248 Search Results for "Woodruff, David P."


Volume

LIPIcs, Volume 229

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)

ICALP 2022, July 4-8, 2022, Paris, France

Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff

Document
Invited Talk
Simple (Invited Talk)

Authors: Eva Rotenberg

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Simplicity in algorithms has various aspects; interpretations and implications. One is the simplicity of the algorithmic solution itself: if an algorithm (or data structure) has a brief verbal description or can be written with few lines of pseudocode, this can lead to easier, more robust, and possibly more efficient implementations. Another aspect of simplicity relates to the proofs of correctness and efficiency of our algorithmic solutions. Here, we experience that algorithms and data structures with simpler proofs of statements about their properties can be easier to understand, easier to teach, and sometimes, easier to generalise. Simplification of proofs also receives attention in mathematics; here, too, simplification has benefits to clarity of exposition and possibility of generalisation. There are even examples of proof simplification leading to the design of new and more efficient algorithms. This talk will present examples illustrating these various aspects of simplicity. Examples where algorithmic simplification or proof simplification has led to improved performance of algorithms and data structures, in theory, in practice, or both. Finally, some of the most attractive questions in discrete mathematics and in theory of computing have a property in common: they are very simple to pose, but surprisingly, to our knowledge, not very simple to answer. The talk will include examples of such questions, which I leave as an open problem for the audience.

Cite as

Eva Rotenberg. Simple (Invited Talk). In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 2:1-2:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rotenberg:LIPIcs.ESA.2024.2,
  author =	{Rotenberg, Eva},
  title =	{{Simple}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{2:1--2:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.2},
  URN =		{urn:nbn:de:0030-drops-210739},
  doi =		{10.4230/LIPIcs.ESA.2024.2},
  annote =	{Keywords: Simplicity, graph algorithms, computational geometry, algorithmic simplification, data structures, combinatorics, proof simplification, dynamic graphs}
}
Document
Interval Selection in Sliding Windows

Authors: Cezar-Mihail Alexandru and Christian Konrad

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We initiate the study of the Interval Selection problem in the (streaming) sliding window model of computation. In this problem, an algorithm receives a potentially infinite stream of intervals on the line, and the objective is to maintain at every moment an approximation to a largest possible subset of disjoint intervals among the L most recent intervals, for some integer L. We give the following results: 1) In the unit-length intervals case, we give a 2-approximation sliding window algorithm with space Õ(|OPT|), and we show that any sliding window algorithm that computes a (2-ε)-approximation requires space Ω(L), for any ε > 0. 2) In the arbitrary-length case, we give a (11/3+ε)-approximation sliding window algorithm with space Õ(|OPT|), for any constant ε > 0, which constitutes our main result. We also show that space Ω(L) is needed for algorithms that compute a (2.5-ε)-approximation, for any ε > 0. Our main technical contribution is an improvement over the smooth histogram technique, which consists of running independent copies of a traditional streaming algorithm with different start times. By employing the one-pass 2-approximation streaming algorithm by Cabello and Pérez-Lantero [Theor. Comput. Sci. '17] for Interval Selection on arbitrary-length intervals as the underlying algorithm, the smooth histogram technique immediately yields a (4+ε)-approximation in this setting. Our improvement is obtained by forwarding the structure of the intervals identified in a run to the subsequent run, which constrains the shape of an optimal solution and allows us to target optimal intervals differently.

Cite as

Cezar-Mihail Alexandru and Christian Konrad. Interval Selection in Sliding Windows. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alexandru_et_al:LIPIcs.ESA.2024.8,
  author =	{Alexandru, Cezar-Mihail and Konrad, Christian},
  title =	{{Interval Selection in Sliding Windows}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.8},
  URN =		{urn:nbn:de:0030-drops-210795},
  doi =		{10.4230/LIPIcs.ESA.2024.8},
  annote =	{Keywords: Sliding window algorithms, Streaming algorithms, Interval selection}
}
Document
Longest Common Extensions with Wildcards: Trade-Off and Applications

Authors: Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the Longest Common Extension (LCE) problem in a string containing wildcards. Wildcards (also called "don't cares" or "holes") are special characters that match any other character in the alphabet, similar to the character "?" in Unix commands or "." in regular expression engines. We consider the problem parametrized by G, the number of maximal contiguous groups of wildcards in the input string. Our main contribution is a simple data structure for this problem that can be built in O(n (G/t) log n) time, occupies O(nG/t) space, and answers queries in O(t) time, for any t ∈ [1 .. G]. Up to the O(log n) factor, this interpolates smoothly between the data structure of Crochemore et al. [JDA 2015], which has O(nG) preprocessing time and space, and O(1) query time, and a simple solution based on the "kangaroo jumping" technique [Landau and Vishkin, STOC 1986], which has O(n) preprocessing time and space, and O(G) query time. By establishing a connection between this problem and Boolean matrix multiplication, we show that our solution is optimal up to subpolynomial factors when G = Ω(n) under a widely believed hypothesis. In addition, we develop a new simple, deterministic and combinatorial algorithm for sparse Boolean matrix multiplication. Finally, we show that our data structure can be used to obtain efficient algorithms for approximate pattern matching and structural analysis of strings with wildcards. First, we consider the problem of pattern matching with k errors (i.e., edit operations) in the setting where both the pattern and the text may contain wildcards. The "kangaroo jumping" technique can be adapted to yield an algorithm for this problem with runtime O(n(k+G)), where G is the total number of maximal contiguous groups of wildcards in the text and the pattern and n is the length of the text. By combining "kangaroo jumping" with a tailor-made data structure for LCE queries, Akutsu [IPL 1995] devised an O(n√{km} polylog m)-time algorithm. We improve on both algorithms when k ≪ G ≪ m by giving an algorithm with runtime O(n(k + √{Gk log n})). Secondly, we give O(n√G log n)-time and O(n)-space algorithms for computing the prefix array, as well as the quantum/deterministic border and period arrays of a string with wildcards. This is an improvement over the O(n√{nlog n})-time algorithms of Iliopoulos and Radoszewski [CPM 2016] when G = O(n / log n).

Cite as

Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya. Longest Common Extensions with Wildcards: Trade-Off and Applications. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.ESA.2024.19,
  author =	{Bathie, Gabriel and Charalampopoulos, Panagiotis and Starikovskaya, Tatiana},
  title =	{{Longest Common Extensions with Wildcards: Trade-Off and Applications}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.19},
  URN =		{urn:nbn:de:0030-drops-210904},
  doi =		{10.4230/LIPIcs.ESA.2024.19},
  annote =	{Keywords: Longest common prefix, longest common extension, wildcards, Boolean matrix multiplication, approximate pattern matching, periodicity arrays}
}
Document
A Faster Algorithm for the Fréchet Distance in 1D for the Imbalanced Case

Authors: Lotte Blank and Anne Driemel

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The fine-grained complexity of computing the {Fréchet distance } has been a topic of much recent work, starting with the quadratic SETH-based conditional lower bound by Bringmann from 2014. Subsequent work established largely the same complexity lower bounds for the {Fréchet distance } in 1D. However, the imbalanced case, which was shown by Bringmann to be tight in dimensions d ≥ 2, was still left open. Filling in this gap, we show that a faster algorithm for the {Fréchet distance } in the imbalanced case is possible: Given two 1-dimensional curves of complexity n and n^{α} for some α ∈ (0,1), we can compute their {Fréchet distance } in O(n^{2α} log² n + n log n) time. This rules out a conditional lower bound of the form O((nm)^{1-ε}) that Bringmann showed for d ≥ 2 and any ε > 0 in turn showing a strict separation with the setting d = 1. At the heart of our approach lies a data structure that stores a 1-dimensional curve P of complexity n, and supports queries with a curve Q of complexity m for the continuous {Fréchet distance } between P and Q. The data structure has size in 𝒪(nlog n) and uses query time in 𝒪(m² log² n). Our proof uses a key lemma that is based on the concept of visiting orders and may be of independent interest. We demonstrate this by substantially simplifying the correctness proof of a clustering algorithm by Driemel, Krivošija and Sohler from 2015.

Cite as

Lotte Blank and Anne Driemel. A Faster Algorithm for the Fréchet Distance in 1D for the Imbalanced Case. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 28:1-28:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blank_et_al:LIPIcs.ESA.2024.28,
  author =	{Blank, Lotte and Driemel, Anne},
  title =	{{A Faster Algorithm for the Fr\'{e}chet Distance in 1D for the Imbalanced Case}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{28:1--28:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.28},
  URN =		{urn:nbn:de:0030-drops-210999},
  doi =		{10.4230/LIPIcs.ESA.2024.28},
  annote =	{Keywords: \{Fr\'{e}chet distance\}, distance oracle, data structures, time series}
}
Document
A Euclidean Embedding for Computing Persistent Homology with Gaussian Kernels

Authors: Jean-Daniel Boissonnat and Kunal Dutta

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Computing persistent homology of large datasets using Gaussian kernels is useful in the domains of topological data analysis and machine learning as shown by Phillips, Wang and Zheng [SoCG 2015]. However, unlike in the case of persistent homology computation using the Euclidean distance or the k-distance, using Gaussian kernels involves significantly higher overhead, as all distance computations are in terms of the Gaussian kernel distance which is computationally more expensive. Further, most algorithmic implementations (e.g. Gudhi, Ripser, etc.) are based on Euclidean distances, so the question of finding a Euclidean embedding - preferably low-dimensional - that preserves the persistent homology computed with Gaussian kernels, is quite important. We consider the Gaussian kernel power distance (GKPD) given by Phillips, Wang and Zheng. Given an n-point dataset and a relative error parameter {ε} ∈ (0,1], we show that the persistent homology of the {Čech } filtration of the dataset computed using the GKPD can be approximately preserved using O({ε}^{-2}log n) dimensions, under a high stable rank condition. Our results also extend to the Delaunay filtration and the (simpler) case of the weighted Rips filtrations constructed using the GKPD. Compared to the Euclidean embedding for the Gaussian kernel function in ∼ n dimensions, which uses the Cholesky decomposition of the matrix of the kernel function applied to all pairs of data points, our embedding may also be viewed as dimensionality reduction - reducing the dimensionality from n to ∼ log n dimensions. Our proof utilizes the embedding of Chen and Phillips [ALT 2017], based on the Random Fourier Functions of Rahimi and Recht [NeurIPS 2007], together with two novel ingredients. The first one is a new decomposition of the squared radii of {Čech } simplices computed using the GKPD, in terms of the pairwise GKPDs between the vertices, which we state and prove. The second is a new concentration inequality for sums of cosine functions of Gaussian random vectors, which we call Gaussian cosine chaoses. We believe these are of independent interest and will find other applications in future.

Cite as

Jean-Daniel Boissonnat and Kunal Dutta. A Euclidean Embedding for Computing Persistent Homology with Gaussian Kernels. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 29:1-29:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boissonnat_et_al:LIPIcs.ESA.2024.29,
  author =	{Boissonnat, Jean-Daniel and Dutta, Kunal},
  title =	{{A Euclidean Embedding for Computing Persistent Homology with Gaussian Kernels}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{29:1--29:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.29},
  URN =		{urn:nbn:de:0030-drops-211009},
  doi =		{10.4230/LIPIcs.ESA.2024.29},
  annote =	{Keywords: Persistent homology, Gaussian kernels, Random Fourier Features, Euclidean embedding}
}
Document
Exact Minimum Weight Spanners via Column Generation

Authors: Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Given a weighted graph G, a minimum weight α-spanner is a least-weight subgraph H ⊆ G that preserves minimum distances between all node pairs up to a factor of α. There are many results on heuristics and approximation algorithms, including a recent investigation of their practical performance [Markus Chimani and Finn Stutzenstein, 2022]. Exact approaches, in contrast, have long been denounced as impractical: The first exact ILP (integer linear program) method [Sigurd and Zachariasen, 2004] from 2004 is based on a model with exponentially many path variables, solved via column generation. A second approach [Ahmed et al., 2019], modeling via arc-based multicommodity flow, was presented in 2019. In both cases, only graphs with 40-100 nodes were reported to be solvable. In this paper, we briefly report on a theoretical comparison between these two models from a polyhedral point of view, and then concentrate on improvements and engineering aspects. We evaluate their performance in a large-scale empirical study. We report that our tuned column generation approach, based on multicriteria shortest path computations, is able to solve instances with over 16 000 nodes within 13 min. Furthermore, now knowing optimal solutions for larger graphs, we are able to investigate the quality of the strongest known heuristic on reasonably sized instances for the first time.

Cite as

Fritz Bökler, Markus Chimani, Henning Jasper, and Mirko H. Wagner. Exact Minimum Weight Spanners via Column Generation. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bokler_et_al:LIPIcs.ESA.2024.30,
  author =	{B\"{o}kler, Fritz and Chimani, Markus and Jasper, Henning and Wagner, Mirko H.},
  title =	{{Exact Minimum Weight Spanners via Column Generation}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.30},
  URN =		{urn:nbn:de:0030-drops-211012},
  doi =		{10.4230/LIPIcs.ESA.2024.30},
  annote =	{Keywords: Graph spanners, ILP, algorithm engineering, experimental study}
}
Document
Improved Algorithms for Maximum Coverage in Dynamic and Random Order Streams

Authors: Amit Chakrabarti, Andrew McGregor, and Anthony Wirth

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The maximum coverage problem is to select k sets, from a collection of m sets, such that the cardinality of their union, in a universe of size n, is maximized. We consider (1-1/e-ε)-approximation algorithms for this NP-hard problem in three standard data stream models. 1) Dynamic Model. The stream consists of a sequence of sets being inserted and deleted. Our multi-pass algorithm uses ε^{-2} k ⋅ polylog(n,m) space. The best previous result (Assadi and Khanna, SODA 2018) used (n +ε^{-4} k) polylog(n,m) space. While both algorithms use O(ε^{-1} log m) passes, our analysis shows that, when ε ≤ 1/log log m, it is possible to reduce the number of passes by a 1/log log m factor without incurring additional space. 2) Random Order Model. In this model, there are no deletions, and the sets forming the instance are uniformly randomly permuted to form the input stream. We show that a single pass and k polylog(n,m) space suffices for arbitrary small constant ε. The best previous result, by Warneke et al. (ESA 2023), used k² polylog(n,m) space. 3) Insert-Only Model. Lastly, our results, along with numerous previous results, use a sub-sampling technique introduced by McGregor and Vu (ICDT 2017) to sparsify the input instance. We explain how this technique and others used in the paper can be implemented such that the amortized update time of our algorithm is polylogarithmic. This also implies an improvement of the state-of-the-art insert only algorithms in terms of the update time: polylog(m,n) update time suffices, whereas the best previous result by Jaud et al. (SEA 2023) required update time that was linear in k.

Cite as

Amit Chakrabarti, Andrew McGregor, and Anthony Wirth. Improved Algorithms for Maximum Coverage in Dynamic and Random Order Streams. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 40:1-40:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakrabarti_et_al:LIPIcs.ESA.2024.40,
  author =	{Chakrabarti, Amit and McGregor, Andrew and Wirth, Anthony},
  title =	{{Improved Algorithms for Maximum Coverage in Dynamic and Random Order Streams}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{40:1--40:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.40},
  URN =		{urn:nbn:de:0030-drops-211114},
  doi =		{10.4230/LIPIcs.ESA.2024.40},
  annote =	{Keywords: Data Stream Computation, Maximum Coverage, Submodular Maximization}
}
Document
Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem

Authors: Yann Disser, Svenja M. Griesbach, Max Klimm, and Annette Lutz

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider an incremental variant of the rooted prize-collecting Steiner-tree problem with a growing budget constraint. While no incremental solution exists that simultaneously approximates the optimum for all budgets, we show that a bicriterial (α,μ)-approximation is possible, i.e., a solution that with budget B+α for all B ∈ ℝ_{≥ 0} is a multiplicative μ-approximation compared to the optimum solution with budget B. For the case that the underlying graph is a tree, we present a polynomial-time density-greedy algorithm that computes a (χ,1)-approximation, where χ denotes the eccentricity of the root vertex in the underlying graph, and show that this is best possible. An adaptation of the density-greedy algorithm for general graphs is (γ,2)-competitive where γ is the maximal length of a vertex-disjoint path starting in the root. While this algorithm does not run in polynomial time, it can be adapted to a (γ,3)-competitive algorithm that runs in polynomial time. We further devise a capacity-scaling algorithm that guarantees a (3χ,8)-approximation and, more generally, a ((4𝓁 - 1)χ, (2^{𝓁 + 2})/(2^𝓁 -1))-approximation for every fixed 𝓁 ∈ ℕ.

Cite as

Yann Disser, Svenja M. Griesbach, Max Klimm, and Annette Lutz. Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 47:1-47:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{disser_et_al:LIPIcs.ESA.2024.47,
  author =	{Disser, Yann and Griesbach, Svenja M. and Klimm, Max and Lutz, Annette},
  title =	{{Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{47:1--47:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.47},
  URN =		{urn:nbn:de:0030-drops-211188},
  doi =		{10.4230/LIPIcs.ESA.2024.47},
  annote =	{Keywords: incremental optimization, competitive analysis, prize-collecting Steiner-tree}
}
Document
New Algorithms and Lower Bounds for Streaming Tournaments

Authors: Prantar Ghosh and Sahil Kuchlous

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study fundamental directed graph (digraph) problems in the streaming model. An initial investigation by Chakrabarti, Ghosh, McGregor, and Vorotnikova [SODA'20] on streaming digraphs showed that while most of these problems are provably hard in general, some of them become tractable when restricted to the well-studied class of tournament graphs where every pair of nodes shares exactly one directed edge. Thus, we focus on tournaments and improve the state of the art for multiple problems in terms of both upper and lower bounds. Our primary upper bound is a deterministic single-pass semi-streaming algorithm (using Õ(n) space for n-node graphs, where Õ(.) hides polylog(n) factors) for decomposing a tournament into strongly connected components (SCC). It improves upon the previously best-known algorithm by Baweja, Jia, and Woodruff [ITCS'22] in terms of both space and passes: for p ⩾ 1, they used (p+1) passes and Õ(n^{1+1/p}) space. We further extend our algorithm to digraphs that are close to tournaments and establish tight bounds demonstrating that the problem’s complexity grows smoothly with the "distance" from tournaments. Applying our SCC-decomposition framework, we obtain improved - and in some cases, optimal - tournament algorithms for s,t-reachability, strong connectivity, Hamiltonian paths and cycles, and feedback arc set. On the other hand, we prove lower bounds exhibiting that some well-studied problems - such as (exact) feedback arc set and s,t-distance - remain hard (require Ω(n²) space) on tournaments. Moreover, we generalize the former problem’s lower bound to establish space-approximation tradeoffs: any single-pass (1± ε)-approximation algorithm requires Ω(n/√{ε}) space. Finally, we settle the streaming complexities of two basic digraph problems studied by prior work: acyclicity testing of tournaments and sink finding in DAGs. As a whole, our collection of results contributes significantly to the growing literature on streaming digraphs.

Cite as

Prantar Ghosh and Sahil Kuchlous. New Algorithms and Lower Bounds for Streaming Tournaments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 60:1-60:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ESA.2024.60,
  author =	{Ghosh, Prantar and Kuchlous, Sahil},
  title =	{{New Algorithms and Lower Bounds for Streaming Tournaments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{60:1--60:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.60},
  URN =		{urn:nbn:de:0030-drops-211318},
  doi =		{10.4230/LIPIcs.ESA.2024.60},
  annote =	{Keywords: tournaments, streaming algorithms, graph algorithms, communication complexity, strongly connected components, reachability, feedback arc set}
}
Document
Practical Expander Decomposition

Authors: Lars Gottesbüren, Nikos Parotsidis, and Maximilian Probst Gutenberg

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The expander decomposition of a graph decomposes the set of vertices into clusters such that the induced subgraph of each cluster is a subgraph with high conductance, and there is only a small number of inter-cluster edges. Expander decompositions are at the forefront of recent theoretical developments in the area of efficient graph algorithms and act as a central component in several state-of-the-art graph algorithms for fundamental problems like maximum flow, min-cost flow, Gomory-Hu trees, global min-cut, and more. Despite this crucial role and the existence of theoretically efficient expander decomposition algorithms, little is known on their behavior in practice. In this paper we explore the engineering design space in implementations for computing expander decompositions. We base our implementation on the near-linear time algorithm of Saranurak and Wang [SODA'19], and enhance it with practical optimizations that accelerate its running time in practice and at the same time preserve the theoretical runtime and approximation guarantees. We evaluate our algorithm on real-world graphs with up to tens of millions of edges. We demonstrate significant speedups of up to two orders of magnitude over the only prior implementation. To the best of our knowledge, our implementation is the first to compute expander decompositions at this scale within reasonable time.

Cite as

Lars Gottesbüren, Nikos Parotsidis, and Maximilian Probst Gutenberg. Practical Expander Decomposition. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 61:1-61:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.ESA.2024.61,
  author =	{Gottesb\"{u}ren, Lars and Parotsidis, Nikos and Gutenberg, Maximilian Probst},
  title =	{{Practical Expander Decomposition}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{61:1--61:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.61},
  URN =		{urn:nbn:de:0030-drops-211323},
  doi =		{10.4230/LIPIcs.ESA.2024.61},
  annote =	{Keywords: Expander Decomposition, Clustering, Graph Algorithms}
}
Document
Connectivity Oracles for Predictable Vertex Failures

Authors: Bingbing Hu, Evangelos Kosinas, and Adam Polak

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The problem of designing connectivity oracles supporting vertex failures is one of the basic data structures problems for undirected graphs. It is already well understood: previous works [Duan-Pettie STOC'10; Long-Saranurak FOCS'22] achieve query time linear in the number of failed vertices, and it is conditionally optimal as long as we require preprocessing time polynomial in the size of the graph and update time polynomial in the number of failed vertices. We revisit this problem in the paradigm of algorithms with predictions: we ask if the query time can be improved if the set of failed vertices can be predicted beforehand up to a small number of errors. More specifically, we design a data structure that, given a graph G = (V,E) and a set of vertices predicted to fail D̂ ⊆ V of size d = |D̂|, preprocesses it in time Õ(d|E|) and then can receive an update given as the symmetric difference between the predicted and the actual set of failed vertices D̂△D = (D̂ ⧵ D) ∪ (D ⧵ D̂) of size η = |D̂△D|, process it in time Õ(η⁴), and after that answer connectivity queries in G ⧵ D in time O(η). Viewed from another perspective, our data structure provides an improvement over the state of the art for the fully dynamic subgraph connectivity problem in the sensitivity setting [Henzinger-Neumann ESA'16]. We argue that the preprocessing time and query time of our data structure are conditionally optimal under standard fine-grained complexity assumptions.

Cite as

Bingbing Hu, Evangelos Kosinas, and Adam Polak. Connectivity Oracles for Predictable Vertex Failures. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 72:1-72:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.ESA.2024.72,
  author =	{Hu, Bingbing and Kosinas, Evangelos and Polak, Adam},
  title =	{{Connectivity Oracles for Predictable Vertex Failures}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{72:1--72:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.72},
  URN =		{urn:nbn:de:0030-drops-211437},
  doi =		{10.4230/LIPIcs.ESA.2024.72},
  annote =	{Keywords: Data structures, graph connectivity, algorithms with predictions}
}
Document
Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set

Authors: Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
For a tree decomposition 𝒯 of a graph G, by μ(𝒯) we denote the size of a largest induced matching in G all of whose edges intersect one bag of 𝒯. The induced matching treewidth of a graph G is the minimum value of μ(𝒯) over all tree decompositions 𝒯 of G. Yolov [SODA 2018] proved that for graphs of bounded induced matching treewidth, tree decompositions with bounded μ(𝒯) can be computed in polynomial time and Max Weight Independent Set can be solved in polynomial time. In this paper we explore what other problems are tractable in such classes of graphs. As our main result, we give a polynomial-time algorithm for Min Weight Feedback Vertex Set. We also provide some positive results concerning packing induced subgraphs, which in particular imply a PTAS for the problem of finding a largest induced subgraph of bounded treewidth. These results suggest that in graphs of bounded induced matching treewidth, one could find in polynomial time a maximum-weight induced subgraph of bounded treewidth satisfying a given CMSO₂ formula. We conjecture that such a result indeed holds and prove it for graphs of bounded tree-independence number, which form a rich and important family of subclasses of graphs of bounded induced matching treewidth. We complement these algorithmic results with a number of complexity and structural results concerning induced matching treewidth, including a linear relation to treewidth for graphs with bounded degree.

Cite as

Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel. Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 85:1-85:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lima_et_al:LIPIcs.ESA.2024.85,
  author =	{Lima, Paloma T. and Milani\v{c}, Martin and Mur\v{s}i\v{c}, Peter and Okrasa, Karolina and Rz\k{a}\.{z}ewski, Pawe{\l} and \v{S}torgel, Kenny},
  title =	{{Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{85:1--85:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.85},
  URN =		{urn:nbn:de:0030-drops-211569},
  doi =		{10.4230/LIPIcs.ESA.2024.85},
  annote =	{Keywords: induced matching treewidth, tree-independence number, feedback vertex set, induced packing, algorithmic meta-theorem}
}
Document
Locally Computing Edge Orientations

Authors: Slobodan Mitrović, Ronitt Rubinfeld, and Mihir Singhal

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider the question of orienting the edges in a graph G such that every vertex has bounded out-degree. For graphs of arboricity α, there is an orientation in which every vertex has out-degree at most α and, moreover, the best possible maximum out-degree of an orientation is at least α - 1. We are thus interested in algorithms that can achieve a maximum out-degree of close to α. A widely studied approach for this problem in the distributed algorithms setting is a "peeling algorithm" that provides an orientation with maximum out-degree α(2+ε) in a logarithmic number of iterations. We consider this problem in the local computation algorithm (LCA) model, which quickly answers queries of the form "What is the orientation of edge (u,v)?" by probing the input graph. When the peeling algorithm is executed in the LCA setting by applying standard techniques, e.g., the Parnas-Ron paradigm, it requires Ω(n) probes per query on an n-vertex graph. In the case where G has unbounded degree, we show that any LCA that orients its edges to yield maximum out-degree r must use Ω(√ n/r) probes to G per query in the worst case, even if G is known to be a forest (that is, α = 1). We also show several algorithms with sublinear probe complexity when G has unbounded degree. When G is a tree such that the maximum degree Δ of G is bounded, we demonstrate an algorithm that uses Δ n^{1-log_Δ r + o(1)} probes to G per query. To obtain this result, we develop an edge-coloring approach that ultimately yields a graph-shattering-like result. We also use this shattering-like approach to demonstrate an LCA which 4-colors any tree using sublinear probes per query.

Cite as

Slobodan Mitrović, Ronitt Rubinfeld, and Mihir Singhal. Locally Computing Edge Orientations. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 89:1-89:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mitrovic_et_al:LIPIcs.ESA.2024.89,
  author =	{Mitrovi\'{c}, Slobodan and Rubinfeld, Ronitt and Singhal, Mihir},
  title =	{{Locally Computing Edge Orientations}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{89:1--89:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.89},
  URN =		{urn:nbn:de:0030-drops-211603},
  doi =		{10.4230/LIPIcs.ESA.2024.89},
  annote =	{Keywords: local computation algorithms, edge orientation, tree coloring}
}
Document
Competitive Capacitated Online Recoloring

Authors: Rajmohan Rajaraman and Omer Wasim

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this paper, we revisit the online recoloring problem introduced recently by Azar, Machluf, Patt-Shamir and Touitou [Azar et al., 2022] to investigate algorithmic challenges that arise while scheduling virtual machines or processes in distributed systems and cloud services. In online recoloring, there is a fixed set V of n vertices and an initial coloring c₀: V → [k] for some k ∈ ℤ^{> 0}. Under an online sequence σ of requests where each request is an edge (u_t,v_t), a proper vertex coloring c of the graph G_t induced by requests until time t needs to be maintained for all t; i.e., for any (u,v) ∈ G_t, c(u)≠ c(v). In the distributed systems application, a vertex corresponds to a VM, an edge corresponds to the requirement that the two endpoint VMs be on different clusters, and a coloring is an allocation of VMs to clusters. The objective is to minimize the total weight of vertices recolored for the sequence σ. In [Azar et al., 2022], the authors give competitive algorithms for two polynomially tractable cases - 2-coloring for bipartite G_t and (Δ+1)-coloring for Δ-degree G_t - and lower bounds for the fully dynamic case where G_t can be arbitrary. We obtain the first competitive algorithms for capacitated online recoloring and fully dynamic recoloring, in which there is a bound on the number or weight of vertices in each color. Our first set of results is for 2-recoloring using algorithms that are (1+ε)-resource augmented where ε ∈ (0,1) is an arbitrarily small constant. Our main result is an O(log n)-competitive deterministic algorithm for weighted bipartite graphs, which is asymptotically optimal in light of an Ω(log n) lower bound that holds for an unbounded amount of augmentation. We also present an O(nlog n)-competitive deterministic algorithm for fully dynamic recoloring, which is optimal within an O(log n) factor in light of a Ω(n) lower bound that holds for an unbounded amount of augmentation. Our second set of results is for Δ-recoloring in an (1+ε)-overprovisioned setting where the maximum degree of G_t is bounded by (1-ε)Δ for all t, and each color assigned to at most (1+ε)n/(Δ) vertices, for an arbitrary ε > 0. Our main result is an O(1)-competitive randomized algorithm for Δ = O(√{n/log n}). We also present an O(Δ)-competitive deterministic algorithm for Δ ≤ ε n/2. Both results are asymptotically optimal.

Cite as

Rajmohan Rajaraman and Omer Wasim. Competitive Capacitated Online Recoloring. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 95:1-95:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rajaraman_et_al:LIPIcs.ESA.2024.95,
  author =	{Rajaraman, Rajmohan and Wasim, Omer},
  title =	{{Competitive Capacitated Online Recoloring}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{95:1--95:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.95},
  URN =		{urn:nbn:de:0030-drops-211666},
  doi =		{10.4230/LIPIcs.ESA.2024.95},
  annote =	{Keywords: online algorithms, competitive ratio, recoloring, resource augmentation}
}
  • Refine by Author
  • 47 Woodruff, David P.
  • 7 Li, Yi
  • 5 Zhou, Samson
  • 4 Braverman, Vladimir
  • 4 Vassilevska Williams, Virginia
  • Show More...

  • Refine by Classification
  • 28 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 21 Theory of computation → Graph algorithms analysis
  • 16 Mathematics of computing → Graph algorithms
  • 13 Theory of computation → Design and analysis of algorithms
  • 13 Theory of computation → Sketching and sampling
  • Show More...

  • Refine by Keyword
  • 8 communication complexity
  • 8 graph algorithms
  • 8 sketching
  • 6 Fine-Grained Complexity
  • 5 Streaming algorithms
  • Show More...

  • Refine by Type
  • 247 document
  • 1 volume

  • Refine by Publication Year
  • 140 2022
  • 68 2024
  • 8 2018
  • 6 2019
  • 6 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail