimization.

Cite as

Sepideh Mahabadi, David P. Woodruff, and Samson Zhou. Adaptive Sketches for Robust Regression with Importance Sampling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 31:1-31:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{mahabadi_et_al:LIPIcs.APPROX/RANDOM.2022.31,
  author =	{Mahabadi, Sepideh and Woodruff, David P. and Zhou, Samson},
  title =	{{Adaptive Sketches for Robust Regression with Importance Sampling}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{31:1--31:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.31},
  URN =		{urn:nbn:de:0030-drops-171531},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.31},
  annote =	{Keywords: Streaming algorithms, stochastic optimization, importance sampling}
}
Document
Complete Volume
LIPIcs, Volume 229, ICALP 2022, Complete Volume

Authors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
LIPIcs, Volume 229, ICALP 2022, Complete Volume

Cite as

Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff. LIPIcs, Volume 229, ICALP 2022, Complete Volume. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 1-2516, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{bojanczyk_et_al:LIPIcs.ICALP.2022,
  title =	{{LIPIcs, Volume 229, ICALP 2022, Complete Volume}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{1--2516},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022},
  URN =		{urn:nbn:de:0030-drops-163400},
  doi =		{10.4230/LIPIcs.ICALP.2022},
  annote =	{Keywords: LIPIcs, Volume 229, ICALP 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff. Front Matter, Table of Contents, Preface, Conference Organization. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 0:i-0:xxxvi, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bojanczyk_et_al:LIPIcs.ICALP.2022.0,
  author =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{0:i--0:xxxvi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.0},
  URN =		{urn:nbn:de:0030-drops-163417},
  doi =		{10.4230/LIPIcs.ICALP.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Towards a Theory of Algorithmic Proof Complexity (Invited Talk)

Authors: Albert Atserias

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
A possibly unexpected by-product of the mathematical study of the lengths of proofs, as is done in the field of propositional proof complexity, is, I claim, that it may lead to new polynomial-time algorithms. To explain this, I will first recall the origins of proof complexity as a field, and then explain why some of the recent progress in it could lead to some new algorithms.

Cite as

Albert Atserias. Towards a Theory of Algorithmic Proof Complexity (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 1:1-1:2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{atserias:LIPIcs.ICALP.2022.1,
  author =	{Atserias, Albert},
  title =	{{Towards a Theory of Algorithmic Proof Complexity}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.1},
  URN =		{urn:nbn:de:0030-drops-163423},
  doi =		{10.4230/LIPIcs.ICALP.2022.1},
  annote =	{Keywords: proof complexity, logic, computational complexity}
}
Document
Invited Talk
Equilibrium Computation, Deep Learning, and Multi-Agent Reinforcement Learning (Invited Talk)

Authors: Constantinos Daskalakis

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Machine Learning has recently made significant advances in challenges such as speech and image recognition, automatic translation, and text generation, much of that progress being fueled by the success of gradient descent-based optimization methods in computing local optima of non-convex objectives. From robustifying machine learning models against adversarial attacks to causal inference, training generative models, multi-robot interactions, and learning in strategic environments, many outstanding challenges in Machine Learning lie at its interface with Game Theory. On this front, however, gradient-descent based optimization methods have been less successful. Here, the role of single-objective optimization is played by equilibrium computation, but gradient-descent based methods commonly fail to find equilibria, and even computing local approximate equilibria has remained daunting. We shed light on these challenges through a combination of learning-theoretic, complexity-theoretic, game-theoretic and topological techniques, presenting obstacles and opportunities for Machine Learning and Game Theory going forward. I will assume no Deep Learning background for this talk and present results from joint works with S. Skoulakis and M. Zampetakis [Daskalakis et al., 2021] as well as with N. Golowich and K. Zhang [Daskalakis et al., 2022].

Cite as

Constantinos Daskalakis. Equilibrium Computation, Deep Learning, and Multi-Agent Reinforcement Learning (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, p. 2:1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{daskalakis:LIPIcs.ICALP.2022.2,
  author =	{Daskalakis, Constantinos},
  title =	{{Equilibrium Computation, Deep Learning, and Multi-Agent Reinforcement Learning}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.2},
  URN =		{urn:nbn:de:0030-drops-163431},
  doi =		{10.4230/LIPIcs.ICALP.2022.2},
  annote =	{Keywords: Deep Learning, Multi-Agent (Reinforcement) Learning, Game Theory, Nonconvex Optimization, PPAD}
}
Document
Invited Talk
Some New (And Old) Results on Contention Resolution (Invited Talk)

Authors: Leslie Ann Goldberg

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
This is an extended abstract of my talk at ICALP 2022, based on joint work with John Lapinskas.

Cite as

Leslie Ann Goldberg. Some New (And Old) Results on Contention Resolution (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 3:1-3:3, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goldberg:LIPIcs.ICALP.2022.3,
  author =	{Goldberg, Leslie Ann},
  title =	{{Some New (And Old) Results on Contention Resolution}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{3:1--3:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.3},
  URN =		{urn:nbn:de:0030-drops-163444},
  doi =		{10.4230/LIPIcs.ICALP.2022.3},
  annote =	{Keywords: contention resolution, multiple access channel, randomised algorithms}
}
Document
Invited Talk
The Manifold Joys of Sampling (Invited Talk)

Authors: Yin Tat Lee and Santosh S. Vempala

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We survey recent progress and many open questions in the field of sampling high-dimensional distributions, with specific focus on sampling with non-Euclidean metrics.

Cite as

Yin Tat Lee and Santosh S. Vempala. The Manifold Joys of Sampling (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 4:1-4:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.ICALP.2022.4,
  author =	{Lee, Yin Tat and Vempala, Santosh S.},
  title =	{{The Manifold Joys of Sampling}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.4},
  URN =		{urn:nbn:de:0030-drops-163459},
  doi =		{10.4230/LIPIcs.ICALP.2022.4},
  annote =	{Keywords: Sampling, Diffusion, Optimization, High Dimension}
}
Document
Invited Talk
Streaming and Sketching Complexity of CSPs: A Survey (Invited Talk)

Authors: Madhu Sudan

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
In this survey we describe progress over the last decade or so in understanding the complexity of solving constraint satisfaction problems (CSPs) approximately in the streaming and sketching models of computation. After surveying some of the results we give some sketches of the proofs and in particular try to explain why there is a tight dichotomy result for sketching algorithms working in subpolynomial space regime.

Cite as

Madhu Sudan. Streaming and Sketching Complexity of CSPs: A Survey (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 5:1-5:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{sudan:LIPIcs.ICALP.2022.5,
  author =	{Sudan, Madhu},
  title =	{{Streaming and Sketching Complexity of CSPs: A Survey}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.5},
  URN =		{urn:nbn:de:0030-drops-163460},
  doi =		{10.4230/LIPIcs.ICALP.2022.5},
  annote =	{Keywords: Streaming algorithms, Sketching algorithms, Dichotomy, Communication Complexity}
}
Document
Invited Talk
A Brief Tour in Twin-Width (Invited Talk)

Authors: Stéphan Thomassé

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
This is an introduction to the notion of twin-width, with emphasis on how it interacts with first-order model checking and enumerative combinatorics. Even though approximating twin-width remains a challenge in general graphs, it is now well understood for ordered graphs, where bounded twin-width coincides with many other complexity gaps. For instance classes of graphs with linear FO-model checking, small classes, or NIP classes are exactly bounded twin-width classes. Some other applications of twin-width are also presented.

Cite as

Stéphan Thomassé. A Brief Tour in Twin-Width (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 6:1-6:5, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{thomasse:LIPIcs.ICALP.2022.6,
  author =	{Thomass\'{e}, St\'{e}phan},
  title =	{{A Brief Tour in Twin-Width}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{6:1--6:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.6},
  URN =		{urn:nbn:de:0030-drops-163473},
  doi =		{10.4230/LIPIcs.ICALP.2022.6},
  annote =	{Keywords: Twin-width, matrices, ordered graphs, enumerative combinatorics, model theory, algorithms, computational complexity, Ramsey theory}
}
Document
Track A: Algorithms, Complexity and Games
Improved Approximation Algorithms and Lower Bounds for Search-Diversification Problems

Authors: Amir Abboud, Vincent Cohen-Addad, Euiwoong Lee, and Pasin Manurangsi

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study several questions related to diversifying search results. We give improved approximation algorithms in each of the following problems, together with some lower bounds. 1) We give a polynomial-time approximation scheme (PTAS) for a diversified search ranking problem [Nikhil Bansal et al., 2010] whose objective is to minimizes the discounted cumulative gain. Our PTAS runs in time n^{2^O(log(1/ε)/ε)} ⋅ m^O(1) where n denotes the number of elements in the databases and m denotes the number of constraints. Complementing this result, we show that no PTAS can run in time f(ε) ⋅ (nm)^{2^o(1/ε)} assuming Gap-ETH and therefore our running time is nearly tight. Both our upper and lower bounds answer open questions from [Nikhil Bansal et al., 2010]. 2) We next consider the Max-Sum Dispersion problem, whose objective is to select k out of n elements from a database that maximizes the dispersion, which is defined as the sum of the pairwise distances under a given metric. We give a quasipolynomial-time approximation scheme (QPTAS) for the problem which runs in time n^{O_ε(log n)}. This improves upon previously known polynomial-time algorithms with approximate ratios 0.5 [Refael Hassin et al., 1997; Allan Borodin et al., 2017]. Furthermore, we observe that reductions from previous work rule out approximation schemes that run in n^õ_ε(log n) time assuming ETH. 3) Finally, we consider a generalization of Max-Sum Dispersion called Max-Sum Diversification. In addition to the sum of pairwise distance, the objective also includes another function f. For monotone submodular function f, we give a quasipolynomial-time algorithm with approximation ratio arbitrarily close to (1-1/e). This improves upon the best polynomial-time algorithm which has approximation ratio 0.5 [Allan Borodin et al., 2017]. Furthermore, the (1-1/e) factor is also tight as achieving better-than-(1-1/e) approximation is NP-hard [Uriel Feige, 1998].

Cite as

Amir Abboud, Vincent Cohen-Addad, Euiwoong Lee, and Pasin Manurangsi. Improved Approximation Algorithms and Lower Bounds for Search-Diversification Problems. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 7:1-7:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ICALP.2022.7,
  author =	{Abboud, Amir and Cohen-Addad, Vincent and Lee, Euiwoong and Manurangsi, Pasin},
  title =	{{Improved Approximation Algorithms and Lower Bounds for Search-Diversification Problems}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.7},
  URN =		{urn:nbn:de:0030-drops-163481},
  doi =		{10.4230/LIPIcs.ICALP.2022.7},
  annote =	{Keywords: Approximation Algorithms, Complexity, Data Mining, Diversification}
}
  • Refine by Author
  • 43 Woodruff, David P.
  • 7 Li, Yi
  • 5 Zhou, Samson
  • 3 Braverman, Vladimir
  • 3 Bringmann, Karl
  • Show More...

  • Refine by Classification
  • 21 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 11 Theory of computation → Design and analysis of algorithms
  • 11 Theory of computation → Graph algorithms analysis
  • 9 Mathematics of computing → Graph algorithms
  • 9 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 7 communication complexity
  • 6 sketching
  • 5 Fine-Grained Complexity
  • 5 data streams
  • 5 graph algorithms
  • Show More...

  • Refine by Type
  • 180 document
  • 1 volume

  • Refine by Publication Year
  • 140 2022
  • 8 2018
  • 6 2019
  • 6 2020
  • 6 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail