68 Search Results for "van Glabbeek, Rob"


Volume

LIPIcs, Volume 140

30th International Conference on Concurrency Theory (CONCUR 2019)

CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands

Editors: Wan Fokkink and Rob van Glabbeek

Document
Fair Join Pattern Matching for Actors

Authors: Philipp Haller, Ayman Hussein, Hernán Melgratti, Alceste Scalas, and Emilio Tuosto

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Join patterns provide a promising approach to the development of concurrent and distributed message-passing applications. Several variations and implementations have been presented in the literature - but various aspects remain under-explored: in particular, how to specify a suitable notion of message matching, how to implement it correctly and efficiently, and how to systematically evaluate the implementation performance. In this work we focus on actor-based programming, and study the application of join patterns with conditional guards (i.e., the most expressive and challenging version of join patterns in literature). We formalise a novel specification of fair and deterministic join pattern matching, ensuring that older messages are always consumed if they can be matched. We present a stateful, tree-based join pattern matching algorithm and prove that it correctly implements our fair and deterministic matching specification. We present a novel Scala 3 actor library (called JoinActors) that implements our join pattern formalisation, leveraging macros to provide an intuitive API. Finally, we evaluate the performance of our implementation, by introducing a systematic benchmarking approach that takes into account the nuances of join pattern matching (in particular, its sensitivity to input traffic and complexity of patterns and guards).

Cite as

Philipp Haller, Ayman Hussein, Hernán Melgratti, Alceste Scalas, and Emilio Tuosto. Fair Join Pattern Matching for Actors. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 17:1-17:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{haller_et_al:LIPIcs.ECOOP.2024.17,
  author =	{Haller, Philipp and Hussein, Ayman and Melgratti, Hern\'{a}n and Scalas, Alceste and Tuosto, Emilio},
  title =	{{Fair Join Pattern Matching for Actors}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{17:1--17:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.17},
  URN =		{urn:nbn:de:0030-drops-208663},
  doi =		{10.4230/LIPIcs.ECOOP.2024.17},
  annote =	{Keywords: Concurrency, join patterns, join calculus, actor model}
}
Document
The Directed Van Kampen Theorem in Lean

Authors: Henning Basold, Peter Bruin, and Dominique Lawson

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Directed topology augments the concept of a topological space with a notion of directed paths. This leads to a category of directed spaces, in which the morphisms are continuous maps respecting directed paths. Directed topology thereby enables an accurate representation of computation paths in concurrent systems that usually cannot be reversed. Even though ideas from algebraic topology have analogues in directed topology, the directedness drastically changes how spaces can be characterised. For instance, while an important homotopy invariant of a topological space is its fundamental groupoid, for directed spaces this has to be replaced by the fundamental category because directed paths are not necessarily reversible. In this paper, we present a Lean 4 formalisation of directed spaces and of a Van Kampen theorem for them, which allows the fundamental category of a directed space to be computed in terms of the fundamental categories of subspaces. Part of this formalisation is also a significant theory of directed spaces, directed homotopy theory and path coverings, which can serve as basis for future formalisations of directed topology. The formalisation in Lean can also be used in computer-assisted reasoning about the behaviour of concurrent systems that have been represented as directed spaces.

Cite as

Henning Basold, Peter Bruin, and Dominique Lawson. The Directed Van Kampen Theorem in Lean. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{basold_et_al:LIPIcs.ITP.2024.8,
  author =	{Basold, Henning and Bruin, Peter and Lawson, Dominique},
  title =	{{The Directed Van Kampen Theorem in Lean}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.8},
  URN =		{urn:nbn:de:0030-drops-207368},
  doi =		{10.4230/LIPIcs.ITP.2024.8},
  annote =	{Keywords: Lean, Directed Topology, Van Kampen Theorem, Directed Homotopy Theory, Formalised Mathematics}
}
Document
Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

Authors: Jesús Aranda, Sebastián Betancourt, Juan Fco. Díaz, and Frank Valencia

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We introduce a DeGroot-based model for opinion dynamics in social networks. A community of agents is represented as a weighted directed graph whose edges indicate how much agents influence one another. The model is formalized using labeled transition systems, henceforth called opinion transition systems (OTS), whose states represent the agents' opinions and whose actions are the edges of the influence graph. If a transition labeled (i,j) is performed, agent j updates their opinion taking into account the opinion of agent i and the influence i has over j. We study (convergence to) opinion consensus among the agents of strongly-connected graphs with influence values in the interval (0,1). We show that consensus cannot be guaranteed under the standard strong fairness assumption on transition systems. We derive that consensus is guaranteed under a stronger notion from the literature of concurrent systems; bounded fairness. We argue that bounded-fairness is too strong of a notion for consensus as it almost surely rules out random runs and it is not a constructive liveness property. We introduce a weaker fairness notion, called m-bounded fairness, and show that it guarantees consensus. The new notion includes almost surely all random runs and it is a constructive liveness property. Finally, we consider OTS with dynamic influence and show convergence to consensus holds under m-bounded fairness if the influence changes within a fixed interval [L,U] with 0 < L < U < 1. We illustrate OTS with examples and simulations, offering insights into opinion formation under fairness and dynamic influence.

Cite as

Jesús Aranda, Sebastián Betancourt, Juan Fco. Díaz, and Frank Valencia. Fairness and Consensus in an Asynchronous Opinion Model for Social Networks. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aranda_et_al:LIPIcs.CONCUR.2024.7,
  author =	{Aranda, Jes\'{u}s and Betancourt, Sebasti\'{a}n and D{\'\i}az, Juan Fco. and Valencia, Frank},
  title =	{{Fairness and Consensus in an Asynchronous Opinion Model for Social Networks}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.7},
  URN =		{urn:nbn:de:0030-drops-207794},
  doi =		{10.4230/LIPIcs.CONCUR.2024.7},
  annote =	{Keywords: Social networks, fairness, DeGroot, consensus, asynchrony}
}
Document
Passive Learning of Regular Data Languages in Polynomial Time and Data

Authors: Mrudula Balachander, Emmanuel Filiot, and Raffaella Gentilini

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A regular data language is a language over an infinite alphabet recognized by a deterministic register automaton (DRA), as defined by Benedikt, Ley and Puppis. The later model, which is expressively equivalent to the deterministic finite-memory automata introduced earlier by Francez and Kaminsky, enjoys unique minimal automata (up to isomorphism), based on a Myhill-Nerode theorem. In this paper, we introduce a polynomial time passive learning algorithm for regular data languages from positive and negative samples. Following Gold’s model for learning languages, we prove that our algorithm can identify in the limit any regular data language L, i.e. it returns a minimal DRA recognizing L if a characteristic sample set for L is provided as input. We prove that there exist characteristic sample sets of polynomial size with respect to the size of the minimal DRA recognizing L. To the best of our knowledge, it is the first passive learning algorithm for data languages, and the first learning algorithm which is fully polynomial, both with respect to time complexity and size of the characteristic sample set.

Cite as

Mrudula Balachander, Emmanuel Filiot, and Raffaella Gentilini. Passive Learning of Regular Data Languages in Polynomial Time and Data. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 10:1-10:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balachander_et_al:LIPIcs.CONCUR.2024.10,
  author =	{Balachander, Mrudula and Filiot, Emmanuel and Gentilini, Raffaella},
  title =	{{Passive Learning of Regular Data Languages in Polynomial Time and Data}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{10:1--10:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.10},
  URN =		{urn:nbn:de:0030-drops-207829},
  doi =		{10.4230/LIPIcs.CONCUR.2024.10},
  annote =	{Keywords: Register automata, passive learning, automata over infinite alphabets}
}
Document
As Soon as Possible but Rationally

Authors: Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player games played on weighted graphs, where the objective of each player is to minimize the cost of reaching a specific set of target vertices. In these games, one player, referred to as the system, declares his strategy upfront. The other players, composing the environment, then rationally make their moves according to their objectives. The rational behavior of these responding players is captured through two models: they opt for strategies that either represent a Nash equilibrium or lead to a play with a Pareto-optimal cost tuple.

Cite as

Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. As Soon as Possible but Rationally. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2024.14,
  author =	{Bruy\`{e}re, V\'{e}ronique and Grandmont, Christophe and Raskin, Jean-Fran\c{c}ois},
  title =	{{As Soon as Possible but Rationally}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.14},
  URN =		{urn:nbn:de:0030-drops-207869},
  doi =		{10.4230/LIPIcs.CONCUR.2024.14},
  annote =	{Keywords: Games played on graphs, rational verification, rational synthesis, Nash equilibrium, Pareto-optimality, quantitative reachability objectives}
}
Document
Strategic Dominance: A New Preorder for Nondeterministic Processes

Authors: Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the following refinement relation between nondeterministic state-transition models: model ℬ strategically dominates model 𝒜 iff every deterministic refinement of 𝒜 is language contained in some deterministic refinement of ℬ. While language containment is trace inclusion, and the (fair) simulation preorder coincides with tree inclusion, strategic dominance falls strictly between the two and can be characterized as "strategy inclusion" between 𝒜 and ℬ: every strategy that resolves the nondeterminism of 𝒜 is dominated by a strategy that resolves the nondeterminism of ℬ. Strategic dominance can be checked in 2-ExpTime by a decidable first-order Presburger logic with quantification over words and strategies, called resolver logic. We give several other applications of resolver logic, including checking the co-safety, co-liveness, and history-determinism of boolean and quantitative automata, and checking the inclusion between hyperproperties that are specified by nondeterministic boolean and quantitative automata.

Cite as

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Strategic Dominance: A New Preorder for Nondeterministic Processes. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.CONCUR.2024.29,
  author =	{Henzinger, Thomas A. and Mazzocchi, Nicolas and Sara\c{c}, N. Ege},
  title =	{{Strategic Dominance: A New Preorder for Nondeterministic Processes}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.29},
  URN =		{urn:nbn:de:0030-drops-208011},
  doi =		{10.4230/LIPIcs.CONCUR.2024.29},
  annote =	{Keywords: quantitative automata, refinement relation, resolver, strategy, history-determinism}
}
Document
Around Classical and Intuitionistic Linear Processes

Authors: Juan C. Jaramillo, Dan Frumin, and Jorge A. Pérez

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Curry-Howard correspondences between Linear Logic (LL) and session types provide a firm foundation for concurrent processes. As the correspondences hold for intuitionistic and classical versions of LL (ILL and CLL), we obtain two different families of type systems for concurrency. An open question remains: how do these two families exactly relate to each other? Based upon a translation from CLL to ILL due to Laurent, we provide two complementary answers, in the form of full abstraction results based on a typed observational equivalence due to Atkey. Our results elucidate hitherto missing formal links between seemingly related yet different type systems for concurrency.

Cite as

Juan C. Jaramillo, Dan Frumin, and Jorge A. Pérez. Around Classical and Intuitionistic Linear Processes. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 30:1-30:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jaramillo_et_al:LIPIcs.CONCUR.2024.30,
  author =	{Jaramillo, Juan C. and Frumin, Dan and P\'{e}rez, Jorge A.},
  title =	{{Around Classical and Intuitionistic Linear Processes}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{30:1--30:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.30},
  URN =		{urn:nbn:de:0030-drops-208026},
  doi =		{10.4230/LIPIcs.CONCUR.2024.30},
  annote =	{Keywords: Process calculi, session types, linear logic}
}
Document
Minimising the Probabilistic Bisimilarity Distance

Authors: Stefan Kiefer and Qiyi Tang

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A labelled Markov decision process (MDP) is a labelled Markov chain with nondeterminism; i.e., together with a strategy a labelled MDP induces a labelled Markov chain. The model is related to interval Markov chains. Motivated by applications to the verification of probabilistic noninterference in security, we study problems of minimising probabilistic bisimilarity distances of labelled MDPs, in particular, whether there exist strategies such that the probabilistic bisimilarity distance between the induced labelled Markov chains is less than a given rational number, both for memoryless strategies and general strategies. We show that the distance minimisation problem is ∃ℝ-complete for memoryless strategies and undecidable for general strategies. We also study the computational complexity of the qualitative problem about making the distance less than one. This problem is known to be NP-complete for memoryless strategies. We show that it is EXPTIME-complete for general strategies.

Cite as

Stefan Kiefer and Qiyi Tang. Minimising the Probabilistic Bisimilarity Distance. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.CONCUR.2024.32,
  author =	{Kiefer, Stefan and Tang, Qiyi},
  title =	{{Minimising the Probabilistic Bisimilarity Distance}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.32},
  URN =		{urn:nbn:de:0030-drops-208049},
  doi =		{10.4230/LIPIcs.CONCUR.2024.32},
  annote =	{Keywords: Markov decision processes, Markov chains}
}
Document
Automating Memory Model Metatheory with Intersections

Authors: Aristotelis Koutsouridis, Michalis Kokologiannakis, and Viktor Vafeiadis

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
In the weak memory consistency literature, the semantics of concurrent programs is typically defined as a constraint on execution graphs, expressed in relational algebra. Prior work has shown that basic metatheoretic questions about memory models are decidable as long as they can be expressed as irreflexivity and emptiness constraints over Kleene Algebra with Tests (KAT), a condition that rules out practical memory models such the C/C++ and the Linux kernel models. In this paper, we extend these results to memory models containing arbitrary intersections with uninterpreted relations. We can thus automatically establish compilation correctness and derive efficient incremental consistency checkers for RC11, LKMM, and other memory models.

Cite as

Aristotelis Koutsouridis, Michalis Kokologiannakis, and Viktor Vafeiadis. Automating Memory Model Metatheory with Intersections. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{koutsouridis_et_al:LIPIcs.CONCUR.2024.33,
  author =	{Koutsouridis, Aristotelis and Kokologiannakis, Michalis and Vafeiadis, Viktor},
  title =	{{Automating Memory Model Metatheory with Intersections}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.33},
  URN =		{urn:nbn:de:0030-drops-208050},
  doi =		{10.4230/LIPIcs.CONCUR.2024.33},
  annote =	{Keywords: Kleene Algebra, Weak Memory Models}
}
Document
Branching Bisimilarity for Processes with Time-Outs

Authors: Gaspard Reghem and Rob J. van Glabbeek

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper provides an adaptation of branching bisimilarity to reactive systems with time-outs. Multiple equivalent definitions are procured, along with a modal characterisation and a proof of its congruence property for a standard process algebra with recursion. The last section presents a complete axiomatisation for guarded processes without infinite sequences of unobservable actions.

Cite as

Gaspard Reghem and Rob J. van Glabbeek. Branching Bisimilarity for Processes with Time-Outs. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 36:1-36:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{reghem_et_al:LIPIcs.CONCUR.2024.36,
  author =	{Reghem, Gaspard and van Glabbeek, Rob J.},
  title =	{{Branching Bisimilarity for Processes with Time-Outs}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{36:1--36:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.36},
  URN =		{urn:nbn:de:0030-drops-208082},
  doi =		{10.4230/LIPIcs.CONCUR.2024.36},
  annote =	{Keywords: Reactive Systems, Time-outs, Branching Bisimilarity, Modal Characterisation, Congruence, Axiomatisation}
}
Document
A Spectrum of Approximate Probabilistic Bisimulations

Authors: Timm Spork, Christel Baier, Joost-Pieter Katoen, Jakob Piribauer, and Tim Quatmann

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper studies various notions of approximate probabilistic bisimulation on labeled Markov chains (LMCs). We introduce approximate versions of weak and branching bisimulation, as well as a notion of ε-perturbed bisimulation that relates LMCs that can be made (exactly) probabilistically bisimilar by small perturbations of their transition probabilities. We explore how the notions interrelate and establish their connections to other well-known notions like ε-bisimulation.

Cite as

Timm Spork, Christel Baier, Joost-Pieter Katoen, Jakob Piribauer, and Tim Quatmann. A Spectrum of Approximate Probabilistic Bisimulations. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 37:1-37:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{spork_et_al:LIPIcs.CONCUR.2024.37,
  author =	{Spork, Timm and Baier, Christel and Katoen, Joost-Pieter and Piribauer, Jakob and Quatmann, Tim},
  title =	{{A Spectrum of Approximate Probabilistic Bisimulations}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{37:1--37:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.37},
  URN =		{urn:nbn:de:0030-drops-208099},
  doi =		{10.4230/LIPIcs.CONCUR.2024.37},
  annote =	{Keywords: Markov chains, Approximate bisimulation, Abstraction, Model checking}
}
Document
Progress, Justness and Fairness in Modal μ-Calculus Formulae

Authors: Myrthe S. C. Spronck, Bas Luttik, and Tim A. C. Willemse

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
When verifying liveness properties on a transition system, it is often necessary to discard spurious violating paths by making assumptions on which paths represent realistic executions. Capturing that some property holds under such an assumption in a logical formula is challenging and error-prone, particularly in the modal μ-calculus. In this paper, we present template formulae in the modal μ-calculus that can be instantiated to a broad range of liveness properties. We consider the following assumptions: progress, justness, weak fairness, strong fairness, and hyperfairness, each with respect to actions. The correctness of these formulae has been proven.

Cite as

Myrthe S. C. Spronck, Bas Luttik, and Tim A. C. Willemse. Progress, Justness and Fairness in Modal μ-Calculus Formulae. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 38:1-38:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{spronck_et_al:LIPIcs.CONCUR.2024.38,
  author =	{Spronck, Myrthe S. C. and Luttik, Bas and Willemse, Tim A. C.},
  title =	{{Progress, Justness and Fairness in Modal \mu-Calculus Formulae}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{38:1--38:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.38},
  URN =		{urn:nbn:de:0030-drops-208102},
  doi =		{10.4230/LIPIcs.CONCUR.2024.38},
  annote =	{Keywords: Modal \mu-calculus, Property specification, Completeness criteria, Progress, Justness, Fairness, Liveness properties}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs

Authors: Mohan Dantam and Richard Mayr

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider finite-state Markov decision processes with the combined Energy-MeanPayoff objective. The controller tries to avoid running out of energy while simultaneously attaining a strictly positive mean payoff in a second dimension. We show that finite memory suffices for almost surely winning strategies for the Energy-MeanPayoff objective. This is in contrast to the closely related Energy-Parity objective, where almost surely winning strategies require infinite memory in general. We show that exponential memory is sufficient (even for deterministic strategies) and necessary (even for randomized strategies) for almost surely winning Energy-MeanPayoff. The upper bound holds even if the strictly positive mean payoff part of the objective is generalized to multidimensional strictly positive mean payoff. Finally, it is decidable in pseudo-polynomial time whether an almost surely winning strategy exists.

Cite as

Mohan Dantam and Richard Mayr. Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 133:1-133:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dantam_et_al:LIPIcs.ICALP.2024.133,
  author =	{Dantam, Mohan and Mayr, Richard},
  title =	{{Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{133:1--133:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.133},
  URN =		{urn:nbn:de:0030-drops-202762},
  doi =		{10.4230/LIPIcs.ICALP.2024.133},
  annote =	{Keywords: Markov decision processes, energy, mean payoff, parity, strategy complexity}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions

Authors: Wojciech Różowski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Deterministic automata have been traditionally studied through the point of view of language equivalence, but another perspective is given by the canonical notion of shortest-distinguishing-word distance quantifying the of states. Intuitively, the longer the word needed to observe a difference between two states, then the closer their behaviour is. In this paper, we give a sound and complete axiomatisation of shortest-distinguishing-word distance between regular languages. Our axiomatisation relies on a recently developed quantitative analogue of equational logic, allowing to manipulate rational-indexed judgements of the form e ≡_ε f meaning term e is approximately equivalent to term f within the error margin of ε. The technical core of the paper is dedicated to the completeness argument that draws techniques from order theory and Banach spaces to simplify the calculation of the behavioural distance to the point it can be then mimicked by axiomatic reasoning.

Cite as

Wojciech Różowski. A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 149:1-149:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rozowski:LIPIcs.ICALP.2024.149,
  author =	{R\'{o}\.{z}owski, Wojciech},
  title =	{{A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{149:1--149:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.149},
  URN =		{urn:nbn:de:0030-drops-202920},
  doi =		{10.4230/LIPIcs.ICALP.2024.149},
  annote =	{Keywords: Regular Expressions, Behavioural Distances, Quantitative Equational Theories}
}
  • Refine by Author
  • 7 van Glabbeek, Rob
  • 4 Fokkink, Wan
  • 4 Luttik, Bas
  • 3 Bertrand, Nathalie
  • 3 Bruyère, Véronique
  • Show More...

  • Refine by Classification
  • 14 Theory of computation → Logic and verification
  • 12 Theory of computation → Concurrency
  • 7 Theory of computation → Verification by model checking
  • 6 Theory of computation → Formal languages and automata theory
  • 5 Theory of computation → Automata over infinite objects
  • Show More...

  • Refine by Keyword
  • 4 model checking
  • 3 Concurrency
  • 3 Congruence
  • 3 Markov decision processes
  • 3 Model checking
  • Show More...

  • Refine by Type
  • 67 document
  • 1 volume

  • Refine by Publication Year
  • 44 2019
  • 14 2024
  • 2 2017
  • 2 2020
  • 2 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail