2 Search Results for "Zhou, Renfei"


Document
On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching

Authors: Jingxun Liang, Zhihao Gavin Tang, Yixuan Even Xu, Yuhao Zhang, and Renfei Zhou

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Ranking and Balance are arguably the two most important algorithms in the online matching literature. They achieve the same optimal competitive ratio of 1-1/e for the integral version and fractional version of online bipartite matching by Karp, Vazirani, and Vazirani (STOC 1990) respectively. The two algorithms have been generalized to weighted online bipartite matching problems, including vertex-weighted online bipartite matching and AdWords, by utilizing a perturbation function. The canonical choice of the perturbation function is f(x) = 1-e^{x-1} as it leads to the optimal competitive ratio of 1-1/e in both settings. We advance the understanding of the weighted generalizations of Ranking and Balance in this paper, with a focus on studying the effect of different perturbation functions. First, we prove that the canonical perturbation function is the unique optimal perturbation function for vertex-weighted online bipartite matching. In stark contrast, all perturbation functions achieve the optimal competitive ratio of 1-1/e in the unweighted setting. Second, we prove that the generalization of Ranking to AdWords with unknown budgets using the canonical perturbation function is at most 0.624 competitive, refuting a conjecture of Vazirani (2021). More generally, as an application of the first result, we prove that no perturbation function leads to the prominent competitive ratio of 1-1/e by establishing an upper bound of 1-1/e-0.0003. Finally, we propose the online budget-additive welfare maximization problem that is intermediate between AdWords and AdWords with unknown budgets, and we design an optimal 1-1/e competitive algorithm by generalizing Balance.

Cite as

Jingxun Liang, Zhihao Gavin Tang, Yixuan Even Xu, Yuhao Zhang, and Renfei Zhou. On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 80:1-80:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{liang_et_al:LIPIcs.ESA.2023.80,
  author =	{Liang, Jingxun and Tang, Zhihao Gavin and Xu, Yixuan Even and Zhang, Yuhao and Zhou, Renfei},
  title =	{{On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{80:1--80:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.80},
  URN =		{urn:nbn:de:0030-drops-187334},
  doi =		{10.4230/LIPIcs.ESA.2023.80},
  annote =	{Keywords: Online Matching, AdWords, Ranking, Water-Filling}
}
Document
Fast Reachability Using DAG Decomposition

Authors: Giorgos Kritikakis and Ioannis G. Tollis

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We present a fast and practical algorithm to compute the transitive closure (TC) of a directed graph. It is based on computing a reachability indexing scheme of a directed acyclic graph (DAG), G = (V, E). Given any path/chain decomposition of G we show how to compute in parameterized linear time such a reachability scheme that can answer reachability queries in constant time. The experimental results reveal that our method is significantly faster in practice than the theoretical bounds imply, indicating that path/chain decomposition algorithms can be applied to obtain fast and practical solutions to the transitive closure (TC) problem. Furthermore, we show that the number of non-transitive edges of a DAG G is ≤ width*|V| and that we can find a substantially large subset of the transitive edges of G in linear time using a path/chain decomposition. Our extensive experimental results show the interplay between these concepts in various models of DAGs.

Cite as

Giorgos Kritikakis and Ioannis G. Tollis. Fast Reachability Using DAG Decomposition. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 2:1-2:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kritikakis_et_al:LIPIcs.SEA.2023.2,
  author =	{Kritikakis, Giorgos and Tollis, Ioannis G.},
  title =	{{Fast Reachability Using DAG Decomposition}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{2:1--2:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.2},
  URN =		{urn:nbn:de:0030-drops-183526},
  doi =		{10.4230/LIPIcs.SEA.2023.2},
  annote =	{Keywords: graph algorithms, hierarchy, directed acyclic graphs (DAG), path/chain decomposition, transitive closure, transitive reduction, reachability, reachability indexing scheme}
}
  • Refine by Author
  • 1 Kritikakis, Giorgos
  • 1 Liang, Jingxun
  • 1 Tang, Zhihao Gavin
  • 1 Tollis, Ioannis G.
  • 1 Xu, Yixuan Even
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Online algorithms
  • 1 Theory of computation → Theory and algorithms for application domains

  • Refine by Keyword
  • 1 AdWords
  • 1 Online Matching
  • 1 Ranking
  • 1 Water-Filling
  • 1 directed acyclic graphs (DAG)
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 2 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail