
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 551-560
www.stacs-conf.org

ON DYNAMIC BREADTH-FIRST SEARCH IN EXTERNAL-MEMORY

ULRICH MEYER 1

1 Institute for Computer Science, J. W. Goethe University, 60325 Frankfurt/Main, Germany
E-mail address: umeyer@ae.cs.uni-frankfurt.de

Abstract. We provide the first non-trivial result on dynamic breadth-first search (BFS)
in external-memory: For general sparse undirected graphs of initially n nodes and O(n)
edges and monotone update sequences of either Θ(n) edge insertions or Θ(n) edge deletions,

we prove an amortized high-probability bound of O(n/B2/3 + sort(n) · log B) I/Os per
update. In contrast, the currently best approach for static BFS on sparse undirected
graphs requires Ω(n/B1/2 + sort(n)) I/Os.

1. Introduction

Breadth first search (BFS) is a fundamental graph traversal strategy. It can also be
viewed as computing single source shortest paths on unweighted graphs. It decomposes the
input graph G = (V,E) of n nodes and m edges into at most n levels where level i comprises
all nodes that can be reached from a designated source s via a path of i edges, but cannot
be reached using less than i edges.

The objective of a dynamic graph algorithm is to efficiently process an online sequence
of update and query operations; see [8, 14] for overviews of classic and recent results. In
our case we consider BFS under a sequence of either Θ(n) edge insertions, but not deletions
(incremental version) or Θ(n) edge deletions, but not insertions (decremental version). After
each edge insertion/deletion the updated BFS level decomposition has to be output.

1.1. Computation models.

We consider the commonly accepted external-memory (EM) model of Aggarwal and
Vitter [1]. It assumes a two level memory hierarchy with faster internal memory having
a capacity to store M vertices/edges. In an I/O operation, one block of data, which can
store B vertices/edges, is transferred between disk and internal memory. The measure of
performance of an algorithm is the number of I/Os it performs. The number of I/Os needed
to read N contiguous items from disk is scan(N) = Θ(N/B). The number of I/Os required

1998 ACM Subject Classification: F.2.2.
Key words and phrases: External Memory, Dynamic Graph Algorithms, BFS, Randomization.
Partially supported by the DFG grant ME 3250/1-1, and by the center of massive data algorithmics

(MADALGO) funded by the Danish National Research Foundation.

c© U. Meyer
CC© Creative Commons Attribution-NoDerivs License

STACS 2008
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 551-560
http://drops.dagstuhl.de/opus/volltexte/2008/1316

552 U. MEYER

to sort N items is sort(N) = Θ((N/B) logM/B(N/B)). For all realistic values of N , B, and

M , scan(N) < sort(N) � N .
There has been a significant number of publications on external-memory graph algo-

rithms; see [12, 16] for recent overviews. However, we are not aware of any dynamic graph
algorithm in the fully external-memory case (where |V | > M).

1.2. Results.

We provide the first non-trivial result on dynamic BFS in external-memory. For general
sparse undirected graphs of initially n nodes and O(n) edges and either Θ(n) edge insertions
or Θ(n) edge deletions, we prove an amortized high-probability bound of O(n/B 2/3+sort(n)·
log B) I/Os per update. In contrast, the currently best bound for static BFS on sparse

undirected graphs is O(n/B1/2 + sort(n)) I/Os [11].
Also note that for general sparse graphs and worst-case monotone sequences of Θ(n)

updates in internal-memory there is asymptotically no better solution than performing Θ(n)
runs of the linear-time static BFS algorithm, even if after each update we are just required to
report the changes in the BFS tree (see Fig. 1 for an example). In case Ω(n/B 1/2 +sort(n))
I/Os should prove to be a lower bound for static BFS in external-memory, then our result
yields an interesting differentiator between static vs. dynamic BFS in internal and external
memory.

X
s

Y

Z

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

	�	
	�	
	�	

�

�

�

���
���
���

���
���
���

�

�

�

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

 �
 �
 �

!�!
!�!
!�!

"�"
"�"
"�"

#�#
#�#
#�#

$�$
$�$
$�$

%�%
%�%
%�%

&�&
&�&
&�&

'�'
'�'
'�'

(�(
(�(
(�(

)�)
)�)
)�)

�
�
�

+�+
+�+
+�+

,�,
,�,
,�,

-�-
-�-
-�-

.�.
.�.
.�.

/�/
/�/
/�/

0�0
0�0
0�0

1�1
1�1
1�1

2�2
2�2
2�2

3�3
3�3
3�3

4�4
4�4
4�4

5�5
5�5
5�5

6�6
6�6
6�6

7�7
7�7
7�7

8�8
8�8
8�8

9�9
9�9
9�9

:�:
:�:
:�:

;�;
;�;
;�;

<�<
<�<
<�<

=�=
=�=
=�=

>�>
>�>
>�>

Figure 1: Example for a graph class where each update requires Ω(n) changes in the BFS
tree: inserting new (dashed) edges alternatingly shortcut the distances from s to
X and s to Y. As a result, in the updated BFS tree the parents of all vertices in
Z keep on changing between X and Y.

1.3. Organization of the paper.

In Section 2 we will review known BFS algorithms for static undirected graphs. Then
we consider traditional and new external-memory methods for graph clustering (Section 3).
Subsequently, in Section 4 we provide the new algorithm and analyze it in Section 5. Final
remarks concerning extensions and open problems are given in Sections 6 and 7, respectively.

2. Review of Static BFS Algorithms

Internal-Memory. BFS is well-understood in the RAM model. There exists a simple
linear time algorithm [6] (hereafter referred as IM BFS) for the BFS traversal in a graph.
IM BFS keeps a set of appropriate candidate nodes for the next vertex to be visited in a
FIFO queue Q. Furthermore, in order to find out the unvisited neighbors of a node from
its adjacency list, it marks the nodes as either visited or unvisited.

ON DYNAMIC BREADTH-FIRST SEARCH IN EXTERNAL-MEMORY 553

Unfortunately, as the storage requirements of the graph starts approaching the size
of the internal memory, the running time of this algorithm deviates significantly from the
predicted O(n + m) asymptotic performance of the RAM model: checking whether edges
lead to already visited nodes altogether needs Θ(m) I/Os in the worst case; unstructured
indexed access to adjacency lists may add another Θ(n + m/B) I/Os.

EM-BFS for dense undirected graphs. The algorithm by Munagala and Ranade [13]
(referred as MR BFS) ignores the second problem but addresses the first by exploiting the
fact that the neighbors of a node in BFS level t − 1 are all in BFS levels t − 2, t − 1 or t.
Let L(t) denote the set of nodes in BFS level t, and let A(t) be the multi-set of neighbors of
nodes in L(t−1). Given L(t−1) and L(t−2), MR BFS builds L(t) as follows: Firstly, A(t)
is created by |L(t − 1)| random accesses to get hold of the adjacency lists of all nodes in
L(t−1). Thereafter, duplicates are removed from A(t) to get a sorted set A′(t). This is done
by sorting A(t) according to node indices, followed by a scan and compaction phase. The
set L(t) := A′(t) \{L(t−1)∪L(t−2)} is computed by scanning “in parallel” the sorted sets
of A′(t), L(t−1), and L(t−2) to filter out the nodes already present in L(t−1) or L(t−2).
The resulting worst-case I/O-bound is O (

∑

t L(t) +
∑

t sort(A(t))) = O (n + sort(n + m)).
The algorithm outputs a BFS-level decomposition of the vertices, which can be easily trans-
formed into a BFS tree using O(sort(n + m)) I/Os [4].

EM-BFS for sparse undirected graphs. Mehlhorn and Meyer suggested another ap-
proach [11] (MM BFS) which involves a preprocessing phase to restructure the adjacency
lists of the graph representation. It groups the vertices of the input graph into disjoint
clusters of small diameter in G and stores the adjacency lists of the nodes in a cluster
contiguously on the disk. Thereafter, an appropriately modified version of MR BFS is run.
MM BFS exploits the fact that whenever the first node of a cluster is visited then the
remaining nodes of this cluster will be reached soon after. By spending only one random
access (and possibly, some sequential accesses depending on cluster size) to load the whole
cluster and then keeping the cluster data in some efficiently accessible data structure (pool)
until it is all processed, on sparse graphs the total amount of I/Os can be reduced by a factor

of up to
√

B: the neighboring nodes of a BFS level can be computed simply by scanning
the pool and not the whole graph. Though some edges may be scanned more often in the
pool, unstructured I/Os to fetch adjacency lists is considerably reduced, thereby reducing
the total number of I/Os.

3. Preprocessing

3.1. Traditional preprocessing within MM BFS.

Mehlhorn and Meyer [11] proposed the algorithms MM BFS R and MM BFS D, out
of which the first is randomized and the second is deterministic. In MM BFS R, the par-
titioning is generated “in parallel rounds”: after choosing master nodes independently and
uniformly at random, in each round, each master node tries to capture all unvisited neigh-
bors of its current sub-graph into its partition, with ties being resolved arbitrarily.

554 U. MEYER

A similar kind of randomized preprocessing is also applied in parallel [15] and stream-
ing [7] settings. There, however, a dense compressed graph among the master nodes is
produced, causing rather high parallel work or large total streaming volume, respectively.

The MM BFS D variant first builds a spanning tree Ts for the connected component
of G that contains the source node. Arge et al. [2] show an upper bound of O((1 +
log log (B · n/m)) · sort(n + m)) I/Os for computing such a spanning tree. Each undi-
rected edge of Ts is then replaced by two oppositely directed edges. Note that a bi-directed
tree always has at least one Euler tour. In order to construct the Euler tour around this
bi-directed tree, each node chooses a cyclic order [3] of its neighbors. The successor of
an incoming edge is defined to be the outgoing edge to the next node in the cyclic order.
The tour is then broken at the source node and the elements of the resulting list are then
stored in consecutive order using an external memory list-ranking algorithm; Chiang et
al. [5] showed how to do this in sorting complexity. Thereafter, we chop the Euler tour into

chunks of max{1,
√

n·B
n+m} nodes and remove duplicates such that each node only remains

in the first chunk it originally occurs; again this requires a couple of sorting steps. The
adjacency lists are then re-ordered based on the position of their corresponding nodes in
the chopped duplicate-free Euler tour: all adjacency lists for nodes in the same chunks form
a cluster and the distance in G between any two vertices whose adjacency-lists belong to

the same cluster is bounded by max{1,
√

n·B
n+m}.

3.2. Modified preprocessing for dynamic BFS.

The preprocessing methods for the static BFS in [11] may produce very unbalanced

clusters: for example, with MM BFS D using chunk size 1 < µ < O(
√

B) there may be
Ω(n/µ) clusters being in charge of only O(1) adjacency-lists each. For the dynamic version,
however, we would like to argue that each random access to a cluster not visited so far
provides us with Ω(µ) new adjacency-lists. Unfortunately, finding such a clustering I/O-
efficiently seems to be quite hard. Therefore, we shall already be satisfied with an Euler
tour based randomized construction ensuring that the expected number of adjacency-lists
kept in all but one1 clusters is Ω(µ).

The preprocessing from MM BFS D is modified as follows: each vertex v in the spanning
tree Ts is assigned an independent binary random number r(v) with P[r(v) = 0] = P[r(v) =
1] = 1/2. When removing duplicates from the Euler tour, instead of storing v’s adjacency-
list in the cluster related to the chunk with the first occurrence of a vertex v, now we only
stick to its first occurrence iff r(v) = 0 and otherwise (r(v) = 1) store v’s adjacency-list in
the cluster that corresponds to the last chunk of the Euler tour v appears in. For leaf nodes
v, there is only one occurrence on the tour, hence the value of r(v) is irrelevant. Obviously,
each adjacency-lists is stored only once. Furthermore, the modified procedure maintains all
good properties of the standard preprocessing within MM BFS D like guaranteed bounded
distances of O(µ) in G between the vertices belonging to the same cluster and O(n/µ)
clusters overall.

Lemma 3.1. For chunk size µ > 1 and each but the last chunk, the expected number of
adjacency-lists kept is at least µ/8.

1The last chunk of the Euler tour only visits ((2 ·n′ −1) mod µ)+1 vertices where n′ denotes the number
of vertices in the connected component of the starting node s.

ON DYNAMIC BREADTH-FIRST SEARCH IN EXTERNAL-MEMORY 555

Proof. Let R = (v1, . . . , vµ) be the sequence of vertices visited by an arbitrary chunk R
of the Euler tour T , excluding the last chunk. Let a be the number of entries in R that
represent first or last visits of inner-tree vertices from the spanning tree Ts on T . These
a entries account for an expected number of a/2 adjacency-lists actually stored and kept
in R. Note that if for some vertex v ∈ T both its first and last visit happen within R, then
v’s adjacency-list is kept with probability one. Similarly, if there are any visits of leaf nodes
from Ts within R, then their adjacency-lists are kept for sure; let b denote the number of
these leaf node entries in R. What remains are µ−a− b intermediate (neither first nor last)
visits of vertices within R; they do not contribute any additional adjacency-lists.

We can bound µ − a − b using the observation that any intermediate visit of a tree
node v on T is preceded by a last visit of a child v ′ of v and proceeded by a first visit of
another child v′′ of v. Thus, µ−a− b ≤ dµ/2e, that is a+ b ≥ bµ/2c, which implies that the
expected number of distinct adjacency-lists being kept for R is at least bµ/2c/2 ≥ µ/8.

4. The Dynamic Incremental Algorithm

In this section we concentrate on the incremental version for sparse graphs with Θ(n)
updates where each update inserts an edge. Thus, BFS levels can only decrease over time.
Before we start, let us fix some notation: for i ≥ 1, Gi = (V,Ei) is to denote the graph
after the i-th update, G0 is the initial graph. Let di(v), i ≥ 0, stand for the BFS level of
node v if it can be reached from the source node s in Gi and n otherwise. Furthermore, for
i ≥ 1, let ∆di(v) = |di−1(v) − di(v)|. The main ideas of our approach are as follows:

Checking Connectivity; Type A updates. In order to compute the BFS levels for
Gi, i ≥ 1, we first run an EM connected components algorithm (for example the one in [13]
taking O(sort(n)·log B) I/Os) in order to check, whether the insertion of the i-th edge (u, v)
enlarges the connected component Cs of the source vertex s. If yes (let us call this a Type A
update), then w.l.o.g. let u ∈ Cs and let Cv be the connected component that comprises v.
The new edge (u, v) is then the only connection between the existing BFS-tree for s and
Cv. Therefore, we can simply run MR BFS on the subgraph G′ defined by the vertices in
Cv with source v and add di−1(u) + 1 to all distances obtained. This takes O(nv + sort(n))
I/Os where nv denotes the number of vertices in Cv.

If the i-th update does not merge Cs with some other connected component but adds
an edge within Cs (Type B update) then we need to do something more fancy:

Dealing with small changes; Type B updates. Now for computing the BFS levels
for Gi, i ≥ 1, we pre-feed the adjacency-lists into a sorted pool H according to the BFS
levels of their respective vertices in Gi−1 using a certain advance α > 1, i.e., the adjacency
list for v is added to H when creating BFS level max{0, di−1(v)−α} of Gi. This can be done
I/O-efficiently as follows. First we extract the adjacency-lists for vertices having BFS levels
up to α in Gi−1 and put them to H where they are kept sorted by node indices. From the
remaining adjacency-lists we build a sequence S by sorting them according to BFS levels
in Gi−1 (primary criterion) and node indices (secondary criterion). For the construction
of each new BFS level of Gi we merge a subsequence of S accounting for one BFS level in
Gi−1 with H using simple scanning.

Therefore, if ∆di(v) ≤ α for all v ∈ V then all adjacency-lists will be added to H in
time and can be consumed from there without random I/O. Each adjacency-list is scanned

556 U. MEYER

at most once in S and at most α times in H. Thus, if α = o(
√

B) this approach causes less
I/O than MM BFS.

Dealing with larger changes. Unfortunately, in general, there may be vertices v with
∆di(v) > α. Their adjacency-lists are not prefetched into H early enough and therefore
have to be imported into H using random I/Os to whole clusters just like it is done in
MM BFS. However, we apply the modified clustering procedure described in Section 3.2 on
Gi−1, the graph without the i-th new edge (whose connectivity is the same as that of Gi)
with chunk size α/4.

Note that this may result in Θ(n/α) cluster accesses, which would be prohibitive for
small α. Therefore we restrict the number of random cluster accesses to α · n/B. If the
dynamic algorithm does not succeed within these bounds then it increases α by a factor of
two, computes a new clustering for Gi−1 with larger chunk size and starts a new attempt
by repeating the whole approach with the increased parameters. Note that we do not need
to recompute the spanning tree for the for the second, third, . . . attempt.

At most O(log B) attempts per update. The j-th attempt, j ≥ 1, of the dynamic
approach to produce the new BFS-level decomposition will apply an advance of αj := 32 ·2j

and recompute the modified clustering for Gi−1 using chunk size µj := 8 · 2j . Note that

there can be at most O(log
√

B) = O(log B) failing attempts for each edge update since by
then our approach allows sufficiently many random accesses to clusters so that all of them
can be loaded explicitly resulting in an I/O-bound comparable to that of static MM BFS.
In Section 5, however, we will argue that for most edge updates within a longer sequence,
the advance value and the chunk size value for the succeeding attempt are bounded by
O(B1/3) implying significantly improved I/O performance.

Restricting waiting time in H. There is one more important detail to take care of:
when adjacency-lists are brought into H via explicit cluster accesses (because of insufficient
advance αj in the prefetching), these adjacency-lists will re-enter H once more later on
during the (for these adjacency-lists by then useless) prefetching. Thus, in order to make
sure that unnecessary adjacency-lists do not stay in H forever, each entry in H carries
a time-stamp ensuring that superfluous adjacency-lists are evicted from H after at most
αj = O(2j) BFS levels.

Lemma 4.1. For sparse graphs with O(n) updates, each Type B update succeeding during
the j-th attempt requires O(2j · n/B + sort(n) · log B) I/Os.

Proof. Deciding whether a Type B update takes place essentially requires a connected com-
ponents computation, which accounts for O(sort(n) · log B) I/Os. Within this I/O bound
we can also compute a spanning tree Ts of the component holding the starting vertex s
but excluding the new edge. Subsequently, there are j = O(log B) attempts, each of which
uses O(sort(n)) I/Os to derive a new modified clustering based on an Euler tour with in-
creasing chunk sizes around Ts. Furthermore, before each attempt we need to initialize H
and S, which takes O(sort(n)) I/Os per attempt. The worst-case number of I/Os to (re-)
scan adjacency-lists in H or to explicitly fetch clusters of adjacency-lists doubles after each
attempt. Therefore it asymptotically suffices to consider the (successful) last attempt j,
which causes O(2j · n/B) I/Os. Furthermore, each attempt requires another O(sort(n))
I/Os to pre-sort explicitly loaded clusters before they can be merged with H using a sin-
gle scan just like in MM BFS. Adding all contributions yields the claimed I/O bound of
O(2j · n/B + sort(n) · log B) for sparse graphs.

ON DYNAMIC BREADTH-FIRST SEARCH IN EXTERNAL-MEMORY 557

5. Analysis

We split our analysis of the incremental BFS algorithm into two parts. The first (and
easy one) takes care of Type A updates:

Lemma 5.1. For sparse undirected graphs with Θ(n) updates, there are at most n−1 Type
A updates causing O(n · sort(n) · log B) I/Os in total.

Proof. Each Type A update starts with an EM connected components computation causing
O(sort(n) · log B) I/Os per update. Since each node can be added to the connected compo-
nent Cs holding the starting vertex s only once, the total number of I/Os spend in calls to
the MR-BFS algorithm on components to be merged with Cs is O(n + sort(n)). Producing
the output takes another O(sort(n)) per update.

Now we turn to Type B updates:

Lemma 5.2. For sparse undirected graphs with Θ(n) updates, all Type B updates cause

O(n · (n2/3 + sort(n) · log B)) I/Os in total with high probability.

Proof. Recall that di(v), i ≥ 0, stands for the BFS level of node v if it can be reached from
the source node s in Gi and n otherwise. If upon the i-th update the dynamic algorithm
issues an explicit fetch for the adjacency-lists of some vertex v kept in some cluster C
then this is because ∆di(v) = di−1(v) − di(v) > α for the current advance α. Note that
for all other vertices v′ ∈ C, there is a path of length at most µ in Gi−1, implying that
|di−1(v

′) − di−1(v)| ≤ µ as well as |di(v) − di(v
′)| ≤ µ. Having current chunk size µ = α/4,

this implies

∆di(v
′) = di−1(v

′) − di(v
′)

= di−1(v
′) − di−1(v) + di−1(v) − di(v) + di(v) − di(v

′)

> α − 2µ

≥ α/2.

If the i-th update needs j attempts to succeed then, during the (failing) attempt j − 1,
it has tried to explicitly access αj−1 · n/B + 1 distinct clusters. Out of these at least
αj−1 · n/B = 2j+4 · n/B clusters carry an expected amount of at least µj−1/8 = 2j−1

adjacency-lists each. This accounts for an expected number of at least 22·j+3 · n/B distinct
vertices, each of them featuring ∆di(·) ≥ αj−1/2 = 2j+3. With probability at least 1/2 we
actually get at least half of the expected amount of distinct vertices/adjacency-lists, i.e.,
22·j+2 · n/B. Therefore, using the definitions Di =

∑

v∈V \{s} di(v) and ∆Di = |Di−1 − Di|,
if the i-th update succeeds within the j-th attempt we have ∆Di ≥ 23·j+5 · n/B =: Yj with
probability at least 1/2. Let us call this event a large j-yield.

Since each attempt uses a new clustering with independent choices for r(·), if we consider
two updates i′ and i′′ that succeed after the same number of attempts j, then both i′ and
i′′ have a large yield with probability at least 1/2, independent of each other. Therefore,
we can use Chernoff bounds [10] in order to show that out of k ≥ 16 · c · lnn updates
that all succeed within their j-th attempt, at least k/4 of them have a large j-yield with
probability at least 1−n−c for an arbitrary positive constant c. Subsequently we will prove
an upper bound on the total number of large j-yields that can occur during the whole
update sequence.

558 U. MEYER

The quantity ∆Di provides a global measure as for how much the BFS levels change
after inclusion of the i-th edge from the update sequence. If there are m′ = Θ(n) edge
inserts in total, then

n2 > D0 ≥ D1 ≥ . . . ≥ Dm′−1 ≥ Dm′ > 0.

A large j-yield means ∆Di ≥ Yj . Therefore, in the worst case there are at most n2/Yj =
n2/(23·j+5 · n/B) = n · B/23·j+5 large j-yield updates and – according to our discussion
above – it needs at most kj := 4 ·n ·B/23·j+5 updates that succeed within the j-th attempt
to have at least kj/4 large j-yield updates with high probability2.

For the last step of our analysis we will distinguish two kinds of Type B updates:
those that finish using an advance value αj∗ < B1/3 (Type B1), and the others (Type B2).

Independent of the subtype, an update costs O(αj∗ ·n/B +sort(n) · log B) = O(2j∗ ·n/B +
sort(n) · log B) I/Os by Lemma 4.1. Obviously, for an update sequence of m′ = Θ(n) edge
insertions there can be at most Θ(n) updates of Type B1, each of them accounting for at

most O(n/B2/3 +sort(n) · log B) I/Os. As for Type B2 updates we have already shown that
with high probability there are at most O(n · B/23·j∗) updates that succeed with advance
value Θ(2j∗). Therefore, using Boole’s inequality, the total amount of I/Os for all Type B2
updates is bounded by

O









∑

g≥0

n · B
(B1/3 · 2g)3

· B1/3 · 2g · n
B



 + n · sort(n) · log B



 =

O(n · (n/B2/3 + sort(n) · log B)) with high probability.

Combining the two lemmas of this section implies

Theorem 5.3. For general sparse undirected graphs of initially n nodes and O(n) edges and

Θ(n) edge insertions, dynamic BFS can be solved using amortized O(n/B2/3+sort(n)·log B)
I/Os per update with high probability.

6. Decremental Version and Extensions.

Having gone through the ideas of the incremental version, it is now close to trivial to
come up with a symmetric external-memory dynamic BFS algorithm for a sequence of edge
deletions: instead of pre-feeding adjacency-lists into using an advance of αj levels, we now
apply a lag of αj levels. Therefore, the adjacency-list for a vertex v is found in H as long as
the deletion of the i-th edge does not increase di(v) by more than α. Otherwise, an explicit
random access to the cluster containing v’s adjacency-list is issued later on. All previously
used amortization arguments and bounds carry through, the only difference being that di(·)
values may monotonically increase instead of decrease.

Better amortized bounds can be obtained if ω(n) updates take place and/or G0 has
ω(n) edges. Then we have the potential to amortize more random accesses per attempt,
which leads to larger j-yields and reduces the worst-case number of expensive updates.
Consequently, we can reduce the defining threshold between Type B1 and Type B2 updates,

2We also need to verify that kj ≥ 16 · c · ln n. As observed before, the dynamic algorithm will not

increase its advance and chunk size values beyond O(
√

B) implying 2j = O(
√

B). But then we have

kj = 4 · n · B/23·j+5 = Ω(n/
√

B) and n/
√

B ≥ n/
√

M ≥ n/
√

n ≥ 16 · c · ln n for sufficiently large n.

ON DYNAMIC BREADTH-FIRST SEARCH IN EXTERNAL-MEMORY 559

thus eventually yielding better amortized I/O bounds. Details we be provided in the full
version of this paper.

Modifications along similar lines are in order if external-memory is realized by flash
disks [9]: compared to hard disks, flash memory can sustain many more unstructured
read I/Os per second but on the other hand flash memory usually offers less read/write
bandwidth than hard disks. Hence, in algorithms like ours that are based on a trade-off
between unstructured read I/Os and bulk read/write I/Os, performance can be improved
by allowing more unstructured read I/Os (fetching clusters) if this leads to less overall I/O
volume (scanning hot pool entries).

7. Conclusions

We have given the first non-trivial external-memory algorithm for dynamic BFS. Even
though we obtain significantly better I/O bounds than for the currently best static algo-
rithm, there are a number of open problems: first of all, our bounds dramatically deteriorate
for mixed update sequences (edge insertions and edge deletions in arbitrary order and pro-
portions); besides oscillation effects, a single edge deletion (insertion) may spoil a whole
chain of amortizations for previous insertions (deletions). Also, it would be interesting to
see, whether our bounds can be further improved or also hold for shorter update sequences.
Finally, it would be nice to come up with a deterministic version of the modified clustering.

Acknowledgements

We would like to thank Deepak Ajwani for very helpful discussions.

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Commu-
nications of the ACM, 31(9), pages 1116–1127, 1988.

[2] L. Arge, G. Brodal, and L. Toma. On external-memory MST, SSSP and multi-way planar graph sep-
aration. In Proc. 8th Scand. Workshop on Algorithmic Theory (SWAT), volume 1851 of LNCS, pages
433–447. Springer, 2000.

[3] M. Atallah and U. Vishkin. Finding Euler tours in parallel. Journal of Computer and System Sciences,
29(30), pages 330–337, 1984.

[4] A. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. Westbrook. On external memory graph
traversal. In Proc. 11th Ann. Symposium on Discrete Algorithms (SODA), pages 859–860. ACM-SIAM,
2000.

[5] Y. J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia, D. E. Vengroff, and J. S. Vitter. External
memory graph algorithms. In Proc. 6th Ann.Symposium on Discrete Algorithms (SODA), pages 139–
149. ACM-SIAM, 1995.

[6] T. H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw-Hill, 1990.
[7] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off space for passes in graph streaming problems.

In 17th ACM-SIAM Symposium on Discrete Algorithms, pages 714–723, 2006.
[8] D. Eppstein, Z. Galil, and G. Italiano. Dynamic graph algorithms. In Mikhail J. Atallah, editor, Algo-

rithms and Theory of Computation Handbook, chapter 8. CRC Press, 1999.
[9] E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM Computing Surveys,

37:138–163, 2005.
[10] T. Hagerup and C. Rüb. A guided tour of chernoff bounds. Inf. Process. Lett., 33(6):305–308, 1990.
[11] K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. In Proc. 10th

Ann. European Symposium on Algorithms (ESA), volume 2461 of LNCS, pages 723–735. Springer, 2002.

560 U. MEYER

[12] U. Meyer, P. Sanders, and J. Sibeyn (Eds.). Algorithms for Memory Hierarchies, volume 2625 of LNCS.
Springer, 2003.

[13] K. Munagala and A. Ranade. I/O-complexity of graph algorithms. In In Proc. 10th Ann. Symposium
on Discrete Algorithms (SODA), pages 687–694. ACM-SIAM, 1999.

[14] L. Roditty. Dynamic and static algorithms for path problems in graphs. PhD thesis, Tel Aviv University,
2006.

[15] J. D. Ullman and M. Yannakakis. High-probability parallel transitive closure algorithms. SIAM Journal
on Computing, 20(1):100–125, February 1991.

[16] J. S. Vitter. External memory algorithms and data structures: Dealing with massive data. ACM
computing Surveys, 33, pages 209–271, 2001. Revised version (August 2007) available online at
http://www.cs.purdue.edu/homes/jsv/Papers/Vit.IO survey.pdf.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

