4 Search Results for "Zarrabi-Zadeh, Hamid"


Document
Track A: Algorithms, Complexity and Games
Streaming Edge Coloring with Subquadratic Palette Size

Authors: Shiri Chechik, Doron Mukhtar, and Tianyi Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we study the problem of computing an edge-coloring in the (one-pass) W-streaming model. In this setting, the edges of an n-node graph arrive in an arbitrary order to a machine with a relatively small space, and the goal is to design an algorithm that outputs, as a stream, a proper coloring of the edges using the fewest possible number of colors. Behnezhad et al. [Behnezhad et al., 2019] devised the first non-trivial algorithm for this problem, which computes in Õ(n) space a proper O(Δ²)-coloring w.h.p. (here Δ is the maximum degree of the graph). Subsequent papers improved upon this result, where latest of them [Ansari et al., 2022] showed that it is possible to deterministically compute an O(Δ²/s)-coloring in O(ns) space. However, none of the improvements succeeded in reducing the number of colors to O(Δ^{2-ε}) while keeping the same space bound of Õ(n). In particular, no progress was made on the question of whether computing an O(Δ)-coloring is possible with roughly O(n) space, which was stated in [Behnezhad et al., 2019] to be an interesting open problem. In this paper we bypass the quadratic bound by presenting a new randomized Õ(n)-space algorithm that uses Õ(Δ^{1.5}) colors.

Cite as

Shiri Chechik, Doron Mukhtar, and Tianyi Zhang. Streaming Edge Coloring with Subquadratic Palette Size. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 40:1-40:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chechik_et_al:LIPIcs.ICALP.2024.40,
  author =	{Chechik, Shiri and Mukhtar, Doron and Zhang, Tianyi},
  title =	{{Streaming Edge Coloring with Subquadratic Palette Size}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{40:1--40:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.40},
  URN =		{urn:nbn:de:0030-drops-201831},
  doi =		{10.4230/LIPIcs.ICALP.2024.40},
  annote =	{Keywords: graph algorithms, streaming algorithms, edge coloring}
}
Document
Track A: Algorithms, Complexity and Games
Low-Memory Algorithms for Online Edge Coloring

Authors: Prantar Ghosh and Manuel Stoeckl

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former needs edges to be assigned colors immediately after insertion, typically without any space restrictions, while the latter limits memory to be sublinear in the input size but allows an edge’s color to be announced any time after its insertion. We aim for the best of both worlds by designing small-space online algorithms for edge coloring. Our online algorithms significantly improve upon the memory used by prior ones while achieving an O(1)-competitive ratio. We study the problem under both (adversarial) edge arrivals and vertex arrivals. Under vertex arrivals of any n-node graph with maximum vertex-degree Δ, our online O(Δ)-coloring algorithm uses only semi-streaming space (i.e., Õ(n) space, where the Õ(.) notation hides polylog(n) factors). Under edge arrivals, we obtain an online O(Δ)-coloring in Õ(n√Δ) space. We also achieve a smooth color-space tradeoff: for any t = O(Δ), we get an O(Δt(log²Δ))-coloring in Õ(n√{Δ/t}) space, improving upon the state of the art that used Õ(nΔ/t) space for the same number of colors. The improvements stem from extensive use of random permutations that enable us to avoid previously used colors. Most of our algorithms can be derandomized and extended to multigraphs, where edge coloring is known to be considerably harder than for simple graphs.

Cite as

Prantar Ghosh and Manuel Stoeckl. Low-Memory Algorithms for Online Edge Coloring. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 71:1-71:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ICALP.2024.71,
  author =	{Ghosh, Prantar and Stoeckl, Manuel},
  title =	{{Low-Memory Algorithms for Online Edge Coloring}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{71:1--71:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.71},
  URN =		{urn:nbn:de:0030-drops-202146},
  doi =		{10.4230/LIPIcs.ICALP.2024.71},
  annote =	{Keywords: Edge coloring, streaming model, online algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Edge Coloring with Asymptotically Optimal Colors

Authors: Mohammad Saneian and Soheil Behnezhad

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given a graph G, an edge-coloring is an assignment of colors to edges of G such that any two edges sharing an endpoint receive different colors. By Vizing’s celebrated theorem, any graph of maximum degree Δ needs at least Δ and at most (Δ + 1) colors to be properly edge colored. In this paper, we study edge colorings in the streaming setting. The edges arrive one by one in an arbitrary order. The algorithm takes a single pass over the input and must output a solution using a much smaller space than the input size. Since the output of edge coloring is as large as its input, the assigned colors should also be reported in a streaming fashion. The streaming edge coloring problem has been studied in a series of works over the past few years. The main challenge is that the algorithm cannot "remember" all the color assignments that it returns. To ensure the validity of the solution, existing algorithms use many more colors than Vizing’s bound. Namely, in n-vertex graphs, the state-of-the-art algorithm with Õ(n s) space requires O(Δ²/s + Δ) colors. Note, in particular, that for an asymptotically optimal O(Δ) coloring, this algorithm requires Ω(nΔ) space which is as large as the input. Whether such a coloring can be achieved with sublinear space has been left open. In this paper, we answer this question in the affirmative. We present a randomized algorithm that returns an asymptotically optimal O(Δ) edge coloring using Õ(n √{Δ}) space. More generally, our algorithm returns a proper O(Δ^{1.5}/s + Δ) edge coloring with Õ(n s) space, improving prior algorithms for the whole range of s.

Cite as

Mohammad Saneian and Soheil Behnezhad. Streaming Edge Coloring with Asymptotically Optimal Colors. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 121:1-121:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{saneian_et_al:LIPIcs.ICALP.2024.121,
  author =	{Saneian, Mohammad and Behnezhad, Soheil},
  title =	{{Streaming Edge Coloring with Asymptotically Optimal Colors}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{121:1--121:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.121},
  URN =		{urn:nbn:de:0030-drops-202640},
  doi =		{10.4230/LIPIcs.ICALP.2024.121},
  annote =	{Keywords: Streaming, Edge coloring, Adversarial order}
}
Document
Simple Streaming Algorithms for Edge Coloring

Authors: Mohammad Ansari, Mohammad Saneian, and Hamid Zarrabi-Zadeh

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We revisit the classical edge coloring problem for general graphs in the streaming model. In this model, the input graph is presented as a stream of edges, and the algorithm must report colors assigned to the edges in a streaming fashion, using a memory of size O(n polylog n) on graphs of up to O(n²) edges. In ESA 2019 and SOSA 2021, two elegant randomized algorithms were presented for this problem in the adversarial edge arrival model, where the latest one colors any input graph using O(Δ²/s) colors with high probability in Õ(ns) space. In this short note, we propose two extremely simple streaming algorithms that achieve the same color and space bounds deterministically. Besides being surprisingly simple, our algorithms do not use randomness at all, and are very simple to analyze.

Cite as

Mohammad Ansari, Mohammad Saneian, and Hamid Zarrabi-Zadeh. Simple Streaming Algorithms for Edge Coloring. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 8:1-8:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ansari_et_al:LIPIcs.ESA.2022.8,
  author =	{Ansari, Mohammad and Saneian, Mohammad and Zarrabi-Zadeh, Hamid},
  title =	{{Simple Streaming Algorithms for Edge Coloring}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{8:1--8:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.8},
  URN =		{urn:nbn:de:0030-drops-169468},
  doi =		{10.4230/LIPIcs.ESA.2022.8},
  annote =	{Keywords: Edge coloring, streaming model, adversarial order}
}
  • Refine by Author
  • 2 Saneian, Mohammad
  • 1 Ansari, Mohammad
  • 1 Behnezhad, Soheil
  • 1 Chechik, Shiri
  • 1 Ghosh, Prantar
  • Show More...

  • Refine by Classification
  • 3 Mathematics of computing → Graph coloring
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Theory of computation → Graph algorithms analysis

  • Refine by Keyword
  • 3 Edge coloring
  • 2 streaming model
  • 1 Adversarial order
  • 1 Streaming
  • 1 adversarial order
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2024
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail