1 Search Results for "d'Orsi, Tommaso"

A Ihara-Bass Formula for Non-Boolean Matrices and Strong Refutations of Random CSPs

Authors: Tommaso d'Orsi and Luca Trevisan

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)

We define a novel notion of "non-backtracking" matrix associated to any symmetric matrix, and we prove a "Ihara-Bass" type formula for it. We use this theory to prove new results on polynomial-time strong refutations of random constraint satisfaction problems with k variables per constraints (k-CSPs). For a random k-CSP instance constructed out of a constraint that is satisfied by a p fraction of assignments, if the instance contains n variables and n^{k/2} / ε² constraints, we can efficiently compute a certificate that the optimum satisfies at most a p+O_k(ε) fraction of constraints. Previously, this was known for even k, but for odd k one needed n^{k/2} (log n)^{O(1)} / ε² random constraints to achieve the same conclusion. Although the improvement is only polylogarithmic, it overcomes a significant barrier to these types of results. Strong refutation results based on current approaches construct a certificate that a certain matrix associated to the k-CSP instance is quasirandom. Such certificate can come from a Feige-Ofek type argument, from an application of Grothendieck’s inequality, or from a spectral bound obtained with a trace argument. The first two approaches require a union bound that cannot work when the number of constraints is o(n^⌈k/2⌉) and the third one cannot work when the number of constraints is o(n^{k/2} √{log n}). We further apply our techniques to obtain a new PTAS finding assignments for k-CSP instances with n^{k/2} / ε² constraints in the semi-random settings where the constraints are random, but the sign patterns are adversarial.

Cite as

Tommaso d'Orsi and Luca Trevisan. A Ihara-Bass Formula for Non-Boolean Matrices and Strong Refutations of Random CSPs. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 27:1-27:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

  author =	{d'Orsi, Tommaso and Trevisan, Luca},
  title =	{{A Ihara-Bass Formula for Non-Boolean Matrices and Strong Refutations of Random CSPs}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.27},
  URN =		{urn:nbn:de:0030-drops-182979},
  doi =		{10.4230/LIPIcs.CCC.2023.27},
  annote =	{Keywords: CSP, k-XOR, strong refutation, sum-of-squares, tensor, graph, hypergraph, non-backtracking walk}
  • Refine by Author
  • 1 Trevisan, Luca
  • 1 d'Orsi, Tommaso

  • Refine by Classification
  • 1 Mathematics of computing → Probability and statistics
  • 1 Theory of computation

  • Refine by Keyword
  • 1 CSP
  • 1 graph
  • 1 hypergraph
  • 1 k-XOR
  • 1 non-backtracking walk
  • Show More...

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2023

Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail