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Abstract. We show that the space of polygonizations of a fixed planar point set S of n
points is connected by O(n2) “moves” between simple polygons. Each move is composed
of a sequence of atomic moves called “stretches” and “twangs”. These atomic moves walk
between weakly simple “polygonal wraps” of S. These moves show promise to serve as a
basis for generating random polygons.

1. Introduction

This paper studies polygonizations of a fixed planar point set S of n points. Let the
n points be labeled pi, i = 0, 1, . . . , n−1. A polygonization of S is a permutation σ of
{0, 1, . . . , n−1} that determines a polygon: P = Pσ = (pσ(0), . . . , pσ(n−1)) is a simple (non-
self-intersecting) polygon. We will abbreviate “simple polygon” to polygon throughout. We
do not make any general position assumptions about S, except to assume the points do
not lie in one line so that there is at least one polygon whose vertex set is S. A point set
S may have as few as 1 polygonization, if S is in convex position,1 and as many as 2Θ(n)

polygonizations. For the latter, see Fig. 1a and [CHUZ01] for additional details.
Our goal in this work is to develop a computationally natural and efficient method to

explore all polygonizations of a fixed set S. One motivation is the generation of “random
polygons” by first generating a random S and then selecting uniformly at random a poly-
gonization of S. Generating random polygons efficiently is a long unsolved problem; only
heuristics [AH96] or algorithms for special cases [ZSSM96], [HHH02] are known. Our work
can be viewed as following a suggestion in [ZSSM96]:
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Key words and phrases: polygons, polygonization, random polygons, connected configuration space.
1S is in convex position if every point in S is on the hull of S.
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“start with a ... simple polygon and apply some simplicity-preserving, re-
versible operations ... with the property that any simple polygon is reachable
by a sequence of operations”

Our two operations are called stretch and twang (defined in Sec. 2.2). Neither is simplicity
preserving, but they are nearly so in that they produce polygonal wraps defined as follows.

Definition 1.1. A polygonal wrap Pσ is determined by a sequence σ of point indices that
includes every index in {0, 1, . . . , n−1} at least once, such that there is a perturbation of
the points in multiple contact that renders Pσ a simple closed curve through the perturbed
points in σ order.

Thus polygonal wraps disallow proper crossings2 but permit self-touching. This notion is
called a “weakly simple polygon” in the literature, but we choose to use our terminology
to emphasize the underlying fixed point set and the nature of our twang operation. Fig. 1b
shows a polygonal wrap with five double-contacts (p1, p4, p5, p8 and p9).

Stretches and twangs take one polygonal wrap to another. A stretch followed by a
natural sequence of twangs, which we call a cascade, constitutes a forward move. Forward
moves (described in Sec. 2.3) take a polygon to a polygon, i.e., they are simplicity preserving.
Reverse moves will be introduced in Sec. 6. A move is either a forward or a reverse move.
We call a stretch or twang an atomic move to distinguish it from the more complex forward
and reverse moves.

Our main result is that the configuration space of polygonizations for a fixed S is
connected by forward/reverse moves, each of which is composed of a number of stretches
and twangs, and that the diameter of the space isO(n2) moves. We can bound the worst-case
number of atomic moves constituting a particular forward/reverse move by the geometry
of the point set. Experimental results on random point sets show that, in the practical
situation that is one of our motivations, the bound is small, perhaps even constant. We
have also established loose bounds on the worst-case number of atomic operations as a
function of n: an exponential upper bound and a quadratic lower bound. Tightening these
bounds has so far proven elusive and is an open problem.

One can view our work as in the tradition of connecting discrete structures (e.g., trian-
gulations, matchings) via local moves (e.g., edge flips, edge swaps). Our result is comparable
to that in [vLS82], which shows connectivity of polygonizations in O(n3) edge-edge swap
moves through intermediate self-crossing polygons, and to that in [HHH02], which estab-
lished noncrossing connectivity within special classes of polygonizations. The main novelty
of our work is that we avoid proper crossings but achieve connectivity via polygonal wraps.
We explore the possible application to random polygons briefly in Sec. 8. For the majority
of this paper, we concentrate on defining the moves and establishing connectivity.

We begin by defining pockets, which play a central role in our algorithms for polygonal
transformations. Then in Sec. 2.1 we describe two natural operations that transform one
polygon into another but fail to achieve connectivity of the configuration space of polygo-
nizations, which motivates our definitions of stretches and twangs in Sec. 2.2. Following
these preliminaries, we establish connectivity and compute the diameter in Secs. 3–7. We
conclude with open problems in Sec. 9. Omitted proofs are in [DFOR07].

2Two segments properly cross if they share a point x in the relative interior of both, and cross transversely
at x.
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Figure 1: Examples. (a) A set of n = 3k + 2 points that admits 2k polygonizations. (b)
Polygonal wrap Pσ with σ = (0, 8, 6, 8, 1, 5, 9, 2, 9, 4, 5, 1, 4, 3, 7) (c) A polygoniza-
tion with one pocket with lid ab.

1.1. Pockets and Canonical Polygonization

Let P be a polygonization of S. A hull edge ab that is not on ∂P is called a pocket lid.
The polygon external to P bounded by P and ab is a pocket of P . For a fixed hull edge
ab, we define the canonical polygonization of S to be a polygon with a single pocket with
lid ab in which the pocket vertices are ordered by angle about vertex a, and from closest to
farthest from a if along the same line through a. We call this ordering the canonical order
of the pocket vertices; see Fig. 1c. The existence of this canonical polygonization for any
point set S not in convex position was established in [CHUZ01].

2. Polygonal Transformations

Let P be a polygon defined by a circular index sequence σ. We examine operations that
permute this sequence, transforming P into a new polygon with the same set of vertices
linked in a different order. Throughout the paper we use 4abc to denote the closed triangle
with corners a, b and c.

2.1. Local Transformations

The systematic study of constant-sized transformations that alter one simple polygon to
another was initiated in [HHH02]. They defined a k-flip as an alteration of k (not necessarily
consecutive) edges, and established a number of results, including showing that 3-flips are
sufficient to connect polygonizations among several subclasses of polygons based on various
visibility properties. But no constant k-flip move is known to be sufficient for connecting all
simple polygonizations, and they conclude that “the connectivity of general simple polygons
remains a challenging open problem.” Although we do not resolve this open problem by a
“local transformation” in their sense, we do resolve it by stepping outside their paradigm
in two regards: (1) We permit polygonal wraps as intermediate structures; and (2) Our
atomic moves are local and constant-sized, but they cascade into sequences of as many as
Ω(n2) atomic moves.

The most natural local transformation is a swap transposition of two consecutive ver-
tices of P that results in a new (non-self-intersecting) polygon. A swap is a particular
2-flip. Because this is easily seen as insufficient for polygonization connectivity, 3-flips were
explored in [HHH02]. Much less obviously, even these were shown to be insufficient for
connectivity, except within various polygon subclasses. We review one of their 3-flips, the
“planar VE-flip,” which we call a Hop, because our Stretch operation is a generalization
of this.
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The hop operation generalizes the swap by allowing a vertex to hop to any position in
the permutation, as long as the resulting polygon is simple. Fig. 2 shows the stretching of
the edge ab down to vertex v, effectively “hopping” v between a and b in the permutation.
We denote this operation by Hop(e, v), where e = ab (note the first argument is from and
the second to).

To specify the conditions under which a hop operation is valid, we introduce some
definitions, which will be used subsequently as well. A polygon P has two sides, the interior
of P and the exterior of P . Let abc = (a, b, c) be three noncollinear vertices consecutive in
the polygonization P . We call vertex b a true corner vertex since the boundary of P takes
a turn at b. We distinguish between the convex side of b, that side of P with angle ∠abc
smaller than π, and the reflex side of b, the side of P with angle ∠abc larger than π. Note
that this definition ignores which side is the interior and which side is the exterior of P , and
so is unrelated to whether b is a convex or a reflex vertex in P . Every true corner vertex
has a convex and a reflex side (collinear vertices will be discussed in Sec. 2.2). To ensure
that the resulting polygon is simple, Hop(e, v) is valid iff the following two conditions hold:
(1) the triangle induced by the two edges incident to v is empty of other polygon vertices
and (2) the triangle induced by e and v lies on the reflex side of v and is empty of other
polygon vertices.

Although more powerful than a swap, there also exist polygons that do not admit any
hops, as was established in [HHH02], and so hops do not suffice to connect all polygoniza-
tions.

HOP(ab,v)

a
b

c d

a
b

c d

v

v

Figure 2: Hop(ab, v) illustrated.

The limited transformation capabilities
of these 2- and 3-flip operations motivate
our introduction of two new operations,
stretch and twang. The former operation
relaxes the two hop conditions and allows
the creation of a polygonal wrap. The lat-
ter operation restores the polygonal wrap to
a polygon. We show that together they are
capable of transforming any polygon into a canonical form (Secs. 3-5), and from there to
any other polygon (Secs. 6-7).

2.2. Stretches and Twangs

Unlike the Hop(e, v) operation, which requires v to fully see the edge e into which it
is hopping, the Stretch(e, v) operation only requires that v see a point x in the interior3

of e. The stretch is accomplished in two stages: (i) temporarily introduce two new “pseu-
dovertices” on e in a small neighborhood of x (this is what we call Stretch0 below), and
(ii) remove the pseudovertices immediately using twangs.

Stretch0. Let v see a point x in the interior of an edge e of P . By see we mean “clear
visibility”, i.e., the segment vx shares no points with ∂P other than v and x (see Fig. 3a).
Note that every vertex v of P sees such an x (in fact, infinitely many x) on some e. Let
x− and x+ be two points to either side of x on e, both in the interior of e, such that v
can clearly see both x− and x+. Two such points always exist in a neighborhood of x. We
call these points pseudovertices. Let e = ab, with x− closer to the endpoint a of e. Then

3By “interior” we mean “relative interior,” i.e., not an endpoint.
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Stretch0(e, v) alters the polygon to replace e with (a, x−, v, x+, b), effectively “stretching”
e out to reach v by inserting a narrow triangle 4x−vx+ that sits on e (see Fig. 3b).

x

x- x+

v v v

(a) (b) (c)

x

STRETCH   (e,v)0

TWANG(      v)x-a

TWANG(v      )x+ b

a b
e

a ba b

Figure 3: Stretch(e, v) illustrated (a) v sees x ∈ e (b) Stretch0(e, v) (c) Stretch(e, v).

To complete the definition of Stretch(e, v), which removes the pseudovertices x+ and
x−, we first define the twang operation.
Twang. Informally, if one views the polygon boundary as an elastic band, a twang operation
detaches the boundary from a vertex v and snaps it to v’s convex side.

Definition 2.1. The operation Twang(abc) is defined for any three consecutive vertices
abc ∈ σ such that

(1) {a, b, c} are not collinear.
(2) b is either a pseudovertex, or a vertex in double contact. If b is a vertex in double

contact, then 4abc does not contain a nested double contact at b. By this we mean
the following: Slightly perturb the vertices of P to separate each double-contact into
two or more points, so that P becomes simple. Then 4abc does not contain any
other occurrence of b in σ. (E.g., in Fig. 4a, 4a′bc′ contains a second occurrence
of b which prevents snapping a′bc′ to b’s convex side.)

Under these conditions, the operation Twang(abc) replaces the sequence abc in P by
sp(abc), where sp(abc) indicates the shortest path from a to c that stays inside 4abc and
does not cross ∂P. We call b the twang vertex. Whenever a and c are irrelevant to the
discussion, we denote the twang operation by Twang(b).
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TWANG(abc)TWANG(abc)

Figure 4: Twang(abc) illustrated (a) Twang(abc) replaces abc by sp(abc) (b) Twang(abc)
creates the hairpin vertex a and three doubled edges ab1, b1b2 and b2b3.

Informally, Twang(abc) “snaps” the boundary to wrap around the hull of the points in
4abc, excluding b (see Fig. 4a). A twang operation can be viewed as taking a step toward
simplicity by removing either a pseudovertex or a point of double contact. We should note
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that sp(abc) includes every vertex along this path, even collinear vertices. If there are no
points inside 4abc, then sp(abc) = ac, and Twang(abc) can be viewed as the reverse of
Hop(ac, b). If a=c (i.e., ab and bc overlap in P), we call b a hairpin vertex of P; in this
case, Twang(aba) replaces aba in P by a. Hairpin vertices and “doubled edges” arise
naturally from twangs. In Fig. 4b for instance, Twang(abc) produces a hairpin vertex at a
and doubled edges ab1, b1b2, b2b3. So we must countenance such degeneracies. In general,
there are points interior to the triangle, and the twang creates new points of double contact.
Below, we will apply twangs repeatedly to remove all double contacts.

Stretch. We can now complete the definition of Stretch(e, v), with e = ab. First
execute Stretch0(e, v), which picks the two pseudovertices x+ and x−. Then execute
Twang(ax−v) and Twang(vx+b), which detach the boundary from x+ and x− and return
to a polygonal wrap of S (see Fig. 3c). We refer to e (v) as the stretch edge (vertex ).

2.3. Twang Cascades

A twang in general removes one double contact and creates perhaps several others. A
TwangCascade applied on a polygonal wrap P removes all points of double contact from
P:

TwangCascade(P)

Loop for as long as P has a point of double contact b:

1. Find a vertex sequence abc in P that satisfies the twang conditions (cf. Def. 2.1).
2. Twang(abc).

Note that for any point b of double contact, there always exists a vertex sequence abc
that satisfies the twang conditions and therefore the twang cascade loop never gets stuck.
That a twang cascade eventually terminates is not immediate. The lemma below shows
that Twang(abc) shortens the perimeter of the polygonal wrap (because it replaces abc by
sp(abc)) by at least a constant depending on the geometry of the point set. Therefore, any
twang cascade must terminate in a finite number of steps.

Lemma 2.2. A single twang Twang(abc) decreases the perimeter of the polygonal wrap by
at least 2dmin(1− sin(αmax/2)), where dmin is the smallest pairwise point distance and αmax

is the maximum convex angle formed by any triple of non-collinear points.

Supplementing this geometric bound, we establish in [DFOR07, App. 3] a combinatorial
upper bound of O(nn) on the number of twangs in any twang cascade. An impediment to
establishing a better bound is that a point can twang more than once in a cascade. Indeed
we present an example in which Ω(n) points each twang Ω(n) times in one cascade, providing
an Ω(n2) lower bound.

2.3.1. Forward Move. We define a forward move on a polygonization P of a set S as a
stretch (with the additional requirement that the pseudovertices on the stretch edge lie on
the reflex side of the stretch vertex), followed by a twang and then a twang cascade, as
described below:
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ForwardMove(P, e, v)

Preconditions: (i) P is a simple polygon, (ii) e and v satisfy the conditions of Stretch(e, v), and
(iii) v is a noncollinear vertex such that pseudovertices x+ and x− on e lie on the reflex side of v.
{Let u, v, w be the vertex sequence containing v in P (necessarily unique, since P is simple).}

1. P ← Stretch(e, v).
2. P ← Twang(uvw).
3. P ′ ← TwangCascade(P).

A ForwardMove takes one polygonization P to another P ′ (see Fig. 5), as follows
from Lemma 2.2. Note that x+ and x− must lie on the reflex side of v (i.e., precondition
(iii) of ForwardMove) so that Stretch(e, v) does not introduce a nested double contact
in 4uvw which would prevent the subsequent Twang(uvw). Next we discuss an important
phenomenon that can occur during a forward move.
Stretch Vertex Placement. We note that the initial stretch that starts a move might be
“undone” by cycling of the cascade. This phenomenon is illustrated in Fig. 5, where the
initial Stretch(ab, v) inserts v between a and b in the polygonal wrap (Fig. 5b), but v ends
up between c and b in the final polygonization (Fig. 5f). Thus any attempt to specifically
place v in the polygonization sequence between two particular vertices might be canceled
by the subsequent cascade. This phenomenon presents a challenge to reducing a polygon
to canonical form (discussed in Sec. 5).
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Figure 5: Forward move illustrated. (a) Initial polygon P (b) After Stretch(ab, v) (c) Af-
ter Twang(a1b1c1) (d) After Twang(a2b2c2) (e) After Twang(a3b3c3) (f) After
Twang(a4b4c4).

3. Single Pocket Reduction Algorithm

Now that the basic properties of the moves are established, we aim to show that our
moves suffice to connect any two polygonizations of a point set S. The plan is to reduce
an arbitrary polygonization to the canonical polygonization. En route to explaining this
reduction algorithm, we show how to remove any particular pocket by redistributing its
vertices to other pockets. This method will be applied repeatedly in Sec. 4 to move all
pockets to one particular pocket.

In this section we assume that P has two or more pockets. We use H(P ) to refer to
the closed region defined by the convex hull of P , and ∂H(P ) for its boundary. For a fixed
hull edge e that is the lid of a pocket A, the goal is to reduce A to e by redistributing the
vertices of A among the other pockets, using forward moves only. This is accomplished by
the Single Pocket Reduction algorithm, which repeatedly picks a hull vertex v of A
and attaches v to a pocket other than A; see Fig. 6 for an example run.
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Single Pocket Reduction(P, e) Algorithm

Loop for as long as the pocket A of P with lid e contains three or more vertices:
1. Pick an edge-vertex pair (e, v) such that

e is an edge of P on ∂B for some pocket B 6= A
v ∈ A is a non-lid true corner vertex on ∂H(A) that sees e

2. P ← ForwardMove(P, e, v).

We now establish that the Single Pocket Reduction algorithm terminates in a
finite number of iterations. First we prove a more general lemma showing that a twang
operation can potentially reduce, but never expand, the hull of a pocket.

Lemma 3.1 (Hull Nesting under Twangs). Let A be a pocket of a polygonal wrap P and
let vertex b 6∈ ∂H(P) satisfy the twang conditions. Let A′ be the pocket with the same lid as
A after Twang(b). Then A′ ⊆ H(A).

Proof: Let abc be the vertex sequence involved in the twang operation. Then Twang(abc)
replaces the path abc by sp(abc). If abc does not belong to ∂A, then Twang(abc) does not
affect A and therefore A′ ≡ A. So assume that abc belongs to ∂A. This implies that b is a
vertex of A. Note that b is a non-lid vertex, since b 6∈ ∂H(P). Then 4abc ⊂ H(A), and the
claim follows from the fact that sp(abc) ⊂ 4abc.
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Figure 6: Single Pocket Reduction(P, a1a5) illustrated: (a) Initial P ; (b) After
Stretch(b1b2, a2); (c) After Twang(a1a2a3); (d) After Twang(a3a4a5); (e) Af-
ter Stretch(a2b1, a3); (f) After Twang(a4a3a5); (g) After Stretch(a2a3, a4) +
Twang(a1a4a5).

Lemma 3.2. The Single Pocket Reduction algorithm terminates in O(n) forward
moves.

4. Multiple Pocket Reduction Algorithm

For a given hull edge e, the goal is to transform P to a polygon with a single pocket
with lid e, using forward moves only. If e is an edge of the polygon, for the purpose of the
algorithm discussed here we treat e as a (degenerate) target pocket T . We assume that, in
addition to T , P has one or more other pockets, otherwise there is nothing to do. Then we
can use the Single Pocket Reduction algorithm to eliminate all pockets of P but T , as
described in the Pocket Reduction algorithm below.

Pocket Reduction (P, e) Algorithm

If e is an edge of P , set T ← e, otherwise set T ← the pocket with lid e
(in either case, we treat T as a pocket).

For each pocket lid e′ 6= e
Call Single Pocket Reduction(P, e′)
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Observe that the Pocket Reduction algorithm terminates in O(n2) forward moves:
there are O(n) pockets each of which gets reduced to its lid edge in O(n) forward moves
(cf. Lemma 3.2).

Fig. 7 illustrates the Pocket Reduction algorithm on a 17-vertex polygon with three
pockets A, B and C, each of which has 3 non-lid vertices, and target pocket T with lid edge
e = t1t2. The algorithm first calls Single Pocket Reduction(P, a1a5), which transfers to
B all non-lid vertices of A, so B ends up with 6 non-lid vertices (this reduction is illustrated
in detail in Fig. 6). Similarly, Single Pocket Reduction(P, b1b5) transfers to C all
non-lid vertices of B, so C ends up with 9 non-lid vertices, and finally Single Pocket
Reduction(P, c1c5) transfers all these vertices to T .
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Figure 7: (a-e) Pocket Reduction(P, t1t2): (a) Initial P ; (b) After Single Pocket
Reduction(P, a1a5); (c) After Single Pocket Reduction(P, b1b5); (d) After Sin-
gle Pocket Reduction(P, c1c5); (e) After Canonical Polygonization(P, t1t2).

This example shows that the O(n2) bound on the number of forward moves is tight:
an n-vertex polygon with a structure similar to the one in Fig. 7a has O(n) pockets. The
number of forward moves performed by the Pocket Reduction algorithm is therefore
3 + 6 + 9 + . . . 3n

5 = Θ(n2), so we have the following lemma:

Lemma 4.1. The Pocket Reduction algorithm employs Θ(n2) forward moves.

5. Single Pocket to Canonical Polygonization

Let P (e) denote an arbitrary one-pocket polygonization of S with pocket lid e = ab.
Here we give an algorithm to transform P (e) into the canonical polygonization Pc(e). This,
along with the algorithms discussed in Secs. 3 and 4, gives us a method to transform any
polygonization of S into the canonical form Pc(e). Our canonical polygonization algorithm
incrementally arranges pocket vertices in canonical order (cf. Sec. 1.1) along the pocket
boundary by applying a series of forward moves to P (e).

Canonical Polygonization(P, e) Algorithm

Let e = ab. Let a = v0, v1, v2, . . . , vk, vk+1 = b be the canonical order of the vertices of pocket P (e).
For each i = 1, 2, . . . , k

1. Set `i ← line passing through a and vi

2. Set ei−1 ← pocket edge vi−1vj , with j > i− 1
3. If ei−1 is not identical to vi−1vi, apply ForwardMove(ei−1, vi).
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We now show that the one-pocket polygonization resulting after the i-th iteration of the
loop above has the points v0, . . . , vi in canonical order along the pocket boundary. (Note
that this invariant ensures there is an edge (vi−1, vj) with j > i − 1 in Step 2.) This,
in turn, is established by showing that the ForwardMove in the i-th iteration involves
only points in the set {vi, vi+1, . . . , vk}. These observations are formalized in the following
lemmas [DFOR07, App. 1]:

Lemma 5.1. The i-th iteration of the Canonical Polygonization loop produces a poly-
gonization of S with one pocket with lid e and with vertices v0, . . . , vi consecutive along the
pocket boundary.

Lemma 5.2. The Canonical Polygonization algorithm constructs Pc(e) in O(n) for-
ward moves.

6. Reverse Moves

Connectivity of the space of polygonizations will follow by reducing two given polygo-
nizations P1 and P2 to a common canonical form Pc, and then reversing the moves from Pc
to P2. Although we could just define a reverse move as a time-reversal of a forward move, it
must be admitted that such reverse moves are less natural than their forward counterparts.
So we concentrate on establishing that reverse moves can be achieved by a sequence of
atomic stretches and twangs.
Reverse Stretch. The reverse of Stretch(e, v) may be achieved by a sequence of one or
more twangs, as illustrated in Fig. 8a. This result follows from the fact that the “funnel”
created by the stretch is empty, and so the twangs reversing the stretch do not cascade.

v
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Figure 8: Reverse atomic moves: (a) Stretch(ab, v) is reversed by Twang(v), Twang(c1),
Twang(c2), Twang(c3). (b) Twang(b) is reversed by Stretch(x2x3, b),
Twang(x2), Twang(x1) and Twang(x3).

Reverse Twang. An “untwang” can be accomplished by one stretch followed by a series of
twangs. Fig. 8b illustrates how Twang(abc) may be reversed by one Stretch(e, b), for
any edge e of sp(abc), followed by zero or more twangs. Observe that the initial stretch in
the reverse twang operation is not restricted to the reflex side of the stretch vertex, as it is
in a ForwardMove. If b is a hairpin vertex (i.e., a and c coincide), we view ac as an edge
of length zero and the reverse of Twang(b) is simply Stretch(e, b).

We have shown that the total effect of any forward move, consisting of one stretch
and a twang cascade, can be reversed by a sequence of stretches and twangs. We call this
sequence a reverse move. One way to view the consequence of the above two results can
be expressed via regular expressions. Let the symbols s and t represent a Stretch and
Twang respectively. Then a forward move can be represented by the expression st+: a
stretch followed by one or more twangs. A reverse stretch, s−1 can be achieved by one or
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more twangs: t+. And a reverse twang t−1 can be achieved by st∗. Thus the reverse of the
forward move st+ is (t−1)+s−1 = (st∗)+t+ , a sequence of stretches and twangs, at least
one of each.

7. Connectivity and Diameter of Polygonization Space

We begin with a summary the algorithm which, given two polygonizations P1 and P2

of a fixed point set, transforms P1 into P2 using stretches and twangs only.

Polygon Transformation(P1, P2) Algorithm

1. Select an arbitrary edge e of ∂H(P1).
2. P1 ← Pocket Reduction(P1, e); M1 ← atomic moves of [P2 ← Pocket Reduction(P2, e)].
3. Pc ← Canonical Polygonization(P1, e);

M2 ← atomic moves of [Canonical Polygonization(P2, e).]
4. Reverse the order of the moves in M1 ⊕M2 (⊕ represents concatenation).
5. For each stretch s (twang t) in M1 ⊕M2 in order,

execute reverse stretch s−1(reverse twang t−1) on Pc.

This algorithm, along with Lemmas 4.1 and 5.2, establishes our main theorem:

Theorem 7.1. The space of polygonizations of a fixed set of n points is connected via a
sequence of forward and reverse moves. Each node of the space has degree in Ω(n) and
O(n2), and the diameter of the polygonization space is O(n2) moves.

This diameter bound is tight for our specific algorithm but might not be for other algorithms.
Each twang operation can be carried out in O(n) time using a hull routine on the sorted
points inside 4abc; and Ω(n) might be needed, because sp() might hit O(n) vertices. So
the running time of a single forward/reverse move is T · O(n), where T is an upper bound
on the number of twangs in a move.

8. Random Polygons

We have implemented a version of random polygon generation. After creating an initial
polygonization, we move from polygonization to polygonization via a sequence of forward
moves, where additional stretches are permitted in the cascade to simulate reverse moves.
Here we report on one experiment that investigates the speed with which the exponential
space of polygonizations is explored. We use a variant of the example in Fig. 1a, which has
at least 2k polygonizations. The variant is shown in Fig. 9a, which breaks collinearities by
distributing the vertices onto top, middle, and bottom circular arcs. We map each polygo-
nization of this point set to a k-bit binary number, where the kth bit indicates whether the
shortest path from the kth middle vertex is to a top (1) or bottom (0) vertex.4 (Note this
map is many-to-one, as there are more than 2k polygonizations.) Starting from an arbi-
trary polygonization, we then repeatedly select a random stretch, and twang to quiescence.
Figs. 9b,c display the range of the random walk in two formats: (b) shows the number of
the 256 bit patterns reached over the 5000 stretches—91% of the patterns were visited by
the end of the trial; (c) shows when each bit pattern was reached (dark), with time growing
downwards. By the final stretch, 22 patterns (light) were yet to be visited. In this trial,
the average length of a twang cascade was 1.2; more precisely, the 5000 stretches invoked
5960 twangs, for a total of 10, 960 atomic moves.

4Path length is measured by the number of edges, with Euclidean length breaking ties.
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Figure 9: k=8, 2k=256. (a) Polygonization→bits map. (b) Numbers visited vs. stretches.
(c) Dark: numbers visited with increasing stretches; light: not yet visited.

9. Open Problems

Our work leaves many interesting problems open. One unresolved question is whether
the number of twangs T in a twang cascade is exponential or if there is a polynomial bound,
thereby resolving the computational complexity of the polygon transformation algorithm.
We have shown that T is Ω(n2) and O(nn), leaving a large gap to be closed. We would also
like to establish a lower bound on the diameter.

In Sec. 7 we established connectivity with forward moves and their reverse, and although
both moves are composed of atomic stretches and twangs, the forward moves seem more
naturally determined. This suggests the question of whether forward moves suffice to ensure
connectivity.

It remains to be seen if the polygonization moves explored in this paper will be effective
tools for generating random polygons. One possibility is to start from a doubled random
noncrossing spanning tree, which is a polygonal wrap. Finally, we are extending our work
to 3D polyhedralizations of a fixed 3D point set.
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