19 Search Results for "Yuen, Henry"


Document
On the Computational Hardness Needed for Quantum Cryptography

Authors: Zvika Brakerski, Ran Canetti, and Luowen Qian

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In the classical model of computation, it is well established that one-way functions (OWF) are minimal for computational cryptography: They are essential for almost any cryptographic application that cannot be realized with respect to computationally unbounded adversaries. In the quantum setting, however, OWFs appear not to be essential (Kretschmer 2021; Ananth et al., Morimae and Yamakawa 2022), and the question of whether such a minimal primitive exists remains open. We consider EFI pairs - efficiently samplable, statistically far but computationally indistinguishable pairs of (mixed) quantum states. Building on the work of Yan (2022), which shows equivalence between EFI pairs and statistical commitment schemes, we show that EFI pairs are necessary for a large class of quantum-cryptographic applications. Specifically, we construct EFI pairs from minimalistic versions of commitments schemes, oblivious transfer, and general secure multiparty computation, as well as from QCZK proofs from essentially any non-trivial language. We also construct quantum computational zero knowledge (QCZK) proofs for all of QIP from any EFI pair. This suggests that, for much of quantum cryptography, EFI pairs play a similar role to that played by OWFs in the classical setting: they are simple to describe, essential, and also serve as a linchpin for demonstrating equivalence between primitives.

Cite as

Zvika Brakerski, Ran Canetti, and Luowen Qian. On the Computational Hardness Needed for Quantum Cryptography. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 24:1-24:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{brakerski_et_al:LIPIcs.ITCS.2023.24,
  author =	{Brakerski, Zvika and Canetti, Ran and Qian, Luowen},
  title =	{{On the Computational Hardness Needed for Quantum Cryptography}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{24:1--24:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.24},
  URN =		{urn:nbn:de:0030-drops-175278},
  doi =		{10.4230/LIPIcs.ITCS.2023.24},
  annote =	{Keywords: quantum cryptography, efi, commitment scheme, oblivious transfer, zero knowledge, secure multiparty computation}
}
Document
Unitary Property Testing Lower Bounds by Polynomials

Authors: Adrian She and Henry Yuen

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We study unitary property testing, where a quantum algorithm is given query access to a black-box unitary and has to decide whether it satisfies some property. In addition to containing the standard quantum query complexity model (where the unitary encodes a binary string) as a special case, this model contains "inherently quantum" problems that have no classical analogue. Characterizing the query complexity of these problems requires new algorithmic techniques and lower bound methods. Our main contribution is a generalized polynomial method for unitary property testing problems. By leveraging connections with invariant theory, we apply this method to obtain lower bounds on problems such as determining recurrence times of unitaries, approximating the dimension of a marked subspace, and approximating the entanglement entropy of a marked state. We also present a unitary property testing-based approach towards an oracle separation between QMA and QMA(2), a long standing question in quantum complexity theory.

Cite as

Adrian She and Henry Yuen. Unitary Property Testing Lower Bounds by Polynomials. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 96:1-96:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{she_et_al:LIPIcs.ITCS.2023.96,
  author =	{She, Adrian and Yuen, Henry},
  title =	{{Unitary Property Testing Lower Bounds by Polynomials}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{96:1--96:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.96},
  URN =		{urn:nbn:de:0030-drops-175995},
  doi =		{10.4230/LIPIcs.ITCS.2023.96},
  annote =	{Keywords: Quantum query complexity, polynomial method, unitary property testing, quantum proofs, invariant theory, quantum recurrence time, entanglement entropy, BQP, QMA, QMA(2)}
}
Document
Quantum Search-To-Decision Reductions and the State Synthesis Problem

Authors: Sandy Irani, Anand Natarajan, Chinmay Nirkhe, Sujit Rao, and Henry Yuen

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
It is a useful fact in classical computer science that many search problems are reducible to decision problems; this has led to decision problems being regarded as the de facto computational task to study in complexity theory. In this work, we explore search-to-decision reductions for quantum search problems, wherein a quantum algorithm makes queries to a classical decision oracle to output a desired quantum state. In particular, we focus on search-to-decision reductions for QMA, and show that there exists a quantum polynomial-time algorithm that can generate a witness for a QMA problem up to inverse polynomial precision by making one query to a PP decision oracle. We complement this result by showing that QMA-search does not reduce to QMA-decision in polynomial-time, relative to a quantum oracle. We also explore the more general state synthesis problem, in which the goal is to efficiently synthesize a target state by making queries to a classical oracle encoding the state. We prove that there exists a classical oracle with which any quantum state can be synthesized to inverse polynomial precision using only one oracle query and to inverse exponential precision using two oracle queries. This answers an open question of Aaronson [Aaronson, 2016], who presented a state synthesis algorithm that makes O(n) queries to a classical oracle to prepare an n-qubit state, and asked if the query complexity could be made sublinear.

Cite as

Sandy Irani, Anand Natarajan, Chinmay Nirkhe, Sujit Rao, and Henry Yuen. Quantum Search-To-Decision Reductions and the State Synthesis Problem. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 5:1-5:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{irani_et_al:LIPIcs.CCC.2022.5,
  author =	{Irani, Sandy and Natarajan, Anand and Nirkhe, Chinmay and Rao, Sujit and Yuen, Henry},
  title =	{{Quantum Search-To-Decision Reductions and the State Synthesis Problem}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.5},
  URN =		{urn:nbn:de:0030-drops-165674},
  doi =		{10.4230/LIPIcs.CCC.2022.5},
  annote =	{Keywords: Search-to-decision, state synthesis, quantum computing}
}
Document
Circuit Lower Bounds for Low-Energy States of Quantum Code Hamiltonians

Authors: Anurag Anshu and Chinmay Nirkhe

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
The No Low-energy Trivial States (NLTS) conjecture of Freedman and Hastings [Freedman and Hastings, 2014] - which posits the existence of a local Hamiltonian with a super-constant quantum circuit lower bound on the complexity of all low-energy states - identifies a fundamental obstacle to the resolution of the quantum PCP conjecture. In this work, we provide new techniques, based on entropic and local indistinguishability arguments, that prove circuit lower bounds for all the low-energy states of local Hamiltonians arising from quantum error-correcting codes. For local Hamiltonians arising from nearly linear-rate or nearly linear-distance LDPC stabilizer codes, we prove super-constant circuit lower bounds for the complexity of all states of energy o(n). Such codes are known to exist and are not necessarily locally-testable, a property previously suspected to be essential for the NLTS conjecture. Curiously, such codes can also be constructed on a two-dimensional lattice, showing that low-depth states cannot accurately approximate the ground-energy even in physically relevant systems.

Cite as

Anurag Anshu and Chinmay Nirkhe. Circuit Lower Bounds for Low-Energy States of Quantum Code Hamiltonians. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 6:1-6:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.ITCS.2022.6,
  author =	{Anshu, Anurag and Nirkhe, Chinmay},
  title =	{{Circuit Lower Bounds for Low-Energy States of Quantum Code Hamiltonians}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{6:1--6:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.6},
  URN =		{urn:nbn:de:0030-drops-156023},
  doi =		{10.4230/LIPIcs.ITCS.2022.6},
  annote =	{Keywords: quantum pcps, local hamiltonians, error-correcting codes}
}
Document
Interactive Proofs for Synthesizing Quantum States and Unitaries

Authors: Gregory Rosenthal and Henry Yuen

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
Whereas quantum complexity theory has traditionally been concerned with problems arising from classical complexity theory (such as computing boolean functions), it also makes sense to study the complexity of inherently quantum operations such as constructing quantum states or performing unitary transformations. With this motivation, we define models of interactive proofs for synthesizing quantum states and unitaries, where a polynomial-time quantum verifier interacts with an untrusted quantum prover, and a verifier who accepts also outputs an approximation of the target state (for the state synthesis problem) or the result of the target unitary applied to the input state (for the unitary synthesis problem); furthermore there should exist an "honest" prover which the verifier accepts with probability 1. Our main result is a "state synthesis" analogue of the inclusion PSPACE ⊆ IP: any sequence of states computable by a polynomial-space quantum algorithm (which may run for exponential time) admits an interactive protocol of the form described above. Leveraging this state synthesis protocol, we also give a unitary synthesis protocol for polynomial space-computable unitaries that act nontrivially on only a polynomial-dimensional subspace. We obtain analogous results in the setting with multiple entangled provers as well.

Cite as

Gregory Rosenthal and Henry Yuen. Interactive Proofs for Synthesizing Quantum States and Unitaries. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 112:1-112:4, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{rosenthal_et_al:LIPIcs.ITCS.2022.112,
  author =	{Rosenthal, Gregory and Yuen, Henry},
  title =	{{Interactive Proofs for Synthesizing Quantum States and Unitaries}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{112:1--112:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.112},
  URN =		{urn:nbn:de:0030-drops-157086},
  doi =		{10.4230/LIPIcs.ITCS.2022.112},
  annote =	{Keywords: interactive proofs, quantum state complexity, quantum unitary complexity}
}
Document
Bounds on the QAC^0 Complexity of Approximating Parity

Authors: Gregory Rosenthal

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
QAC circuits are quantum circuits with one-qubit gates and Toffoli gates of arbitrary arity. QAC^0 circuits are QAC circuits of constant depth, and are quantum analogues of AC^0 circuits. We prove the following: - For all d ≥ 7 and ε > 0 there is a depth-d QAC circuit of size exp(poly(n^{1/d}) log(n/ε)) that approximates the n-qubit parity function to within error ε on worst-case quantum inputs. Previously it was unknown whether QAC circuits of sublogarithmic depth could approximate parity regardless of size. - We introduce a class of "mostly classical" QAC circuits, including a major component of our circuit from the above upper bound, and prove a tight lower bound on the size of low-depth, mostly classical QAC circuits that approximate this component. - Arbitrary depth-d QAC circuits require at least Ω(n/d) multi-qubit gates to achieve a 1/2 + exp(-o(n/d)) approximation of parity. When d = Θ(log n) this nearly matches an easy O(n) size upper bound for computing parity exactly. - QAC circuits with at most two layers of multi-qubit gates cannot achieve a 1/2 + exp(-o(n)) approximation of parity, even non-cleanly. Previously it was known only that such circuits could not cleanly compute parity exactly for sufficiently large n. The proofs use a new normal form for quantum circuits which may be of independent interest, and are based on reductions to the problem of constructing certain generalizations of the cat state which we name "nekomata" after an analogous cat yōkai.

Cite as

Gregory Rosenthal. Bounds on the QAC^0 Complexity of Approximating Parity. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 32:1-32:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{rosenthal:LIPIcs.ITCS.2021.32,
  author =	{Rosenthal, Gregory},
  title =	{{Bounds on the QAC^0 Complexity of Approximating Parity}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{32:1--32:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.32},
  URN =		{urn:nbn:de:0030-drops-135713},
  doi =		{10.4230/LIPIcs.ITCS.2021.32},
  annote =	{Keywords: quantum circuit complexity, QAC^0, fanout, parity, nekomata}
}
Document
Communication Memento: Memoryless Communication Complexity

Authors: Srinivasan Arunachalam and Supartha Podder

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We study the communication complexity of computing functions F: {0,1}ⁿ × {0,1}ⁿ → {0,1} in the memoryless communication model. Here, Alice is given x ∈ {0,1}ⁿ, Bob is given y ∈ {0,1}ⁿ and their goal is to compute F(x,y) subject to the following constraint: at every round, Alice receives a message from Bob and her reply to Bob solely depends on the message received and her input x (in particular, her reply is independent of the information from the previous rounds); the same applies to Bob. The cost of computing F in this model is the maximum number of bits exchanged in any round between Alice and Bob (on the worst case input x,y). In this paper, we also consider variants of our memoryless model wherein one party is allowed to have memory, the parties are allowed to communicate quantum bits, only one player is allowed to send messages. We show that some of these different variants of our memoryless communication model capture the garden-hose model of computation by Buhrman et al. (ITCS'13), space-bounded communication complexity by Brody et al. (ITCS'13) and the overlay communication complexity by Papakonstantinou et al. (CCC'14). Thus the memoryless communication complexity model provides a unified framework to study all these space-bounded communication complexity models. We establish the following main results: (1) We show that the memoryless communication complexity of F equals the logarithm of the size of the smallest bipartite branching program computing F (up to a factor 2); (2) We show that memoryless communication complexity equals garden-hose model of computation; (3) We exhibit various exponential separations between these memoryless communication models. We end with an intriguing open question: can we find an explicit function F and universal constant c > 1 for which the memoryless communication complexity is at least c log n? Note that c ≥ 2+ε would imply a Ω(n^{2+ε}) lower bound for general formula size, improving upon the best lower bound by [Nečiporuk, 1966].

Cite as

Srinivasan Arunachalam and Supartha Podder. Communication Memento: Memoryless Communication Complexity. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 61:1-61:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.ITCS.2021.61,
  author =	{Arunachalam, Srinivasan and Podder, Supartha},
  title =	{{Communication Memento: Memoryless Communication Complexity}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.61},
  URN =		{urn:nbn:de:0030-drops-136007},
  doi =		{10.4230/LIPIcs.ITCS.2021.61},
  annote =	{Keywords: Communication complexity, space complexity, branching programs, garden-hose model, quantum computing}
}
Document
Track A: Algorithms, Complexity and Games
On the Complexity of Zero Gap MIP*

Authors: Hamoon Mousavi, Seyed Sajjad Nezhadi, and Henry Yuen

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
The class MIP^* is the set of languages decidable by multiprover interactive proofs with quantum entangled provers. It was recently shown by Ji, Natarajan, Vidick, Wright and Yuen that MIP^* is equal to RE, the set of recursively enumerable languages. In particular this shows that the complexity of approximating the quantum value of a non-local game G is equivalent to the complexity of the Halting problem. In this paper we investigate the complexity of deciding whether the quantum value of a non-local game G is exactly 1. This problem corresponds to a complexity class that we call zero gap MIP^*, denoted by MIP₀^*, where there is no promise gap between the verifier’s acceptance probabilities in the YES and NO cases. We prove that MIP₀^* extends beyond the first level of the arithmetical hierarchy (which includes RE and its complement coRE), and in fact is equal to Π₂⁰, the class of languages that can be decided by quantified formulas of the form ∀ y ∃ z R(x,y,z). Combined with the previously known result that MIP₀^{co} (the commuting operator variant of MIP₀^*) is equal to coRE, our result further highlights the fascinating connection between various models of quantum multiprover interactive proofs and different classes in computability theory.

Cite as

Hamoon Mousavi, Seyed Sajjad Nezhadi, and Henry Yuen. On the Complexity of Zero Gap MIP*. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 87:1-87:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{mousavi_et_al:LIPIcs.ICALP.2020.87,
  author =	{Mousavi, Hamoon and Nezhadi, Seyed Sajjad and Yuen, Henry},
  title =	{{On the Complexity of Zero Gap MIP*}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{87:1--87:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.87},
  URN =		{urn:nbn:de:0030-drops-124940},
  doi =		{10.4230/LIPIcs.ICALP.2020.87},
  annote =	{Keywords: Quantum Complexity, Multiprover Interactive Proofs, Computability Theory}
}
Document
Beating Treewidth for Average-Case Subgraph Isomorphism

Authors: Gregory Rosenthal

Published in: LIPIcs, Volume 148, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)


Abstract
For any fixed graph G, the subgraph isomorphism problem asks whether an n-vertex input graph has a subgraph isomorphic to G. A well-known algorithm of Alon, Yuster and Zwick (1995) efficiently reduces this to the "colored" version of the problem, denoted G-SUB, and then solves G-SUB in time O(n^{tw(G)+1}) where tw(G) is the treewidth of G. Marx (2010) conjectured that G-SUB requires time Omega(n^{const * tw(G)}) and, assuming the Exponential Time Hypothesis, proved a lower bound of Omega(n^{const * emb(G)}) for a certain graph parameter emb(G) = Omega(tw(G)/log tw(G)). With respect to the size of AC^0 circuits solving G-SUB, Li, Razborov and Rossman (2017) proved an unconditional average-case lower bound of Omega(n^{kappa(G)}) for a different graph parameter kappa(G) = Omega(tw(G)/log tw(G)). Our contributions are as follows. First, we show that emb(G) is at most O(kappa(G)) for all graphs G. Next, we show that kappa(G) can be asymptotically less than tw(G); for example, if G is a hypercube then kappa(G) is Theta(tw(G)/sqrt{log tw(G)}). Finally, we construct AC^0 circuits of size O(n^{kappa(G)+const}) that solve G-SUB in the average case, on a variety of product distributions. This improves an O(n^{2 kappa(G)+const}) upper bound of Li et al., and shows that the average-case complexity of G-SUB is n^{o(tw(G))} for certain families of graphs G such as hypercubes.

Cite as

Gregory Rosenthal. Beating Treewidth for Average-Case Subgraph Isomorphism. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 24:1-24:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{rosenthal:LIPIcs.IPEC.2019.24,
  author =	{Rosenthal, Gregory},
  title =	{{Beating Treewidth for Average-Case Subgraph Isomorphism}},
  booktitle =	{14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
  pages =	{24:1--24:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-129-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{148},
  editor =	{Jansen, Bart M. P. and Telle, Jan Arne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.24},
  URN =		{urn:nbn:de:0030-drops-114850},
  doi =		{10.4230/LIPIcs.IPEC.2019.24},
  annote =	{Keywords: subgraph isomorphism, average-case complexity, AC^0, circuit complexity}
}
Document
Complexity Lower Bounds for Computing the Approximately-Commuting Operator Value of Non-Local Games to High Precision

Authors: Matthew Coudron and William Slofstra

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We study the problem of approximating the commuting-operator value of a two-player non-local game. It is well-known that it is NP-complete to decide whether the classical value of a non-local game is 1 or 1- epsilon, promised that one of the two is the case. Furthermore, as long as epsilon is small enough, this result does not depend on the gap epsilon. In contrast, a recent result of Fitzsimons, Ji, Vidick, and Yuen shows that the complexity of computing the quantum value grows without bound as the gap epsilon decreases. In this paper, we show that this also holds for the commuting-operator value of a game. Specifically, in the language of multi-prover interactive proofs, we show that the power of MIP^{co}(2,1,1,s) (proofs with two provers, one round, completeness probability 1, soundness probability s, and commuting-operator strategies) can increase without bound as the gap 1-s gets arbitrarily small. Our results also extend naturally in two ways, to perfect zero-knowledge protocols, and to lower bounds on the complexity of computing the approximately-commuting value of a game. Thus we get lower bounds on the complexity class PZK-MIP^{co}_{delta}(2,1,1,s) of perfect zero-knowledge multi-prover proofs with approximately-commuting operator strategies, as the gap 1-s gets arbitrarily small. While we do not know any computable time upper bound on the class MIP^{co}, a result of the first author and Vidick shows that for s = 1-1/poly(f(n)) and delta = 1/poly(f(n)), the class MIP^{co}_delta(2,1,1,s), with constant communication from the provers, is contained in TIME(exp(poly(f(n)))). We give a lower bound of coNTIME(f(n)) (ignoring constants inside the function) for this class, which is tight up to polynomial factors assuming the exponential time hypothesis.

Cite as

Matthew Coudron and William Slofstra. Complexity Lower Bounds for Computing the Approximately-Commuting Operator Value of Non-Local Games to High Precision. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 25:1-25:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{coudron_et_al:LIPIcs.CCC.2019.25,
  author =	{Coudron, Matthew and Slofstra, William},
  title =	{{Complexity Lower Bounds for Computing the Approximately-Commuting Operator Value of Non-Local Games to High Precision}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{25:1--25:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.25},
  URN =		{urn:nbn:de:0030-drops-108478},
  doi =		{10.4230/LIPIcs.CCC.2019.25},
  annote =	{Keywords: Quantum complexity theory, Non-local game, Multi-prover interactive proof, Entanglement}
}
Document
Bounding Quantum-Classical Separations for Classes of Nonlocal Games

Authors: Tom Bannink, Jop Briët, Harry Buhrman, Farrokh Labib, and Troy Lee

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We bound separations between the entangled and classical values for several classes of nonlocal t-player games. Our motivating question is whether there is a family of t-player XOR games for which the entangled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answering this question would have important consequences in the study of multi-party communication complexity, as a positive answer would imply an unbounded separation between randomized communication complexity with and without entanglement. Our contribution to answering the question is identifying several general classes of games for which the classical bias can not go to zero when the entangled bias stays above a constant threshold. This rules out the possibility of using these games to answer our motivating question. A previously studied set of XOR games, known not to give a positive answer to the question, are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt state. We generalize this class to mod-m games and show that their classical value is always at least 1/m + (m-1)/m t^{1-t}. Secondly, for free XOR games, in which the input distribution is of product form, we show beta(G) >= beta^*(G)^{2^t} where beta(G) and beta^*(G) are the classical and entangled biases of the game respectively. We also introduce so-called line games, an example of which is a slight modification of the Magic Square game, and show that they can not give a positive answer to the question either. Finally we look at two-player unique games and show that if the entangled value is 1-epsilon then the classical value is at least 1-O(sqrt{epsilon log k}) where k is the number of outputs in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and hypergraph norms.

Cite as

Tom Bannink, Jop Briët, Harry Buhrman, Farrokh Labib, and Troy Lee. Bounding Quantum-Classical Separations for Classes of Nonlocal Games. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 12:1-12:11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bannink_et_al:LIPIcs.STACS.2019.12,
  author =	{Bannink, Tom and Bri\"{e}t, Jop and Buhrman, Harry and Labib, Farrokh and Lee, Troy},
  title =	{{Bounding Quantum-Classical Separations for Classes of Nonlocal Games}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{12:1--12:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.12},
  URN =		{urn:nbn:de:0030-drops-102512},
  doi =		{10.4230/LIPIcs.STACS.2019.12},
  annote =	{Keywords: Nonlocal games, communication complexity, bounded separations, semidefinite programming, pseudorandomness, Gowers norms}
}
Document
Noise-Tolerant Testing of High Entanglement of Formation

Authors: Rotem Arnon-Friedman and Henry Yuen

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
In this work we construct tests that allow a classical user to certify high dimensional entanglement in uncharacterized and possibly noisy quantum devices. We present a family of non-local games {G_n} that for all n certify states with entanglement of formation Omega(n). These tests can be derived from any bipartite non-local game with a classical-quantum gap. Furthermore, our tests are noise-tolerant in the sense that fault tolerant technologies are not needed to play the games; entanglement distributed over noisy channels can pass with high probability, making our tests relevant for realistic experimental settings. This is in contrast to, e.g., results on self-testing of high dimensional entanglement, which are only relevant when the noise rate goes to zero with the system's size n. As a corollary of our result, we supply a lower-bound on the entanglement cost of any state achieving a quantum advantage in a bipartite non-local game. Our proof techniques heavily rely on ideas from the work on classical and quantum parallel repetition theorems.

Cite as

Rotem Arnon-Friedman and Henry Yuen. Noise-Tolerant Testing of High Entanglement of Formation. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 11:1-11:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{arnonfriedman_et_al:LIPIcs.ICALP.2018.11,
  author =	{Arnon-Friedman, Rotem and Yuen, Henry},
  title =	{{Noise-Tolerant Testing of High Entanglement of Formation}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{11:1--11:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.11},
  URN =		{urn:nbn:de:0030-drops-90157},
  doi =		{10.4230/LIPIcs.ICALP.2018.11},
  annote =	{Keywords: device independence, quantum games, entanglement testing, noise tolerance}
}
Document
Approximate Low-Weight Check Codes and Circuit Lower Bounds for Noisy Ground States

Authors: Chinmay Nirkhe, Umesh Vazirani, and Henry Yuen

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
The No Low-Energy Trivial States (NLTS) conjecture of Freedman and Hastings (Quantum Information and Computation 2014), which asserts the existence of local Hamiltonians whose low-energy states cannot be generated by constant-depth quantum circuits, identifies a fundamental obstacle to resolving the quantum PCP conjecture. Progress towards the NLTS conjecture was made by Eldar and Harrow (Foundations of Computer Science 2017), who proved a closely related theorem called No Low-Error Trivial States (NLETS). In this paper, we give a much simpler proof of the NLETS theorem and use the same technique to establish superpolynomial circuit size lower bounds for noisy ground states of local Hamiltonians (assuming QCMA != QMA), resolving an open question of Eldar and Harrow. We discuss the new light our results cast on the relationship between NLTS and NLETS. Finally, our techniques imply the existence of approximate quantum low-weight check (qLWC) codes with linear rate, linear distance, and constant weight checks. These codes are similar to quantum LDPC codes except (1) each particle may participate in a large number of checks, and (2) errors only need to be corrected up to fidelity 1 - 1/poly(n). This stands in contrast to the best-known stabilizer LDPC codes due to Freedman, Meyer, and Luo which achieve a distance of O(sqrt{n log n}). The principal technique used in our results is to leverage the Feynman-Kitaev clock construction to approximately embed a subspace of states defined by a circuit as the ground space of a local Hamiltonian.

Cite as

Chinmay Nirkhe, Umesh Vazirani, and Henry Yuen. Approximate Low-Weight Check Codes and Circuit Lower Bounds for Noisy Ground States. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 91:1-91:11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{nirkhe_et_al:LIPIcs.ICALP.2018.91,
  author =	{Nirkhe, Chinmay and Vazirani, Umesh and Yuen, Henry},
  title =	{{Approximate Low-Weight Check Codes and Circuit Lower Bounds for Noisy Ground States}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{91:1--91:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.91},
  URN =		{urn:nbn:de:0030-drops-90950},
  doi =		{10.4230/LIPIcs.ICALP.2018.91},
  annote =	{Keywords: quantum pcps, local hamiltonians, error-correcting codes}
}
Document
Parallel Repetition via Fortification: Analytic View and the Quantum Case

Authors: Mohammad Bavarian, Thomas Vidick, and Henry Yuen

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
In a recent work, Moshkovitz [FOCS'14] presented a transformation n two-player games called "fortification", and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an analytic reformulation of Moshkovitz's fortification framework, which was originally cast in combinatorial terms. This reformulation allows us to expand the scope of the fortification method to new settings. First, we show any game (not just projection games) can be fortified, and give a simple proof of parallel repetition for general fortified games. Then, we prove parallel repetition and fortification theorems for games with players sharing quantum entanglement, as well as games with more than two players. This gives a new gap amplification method for general games in the quantum and multiplayer settings, which has recently received much interest. An important component of our work is a variant of the fortification transformation, called "ordered fortification", that preserves the entangled value of a game. The original fortification of Moshkovitz does not in general preserve the entangled value of a game, and this was a barrier to extending the fortification framework to the quantum setting.

Cite as

Mohammad Bavarian, Thomas Vidick, and Henry Yuen. Parallel Repetition via Fortification: Analytic View and the Quantum Case. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 22:1-22:33, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bavarian_et_al:LIPIcs.ITCS.2017.22,
  author =	{Bavarian, Mohammad and Vidick, Thomas and Yuen, Henry},
  title =	{{Parallel Repetition via Fortification: Analytic View and the Quantum Case}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{22:1--22:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.22},
  URN =		{urn:nbn:de:0030-drops-81670},
  doi =		{10.4230/LIPIcs.ITCS.2017.22},
  annote =	{Keywords: Parallel repetition, quantum entanglement, non-local games}
}
Document
Multiplayer Parallel Repetition for Expanding Games

Authors: Irit Dinur, Prahladh Harsha, Rakesh Venkat, and Henry Yuen

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
We investigate the value of parallel repetition of one-round games with any number of players k>=2. It has been an open question whether an analogue of Raz's Parallel Repetition Theorem holds for games with more than two players, i.e., whether the value of the repeated game decays exponentially with the number of repetitions. Verbitsky has shown, via a reduction to the density Hales-Jewett theorem, that the value of the repeated game must approach zero, as the number of repetitions increases. However, the rate of decay obtained in this way is extremely slow, and it is an open question whether the true rate is exponential as is the case for all two-player games. Exponential decay bounds are known for several special cases of multi-player games, e.g., free games and anchored games. In this work, we identify a certain expansion property of the base game and show all games with this property satisfy an exponential decay parallel repetition bound. Free games and anchored games satisfy this expansion property, and thus our parallel repetition theorem reproduces all earlier exponential-decay bounds for multiplayer games. More generally, our parallel repetition bound applies to all multiplayer games that are *connected* in a certain sense. We also describe a very simple game, called the GHZ game, that does not satisfy this connectivity property, and for which we do not know an exponential decay bound. We suspect that progress on bounding the value of this the parallel repetition of the GHZ game will lead to further progress on the general question.

Cite as

Irit Dinur, Prahladh Harsha, Rakesh Venkat, and Henry Yuen. Multiplayer Parallel Repetition for Expanding Games. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 37:1-37:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{dinur_et_al:LIPIcs.ITCS.2017.37,
  author =	{Dinur, Irit and Harsha, Prahladh and Venkat, Rakesh and Yuen, Henry},
  title =	{{Multiplayer Parallel Repetition for Expanding Games}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{37:1--37:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.37},
  URN =		{urn:nbn:de:0030-drops-81575},
  doi =		{10.4230/LIPIcs.ITCS.2017.37},
  annote =	{Keywords: Parallel Repetition, Multi-player, Expander}
}
  • Refine by Author
  • 12 Yuen, Henry
  • 3 Nirkhe, Chinmay
  • 3 Rosenthal, Gregory
  • 2 Lee, Troy
  • 1 Anshu, Anurag
  • Show More...

  • Refine by Classification
  • 8 Theory of computation → Quantum complexity theory
  • 2 Theory of computation → Circuit complexity
  • 2 Theory of computation → Interactive proof systems
  • 2 Theory of computation → Quantum computation theory
  • 1 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 2 Parallel repetition
  • 2 communication complexity
  • 2 error-correcting codes
  • 2 local hamiltonians
  • 2 parallel repetition
  • Show More...

  • Refine by Type
  • 19 document

  • Refine by Publication Year
  • 3 2016
  • 3 2019
  • 3 2022
  • 2 2017
  • 2 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail