1 Search Results for "Xu, Zixuan"

Faster Detours in Undirected Graphs

Authors: Shyan Akmal, Virginia Vassilevska Williams, Ryan Williams, and Zixuan Xu

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)

The k-Detour problem is a basic path-finding problem: given a graph G on n vertices, with specified nodes s and t, and a positive integer k, the goal is to determine if G has an st-path of length exactly dist(s,t) + k, where dist(s,t) is the length of a shortest path from s to t. The k-Detour problem is NP-hard when k is part of the input, so researchers have sought efficient parameterized algorithms for this task, running in f(k)poly(n) time, for f(⋅) as slow-growing as possible. We present faster algorithms for k-Detour in undirected graphs, running in 1.853^k poly(n) randomized and 4.082^kpoly(n) deterministic time. The previous fastest algorithms for this problem took 2.746^k poly(n) randomized and 6.523^k poly(n) deterministic time [Bezáková-Curticapean-Dell-Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an undirected graph is easier if we are promised that the path belongs to what we call a "bipartitioned" subgraph, where the nodes are split into two parts and the path must satisfy constraints on those parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of length k in undirected graphs [Björklund-Husfeldt-Kaski-Koivisto, JCSS 2017], intuitively by looking for paths of length k in randomly bipartitioned subgraphs. Our algorithms for k-Detour stem from a new application of this idea, which does not involve choosing the bipartitioned subgraphs randomly. Our work has direct implications for the k-Longest Detour problem, another related path-finding problem. In this problem, we are given the same input as in k-Detour, but are now tasked with determining if G has an st-path of length at least dist(s,t)+k. Our results for k-Detour imply that we can solve k-Longest Detour in 3.432^k poly(n) randomized and 16.661^k poly(n) deterministic time. The previous fastest algorithms for this problem took 7.539^k poly(n) randomized and 42.549^k poly(n) deterministic time [Fomin et al., STACS 2022].

Cite as

Shyan Akmal, Virginia Vassilevska Williams, Ryan Williams, and Zixuan Xu. Faster Detours in Undirected Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 7:1-7:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

  author =	{Akmal, Shyan and Vassilevska Williams, Virginia and Williams, Ryan and Xu, Zixuan},
  title =	{{Faster Detours in Undirected Graphs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.7},
  URN =		{urn:nbn:de:0030-drops-186601},
  doi =		{10.4230/LIPIcs.ESA.2023.7},
  annote =	{Keywords: path finding, detours, parameterized complexity, exact algorithms}
  • Refine by Author
  • 1 Akmal, Shyan
  • 1 Vassilevska Williams, Virginia
  • 1 Williams, Ryan
  • 1 Xu, Zixuan

  • Refine by Classification
  • 1 Theory of computation → Graph algorithms analysis

  • Refine by Keyword
  • 1 detours
  • 1 exact algorithms
  • 1 parameterized complexity
  • 1 path finding

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2023

Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail