
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 49-60
www.stacs-conf.org

QUANTUM SEARCH WITH VARIABLE TIMES

ANDRIS AMBAINIS 1

1 Department of Computer Science, University of Latvia
Raina bulv. 19, Riga, LV-1586, Latvia
E-mail address: andris.ambainis@lu.lv

Abstract. Since Grover’s seminal work, quantum search has been studied in great detail.
In the usual search problem, we have a collection of n items x1, . . . , xn and we would like
to find i : xi = 1. We consider a new variant of this problem in which evaluating xi for
different i may take a different number of time steps.

Let ti be the number of time steps required to evaluate xi. If the numbers ti are known

in advance, we give an algorithm that solves the problem in O(
p

t21 + t22 + . . . + t2n) steps.
This is optimal, as we also show a matching lower bound. The case, when ti are not known
in advance, can be solved with a polylogarithmic overhead. We also give an application of
our new search algorithm to computing read-once functions.

1. Introduction

Grover’s quantum search algorithm [12] is one of two most important quantum algo-
rithms. It allows to search a collection of n items in O(

√
n) quantum steps. This gives a

quadratic speedup over the exhaustive search for a variety of search problems [3].
An implicit assumption is that any two items can be examined in the same number

of time steps. This is not necessarily true when Grover’s algorithm is applied to a specific
search problem. It might be the case that some possible solutions to the search problem
can be checked faster than others.

Let ti be the number of time steps required to check the ith solution. Classically,
searching for an item i : xi = 1 requires time Θ(t1+. . .+tn). A naive application of Grover’s
search would use O(

√
n) steps, with the maximum possible query time tmax = maxi ti in

each step. This gives a O(
√
ntmax) time quantum algorithm.

In this paper, we give a better quantum algorithm. We consider two settings:

(1) The times ti are known in advance and can be used to design the algorithm;
(2) The times ti are not known in advance. The algorithm learns ti only if it runs the

computation for checking the ith item for ti (or more) steps.

c© Andris Ambainis
CC© Creative Commons Attribution-NoDerivs License

STACS 2008
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 49-60
http://drops.dagstuhl.de/opus/volltexte/2008/1333

50 ANDRIS AMBAINIS

For the first setting, we give a quantum algorithm that searches in time O(
√
T) where

T = t21 + . . .+ t2n. For the second, more general setting, we give an O(
√
T log2 T log2 log T)

time quantum algorithm. We show a lower bound of Ω(
√
T) for the first and, hence, also

the second setting.
To illustrate the usefulness of our search algorithm, we show an application to com-

puting read-once Boolean functions. A Boolean formula (consisting of AND, OR and NOT
operations) f(x1, . . . , xN) is read-once if each of the variables x1, . . . , xN appears at most
once in f . We show that any read-once Boolean formula of depth d can be computed using
O(

√
N logd−1N) queries. The resulting algorithm is weaker than the recent breakthrough

work of [4, 11] but is also much simpler than the algorithms in [4, 11].
This is the first paper to construct quantum algorithms for a model in which queries to

different xi take different time. A similar model, however, has been studied in the context
of quantum lower bounds by Høyer et al. [14].

Some of the proofs are omitted due to the space constraints. A full version of the paper
is available as arXiv preprint quant-ph/0609168.

2. Model

We would like to model the situation when the variable xi is computed by an algorithm
Ai which is initialized in the state |0〉 and, after ti steps, outputs the final state |xi〉|ψi〉 for
some unknown |ψi〉. (For simplicity, we assume that Ai always outputs the correct xi.) In
the first ti − 1 steps, Ai can be in arbitrary intermediate states.

Our goal is to find i : xi = 1. (We sometimes refer to i : xi = 1 as marked items
and i : xi = 0 as unmarked.) Our procedure A can run the algorithms Ai, for some
number of steps t, with Ai outputting xi if ti ≤ t or “the computation is not complete” if
ti > t. The computational cost is the amount of time that is spent running algorithms Ai.
Any transformations that do not involve Ai are free. This is a generalization of the usual
quantum query model.

For completeness, we include a more formal definition of our model in the appendix
A. Our algorithms, however, can be understood with just the informal description in the
previous two paragraphs.

Known vs. unknown times. We consider two variants of this model. In the “known
times” model, the times t1, . . . , tn are known in advance and can be used to design the
algorithm. In the “unknown times” model, t1, . . . , tn are unknown to the designer of the
algorithm.

3. Methods and subroutines

3.1. Amplitude amplification

Amplitude amplification [8] is a generalization of Grover’s quantum search algorithm.
Let

sinα|1〉|ψ1〉 + cosα|0〉|ψ0〉 (3.1)

be the final state of a quantum algorithm A that outputs 1 with probability sin2 α = δ.
We would like to increase the probability of the algorithm outputting 1. Brassard et al. [8]

QUANTUM SEARCH WITH VARIABLE TIMES 51

showed that, by repeating A and A−1 2m+1 times, it is possible to generate the final state

sin(2m+ 1)α|1〉|ψ1〉 + cos(2m+ 1)α|0〉|ψ0〉. (3.2)

In particular, taking m = O(1√
δ
) achieves a constant probability of answer 1.

We use a result by Aaronson and Ambainis [1] who gave a tighter analysis of the same
algorithm:

Lemma 3.1. [1] Let A be a quantum algorithm that outputs a correct answer and a witness
with probability1 δ ≤ ε where ε is known. Furthermore, let

m ≤ π

4 arcsin
√
ε
− 1

2
. (3.3)

Then, there is an algorithm A′ which uses 2m+1 calls to A and A−1 and outputs a correct
answer and a witness with probability

δnew ≥
(

1 − (2m+ 1)2

3
δ

)

(2m+ 1)2δ. (3.4)

The distinction between this lemma and the standard amplitude amplification is as
follows. The standard amplitude amplification increases the probability from δ to Ω(1)
in 2m + 1 = O(1√

δ
) repetitions. In other words, 2m + 1 repetitions increase the success

probability Ω((2m+1)2) times. Lemma 3.1 achieves an increase of almost (2m+1)2 times,
without the big-Ω factor. This is useful if we have an algorithm with k levels of amplitude
amplification nested one inside another. Then, with the usual amplitude amplification, a
big-Ω constant of c would result in a ck factor in the running time. Using Lemma 3.1 avoids
that.

We also need another fact about amplitude amplification.

Claim 3.2. Let δ and δ′ be such that δ ≤ ε and δ′ ≤ ε and let m satisfy the constraint (3.3).
Let p(δ) be the success probability obtained by applying the procedure of Lemma 3.1 to an
algorithm with success probability δ. If δ ′ ≤ δ ≤ cδ′ for c ≥ 1, then p(δ′) ≤ p(δ) ≤ cp(δ′).

Proof. Omitted.

3.2. Amplitude estimation

The second result that we use is a version of quantum amplitude estimation.

Theorem 3.3. [8] There is a procedure Est-Amp(A,M) which, given a quantum algorithm
A and a number M , outputs an estimate ε̃ of the probability ε that A outputs 1 and, with
probability at least 8

π2 , we have

|ε− ε̃| ≤ 2π

√

max(ε(1 − ε), ε̃(1 − ε̃))

M
+

π2

M2
.

The algorithm uses M evaluations of A.

We are interested in a slightly different type of error bound. We would like to have
|ε− ε̃| ≤ cε̃ for some small c > 0.

1[1] requires the probability to be exactly ε but the proof works without changes if the probability is less
than the given ε.

52 ANDRIS AMBAINIS

Theorem 3.4. There is a procedure Estimate(A, c, p, k) which, given a constant c, 0 <
c ≤ 1 and a quantum algorithm A (with the promise that the probability ε that the algorithm
A outputs 1 is either 0 or at least a given value p) outputs an estimate ε̃ of the probability
ε such that, with probability at least 1 − 1

2k , we have

(i) |ε− ε̃| < cε̃ if ε ≥ p;
(ii) ε̃ = 0 if ε = 0.

The procedure Estimate(A, c, p, k) uses the expected number of

Θ

(

k

(

1 + log log
1

p

)

√

1

max(ε, p)

)

evaluations of A.

Proof. Omitted.

4. Search algorithm: known running times

Theorem 4.1. A collection of n items with times t1, . . . , tn can be searched in time

O

(

√

t21 + t22 + . . .+ t2n

)

.

Proof. The basic idea is to subdivide the items into groups so that all items in one group
have similar times ti (e.g. tmax

2 ≤ ti ≤ tmax for some tmax). We can perform the standard

Grover search in a group in time s = O(
√
ltmax) where l is the size of the group. We then

observe that

s2 = O(lt2max) = O

(

∑

i

t2i

)

,

with the summation over all items i in the same group. By summing over all groups, we
get

∑

j

s2j = O

(

n
∑

i=1

t2i

)

,

where j on the left ranges over all groups. Let k be the number of the groups that we have.
If we have a search algorithm that searches k items in time

O

(

√

s21 + . . .+ s2k

)

,

we can then substitute the algorithms for searching the k groups instead of the k items and
obtain a search algorithm for n items that runs in time

O

(

√

t21 + . . .+ t2n

)

.

We then design a search algorithm for k items in a similar way.
The simplest implementation of this strategy gives an algorithm with log∗ n levels of

recursion and running time

O

(

clog
∗ n
√

t21 + t22 + . . . + t2n

)

,

QUANTUM SEARCH WITH VARIABLE TIMES 53

due to the reduction from n items to k items losing a constant factor every time it is used.
The clog

∗ n factor can be avoided, by a more sophisticated implementation of the same idea,
which we describe below.

We first restrict to the case when there is exactly one marked item. The general case
can be reduced to this case with a constant factor overhead, by running the algorithm on all
n elements, a random set of n

2 , a random set of n
4 , etc. As shown in [1], there is a constant

probability that at least one of those sets contains exactly one marked item. The expected
running time increases by at most a constant factor, because of the following lemma.

Lemma 4.2. Let S be a uniformly random set of n
2j elements of {1, 2, . . . , n}. Then,

E





√

∑

i∈S

t2i



 ≤ 1

2j/2

√

∑

i∈{1,...,n}
t2i .

Proof. By concavity of the square root function,

E





√

∑

i∈S

t2i



 ≤

√

√

√

√E

[

∑

i∈S

t2i

]

=
1

2j/2

√

∑

i∈{1,...,n}
t2i .

Therefore, the reduction from the general case to one marked item case increases the
bound on the number of queries by a factor of at most

1 +
1

21/2
+

1

2
+ . . . <

1

1 − 1√
2

.

Second, we introduce a generalization of the problem in which the algorithm Ai for the
marked i returns the correct answer with a probability at least pi, instead of a certainty.
More formally,

• if xi = 0, the final state of the algorithm Ai is of the form |0〉|ψ0〉.
• if xi = 1, the final state of the algorithm Ai is of the form α|1〉|ψ1〉+

√
1 − α2|0〉|ψ0〉,

where pi ≤ |α|2 ≤ d · pi, for some constant d > 1.

The probabilities p1, . . . , pn and the constant d are known to us when we design the algo-
rithm, just as the times t1, . . . , tn. (Knowing both the success probability and the running
time may look quite artificial. However, we only use the ”known success probability” model
to design an algorithm for the case when all Ai return the correct answer with certainty.)

We claim that, in this case, we can search in time

O





√

t21
p1

+
t22
p2

+ . . .+
t2n
pn



 .

Our main theorem now follows as the particular case p1 = . . . = pn = 1. The main part of
our proof is

Lemma 4.3. There exists k = O(log3 n log log n) with the following property. Assume that
there is a search algorithm for k items with some fixed d > 1 that works in time at most

C

√

s21
q1

+
s22
q2

+ . . . +
s2k
qk
.

54 ANDRIS AMBAINIS

for any given times s1, . . . , sk and probabilities q1, . . . , qk. Then, there exists a search algo-

rithm for n items with d′ =
(

1 −O
(

1
log n

))

d instead of d that works in time at most

C

(

1 +O

(

1

log n

))

√

t21
p1

+
t22
p2

+ . . .+
t2n
pn

for any given times t1, . . . , tn and probabilities p1, . . . , pn.

Proof. Omitted.

To obtain Theorem 4.1, we repeatedly apply Lemma 4.3 until the number of items
becomes less than some constant n0. That happens after O(log∗ n) applications of Lemma
4.3.

Let t1, . . . , tn and p1, . . ., pn be the times and probabilities for the final n ≤ n0 items.
After that, we just amplify the success probability of every item to Ω(1) (which increases

each
t2i
pi

by at most a constant factor, as discussed in the proof of Lemma 4.3). We then

search n items in time O(
√
nmaxi ti), using the amplitude amplification, with maxi ti steps

for evaluating any of the items i. Since pi = Ω(1) and n ≤ n0 where n0 is a constant, we
have

√
nmax ti = O(max ti) = O

(

√

t21 + . . . + t2n

)

= O





√

t21
p1

+ . . .+
t2n
pn



 .

O(log∗ n) applications of Lemma 4.3 increase the time by a factor of at most (1+O(1
log n))log

∗ n =

1 + o(1).

5. Application: read-once functions

A Boolean function f(x1, . . . , xN) that depends on all variables x1, . . . , xN is read-once
if it has a Boolean formula (consisting of ANDs, ORs and NOTs) in which every variable
appears exactly once. A read-once function can be represented by a tree in which every leaf
contains xi or NOT xi and every internal vertex contains AND or OR.

Barnum and Saks [5] have shown that, for any read-once f , Ω(
√
N) queries are nec-

essary to compute f in the quantum query model. Hoyer, Mosca and de Wolf [13] have

constructed a O(
√
N) query quantum algorithm for balanced AND-OR trees of constant

depth (improving over an earlier O(
√
N logd−1N) query algorithm by [10]). In a very re-

cent breakthrough work, [11, 4] showed how to evaluate any AND-OR tree of depth d in

O(
√
Nd) queries.
A simple application of our result from the previous section gives a quantum algorithm

for evaluating depth-d AND-OR trees. The algorithm is weaker than the one in [11, 4] but
is also much simpler.

Theorem 5.1. Any read-once function f(x1, . . . , xN) of depth d can be computed by a

quantum algorithm that uses O(
√
N logd−1N) queries.

Proof. We use induction. If f is represented by a depth-d tree with OR at the root, we
express

f(x1, . . . , xN) = ∨n
i=1fi(xt1+...+ti−1+1, . . . , xt1+...+ti).

QUANTUM SEARCH WITH VARIABLE TIMES 55

(1) Set j = 1. Define B1 as the algorithm that just outputs 1 and a uniformly random
i ∈ {1, . . . , n}.

(2) Repeat:
(a) Use the algorithm Bj to generate k = 2 log(D(j + 1)) samples i1, . . . , ik of

uniformly random elements i ∈ Sj. Run 2j+1 steps of the query procedure on
each of i1, . . . , ik. If xi = 1 for one of samples, output i and stop.

(b) Let B′
j+1 be an algorithm that runs Bj once and, if the output bit is 1, takes

the output index i and runs 2j+1 steps of the checking procedure on i. If the
result is xi = 0, B′

j outputs 0. Otherwise, it outputs 1 and the same index i.

(c) Let p = Estimate(B ′
j+1, c,

1
N , 2 log(D(j+1))). If p = 0, output “no i : xi = 0”.

(d) If p ≥ 1
9 log n , let Bj+1 be B′

j+1.

(e) If p < 1
9 log n , let Bj+1 be the algorithm obtained by amplifying B ′

j+1 2m + 1

times, where m is the smallest number for which 1
9 log n ≤ (2m + 1)2p ≤ 1

log n .

(Such choice of m always exists, as described in the proof of Lemma 4.3.)
(f) Let j = j + 1.

Algorithm 1: Search algorithm for unknown t1, . . . , tn

By inductive assumption, we construct algorithms computing the functions fi inO(
√
ti logd−2N)

queries. We then combine them into a quantum algorithm computing f by applying Theo-
rem 4.1.

A more detailed proof is given in the arXiv version of the paper.

6. Search algorithm: unknown running times

In some applications, it may be the case that the times ti are not known in advance.
We can also solve this case, with a polylogarithmic overhead.

Theorem 6.1. Let ε > 0. There is an algorithm that searches collection of n items with
unknown times t1, . . . , tn and, with probability at least 1 − ε, stops after

O
(

T log2 T log2 log T
)

steps, where T =
√

t21 + t22 + . . .+ t2n.

Proof. Again, we assume that there is exactly one marked item. (The reduction from the
general case to the one marked item case is similar to one in the proof of Theorem 4.1.)

Let St be the set of items such that xi = 1 or ti ≥ 2t and let nt = |St|. Our main
procedure, algorithm 1, defines a sequence of algorithms B1, . . ., Bl. The algorithm Bj , with
some success probability, outputs a bit 1 and, conditional on output bit 1, it also outputs a
uniformly random index i ∈ Sj. To avoid the problem with accumulating constant factors
(described after Lemma 3.1), we make the success probability of Bj slightly less than 1.

Lemma 6.2. Assume that the constant D in steps 2a and 2c satisfies D ≤ π√
3ε

. Then,

with probability 1 − ε, the following conditions are satisfied:

(a) Estimates p are accurate within an multiplicative factor of (1 + c);
(b) If Bj is defined, then ti > 2j−1 for at least

nj−1

2 values i ∈ {1, . . . , n}.

56 ANDRIS AMBAINIS

Proof. (a) The probability of error for Estimate is at most 1
D2(j+1)2 . By summing over all

j, the probability of error for some j is at most

1

D2

∞
∑

i=1

1

i2
=

1

D2

π2

6
,

which can be made less than ε
2 by choosing D ≤ π√

3ε
.

(b) By definition, Sj−1 is the set of all i with the property that either xi = 1 or ti > 2j−1.

Let S be the set of i with xi = 1 and ti ≤ 2j−1. If |S| ≤ 1
2nj−1, (c) is true. Otherwise, the

probability that each ij generated in step 2a does not belong to S is less than 1
2 . If one of

them belongs to S, algorithm 1 stops without defining Bj . The probability that this does

not happen (i.e., all ij do not belong to S) is less than (1
2)k = 1

D2(j+1)2
. We can make this

probability arbitrarily small similarly to part (a).

For the rest of the proof, we assume that both conditions of Lemma 6.2 are true. Under
this assumption, we bound the running time of algorithm 1. The first step is to bound the
running time of the algorithms Bj .

Lemma 6.3. The running time of Bj is

O

(

j
√

log n

√

t21 + t22 + . . .+ t2n
nj

)

.

Proof. Omitted.

We now bound the overall running time. To generate a sample from Sj , one needs

O(
√

log n) invocations of Bj (because the success probability of Bj is of the order Ω(1
log n)).

Therefore, we need O(
√

log n log j) invocations to generate O(log j) samples in step 2a. By
Lemma 6.3, that can be done in time

O

(

j log j log n

√

t21 + t22 + . . . + t2n
nj

)

.

For each of those samples, we run the checking procedure with 2j+1 steps. That takes at
most twice the time required by Bj (because Bj includes the checking procedure with 2j

steps). Therefore, the time for the 2j+1 checking procedure is of the same order or less than
the time to generate the samples.

Second, the success probability estimated in step 2c is of order
pjnj+1

nj
= Ω(

nj+1

nj log n). By

Theorem 3.4, it can be estimated with

O

(

log j log log n

√

nj log n

nj+1

)

invocations of Bj, each of which runs in time described by Lemma 6.3.
Thus, the overall number of steps in one loop of algorithm 1 is of order at most

√

t21 + t22 + . . . + t2n

(

j log j log n
√
nj

+
j log j log n log log n

√
nj+1

)

.

QUANTUM SEARCH WITH VARIABLE TIMES 57

Since nj ≥ 1 and nj+1 ≥ 1, this is of order

O

(

√

t21 + t22 + . . .+ t2nj log j log n log log n

)

.

Let tmax be the maximum of t1, . . ., tn. Then, the maximum value of j is at most dlog(tmax+
1)e. Therefore, the number of steps used by the algorithm 1 is

O

(

√

t21 + t22 + . . . + t2n log n log log n log tmax log log tmax

)

.

The theorem now follows from n ≤
√
T and tmax ≤ T , where T = t21 + t22 + . . .+ t2n.

7. Search lower bound

Theorem 7.1. For any positive integers t1, . . . , tn, searching a collection of n items that can
be checked in times t1, . . . , tn requires time c

√

t21 + t22 + . . .+ t2n, for some constant c > 0.

Proof. Let t′i be the minimum positive integer such that ti ≤ dπ
4

√

t′ie+1 (with t′i = 1 if there
is no positive integer satisfying this inequality). We consider searching m = t ′1 + . . . + t′n
elements x1, . . . , xm ∈ {0, 1} in the standard model (where every query takes 1 step), with
the promise that there is either 0 or 1 element j : xj = 1. By lower bound on quantum
search, c′

√
m queries are required to distinguish between the case when there are 0 elements

j : xj = 1 and the case when there is 1 element j : xj = 1, for some constant c′.
We subdivide the inputs x1, . . . , xm into n groups S1, . . ., Sn, with t′1, . . . , t

′
n elements,

respectively. Let yi = 1 if there exists j ∈ Si with xj = 1. Since there is either 0 or 1
element j : xj = 1, we know that there is either 0 or 1 element i : yi = 1. We have

Lemma 7.2. There is an algorithm that implements the transformation |i〉 → |i〉|yi〉|ψi〉
for some states |ψi〉, using ti queries.

Proof. Omitted.

Let A be a search algorithm for search among n items that require times t1, . . . , tn and
let t′ be the number of steps used by A. Then, we can substitute the algorithm of Lemma
7.2 instead of the queries yi. Then, we obtain an algorithm A′ that, given x1, . . . , xn, asks
t′ queries and distinguishes whether there is exactly 1 item i : yi = 1 (and, hence, 1 item
j : xj = 1) or there is no items i : yi = 0 (and, hence, no items j : xj = 1). Hence,

t′ ≥ c′
√
m = c′

√

t′1 + . . .+ t′n.

We now bound t′i in terms of ti. By definition of t′i, we have

ti ≤
⌈

π

4

√

t′i

⌉

+ 1 ≤ π

4

√

t′i + 2.

This means that t′i ≥ 16
π2 (ti − 2)2. If ti ≥ 3, then ti − 2 ≥ ti

3 and t′i ≥ 16
9π2 t

2
i . If ti < 3, then

t′1 ≥ 1 ≥ 16
9π2 t

2
i . Therefore,

t′ ≥ c′
√

t′1 + . . .+ t′n ≥ c′
√

16

9π2
(t21 + . . . + t2n) =

4c′

3π

√

t21 + . . .+ t2n.

This means that the theorem is true, with c = 4c′

3π .

58 ANDRIS AMBAINIS

8. Conclusion

In this paper, we gave a quantum algorithm for the generalization of Grover’s search in
which checking different items requires different times. Our algorithm is optimal for the case
when times ti are known in advance and nearly optimal (within a polylogarithmic factor)
for the general case. We also gave an application of our algorithm to computing read-once
Boolean functions. It is likely that our algorithms will find other applications.

While we have mostly resolved the complexity of search in this setting, the complexity
of other problems have not been studied at all. Of particular interest are problems which
are frequently used as a subroutines in other quantum algorithms (for such problems, there
is a higher chance that the variable-time query version will be useful). Besides the usual
quantum search, the two most common quantum subroutines are quantum counting [9] and
k-item search (a version of search in which one has to find k different i for which xi = 1).
Element distinctness [2, 6] has also been used as a subroutine, to design quantum algorithms
for the triangle problem [16] and verifying matrix identities [7, 15].

Acknowledgements

I would like to thank Robert Špalek and Ronald de Wolf for the discussion that lead
to this paper and several anonymous referees for their useful comments. Most of this work
done at University of Waterloo, supported by NSERC, ARO, MITACS, ARO and IQC
University Professorship.

Currently, my research is supported by University of Latvia Research Grant Y2-ZP01-
100.

References

[1] S. Aaronson, A. Ambainis, Quantum search of spatial regions. Theory of Computing, 1:47-79, 2005.
Also quant-ph/0303041.

[2] A. Ambainis. Quantum walk algorithm for element distinctness. Proceedings of FOCS’04, pp. 22-31.
Also quant-ph/0311001.

[3] A. Ambainis. Quantum search algorithms. SIGACT News, 35 (2004):22-35. Also quant-ph/0504012.
[4] A. Ambainis, A. Childs, B. Reichardt, R. Spalek, S. Zhang. Any AND-OR formula of size N can be

evaluated in time N1/2+o(1) on a quantum computer. Proceedings of FOCS’07, to appear.
[5] H. Barnum, M. Saks, A lower bound on the quantum complexity of read once functions. Journal of

Computer and System Sciences, 69:244-258, 2004.
[6] H. Buhrman, C. Durr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, R. de Wolf. Quantum algorithms

for element distinctness. SIAM Journal on Computing, 34(6): 1324-1330, 2005. Also quant-ph/0007016.
[7] H. Buhrman, R. Špalek: Quantum verification of matrix products. Proceedings of SODA’06, pp. 880-889.

Also quant-ph/0409035.
[8] G. Brassard, P. Høyer, M. Mosca, A. Tapp. Quantum amplitude amplification and estimation. In

Quantum Computation and Quantum Information Science, AMS Contemporary Mathematics Series,
305:53-74, 2002. Also quant-ph/0005055.

[9] G. Brassard, P. Høyer, A. Tapp. Quantum counting. Proceedings of ICALP’98, pp. 820-831, quant-
ph/9805082.

[10] H. Buhrman, R. Cleve, A. Wigderson, Quantum vs. classical communication and computation. Pro-

ceedings of STOC’98, pages 63-68, quant-ph/9702040.
[11] E. Farhi, J. Goldstone, S. Gutman, A Quantum Algorithm for the Hamiltonian NAND Tree. quant-

ph/0702144.
[12] L. Grover. A fast quantum mechanical algorithm for database search. Proceedings of STOC’96, pp.

212-219.

QUANTUM SEARCH WITH VARIABLE TIMES 59

[13] P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs. Proceedings of

ICALP’03, Lecture Notes in Computer Science, 2719:291-299. Also quant-ph/0304052
[14] P. Høyer, T. Lee, R. Špalek. Tight adversary bounds for composite functions, quant-ph/0509067.
[15] F. Magniez, A. Nayak. Quantum complexity of testing group commutativity. Algorithmica, 48(3): 221-

232, 2007. Also ICALP’05 and quant-ph/0506265.
[16] F. Magniez, M. Santha, M. Szegedy. Quantum algorithms for the triangle problem. SIAM Journal on

Computing, 37(2): 413-424, 2007. Also SODA’05 and quant-ph/0310134.

Appendix A. Formal definition of our model

To define our model formally, let A
(j)
i be the jth step of Ai. Then,

Ai = A
(ti)
i A

(ti−1)
i . . . A

(1)
i .

We define A
(t)
i = I for t > ti. We regard the state space of Ai as consisting of two registers,

one of which stores the answer (c ∈ {0, 1, 2}, with 2 representing a computation that has
not been completed) and the other register, x, stores any other information.

The state space of a search algorithm is spanned by basis states of the form |i, t, tr, c, x, z〉
where i ∈ {1, . . . , n}, t, tr ∈ {0, 1, . . . , T} (with T being the number of the query steps in
the algorithm), c ∈ {0, 1, 2} and x and z range over arbitrary finite sets. i represents the
index being queried, t represents the number of the time step in which the query for xi

started and tr is the number of time steps for which A will run the query algorithm Ai. c
is the output register of Ai and x holds intermediate data of Ai. Both of those registers
should be initialized to |0〉 at the beginning of every computation of a new xi. z contains
any data that is not a part of the current query.

We define a quantum query algorithm A as a tuple (U0, . . . , UT) of unitary transfor-
mations that do not depend on x1, . . . , xn. The actual sequence of transformations that is
applied is

U0, Q1, U1, Q2, . . . , UT−1, QT , UT ,

where Qj are queries which are defined below. This sequence of transformations is applied
to a fixed starting state |ψstart〉, which consists of basis states |i, 0, 0, c, x, z〉.

Queries Qj are defined in a following way. If j ≤ t + tr, we apply A
(j−t)
i to |c〉 and

|x〉 registers. Otherwise, we apply I. We call the resulting sequence of queries Q1, Q2, . . .

generated by transformations Aj
i . We call Q1, Q2 a valid sequence of queries corresponding

to x1, . . . , xn if it is generated by Aj
i satisfying the following constraints:

(1) For t < ti, A
t
iA

t−1
i . . . A1

i |0〉 is of the form |2〉|ψ〉 for some |ψ〉.
(2) For t = ti, A

t
iA

t−1
i . . . A1

i |0〉 is of the form |xi〉|ψ〉 for some |ψ〉.
Uj can be arbitrary transformations that do not depend on x1, . . . , xn.
An algorithm (U0, . . . , UT) with the starting state |ψstart〉 computes a function f(x1, . . . , xn)

if, for every x1, . . . , xn ∈ {0, 1} and every valid query sequence Q1, . . ., QT corresponding
to x1, . . . , xn, the probability of obtaining f(x1, . . . , xn) when measuring the first qubit of

UTQTUT−1 . . . U1QTU0|ψstart〉
is at least 2/3.

60 ANDRIS AMBAINIS

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

