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Abstract. Monotone systems of polynomial equations (MSPEs) are systems of fixed-
point equations X1 = f1(X1, . . . , Xn), . . . , Xn = fn(X1, . . . , Xn) where each fi is a poly-
nomial with positive real coefficients. The question of computing the least non-negative
solution of a given MSPE X = f(X) arises naturally in the analysis of stochastic models
such as stochastic context-free grammars, probabilistic pushdown automata, and back-
button processes. Etessami and Yannakakis have recently adapted Newton’s iterative
method to MSPEs. In a previous paper we have proved the existence of a threshold kf

for strongly connected MSPEs, such that after kf iterations of Newton’s method each
new iteration computes at least 1 new bit of the solution. However, the proof was purely
existential. In this paper we give an upper bound for kf as a function of the minimal com-
ponent of the least fixed-point µf of f(X). Using this result we show that kf is at most
single exponential resp. linear for strongly connected MSPEs derived from probabilistic
pushdown automata resp. from back-button processes. Further, we prove the existence of
a threshold for arbitrary MSPEs after which each new iteration computes at least 1/w2h

new bits of the solution, where w and h are the width and height of the DAG of strongly
connected components.

1. Introduction

A monotone system of polynomial equations (MSPE for short) has the form

X1 = f1(X1, . . . , Xn)
...

Xn = fn(X1, . . . , Xn)

where f1, . . . , fn are polynomials with positive real coefficients. In vector form we denote an
MSPE by X = f(X). We call MSPEs “monotone” because x ≤ x′ implies f(x) ≤ f(x′)
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for every x,x′ ∈ R
n
≥0. MSPEs appear naturally in the analysis of many stochastic models,

such as context-free grammars (with numerous applications to natural language processing
[19, 15], and computational biology [21, 4, 3, 17]), probabilistic programs with procedures
[6, 2, 10, 8, 7, 9, 11], and web-surfing models with back buttons [13, 14].

By Kleene’s theorem, a feasible MSPE X = f(X) (i.e., an MSPE with at least one
solution) has a least solution µf ; this solution can be irrational and non-expressible by
radicals. Given an MSPE and a vector v encoded in binary, the problem whether µf ≤ v

holds is in PSPACE and at least as hard as the SQUARE-ROOT-SUM problem, a well-
known problem of computational geometry (see [10, 12] for more details).

For the applications mentioned above the most important question is the efficient nu-
merical approximation of the least solution. Finding the least solution of a feasible system
X = f(X) amounts to finding the least solution of F (X) = 0 for F (X) = f(X) − X.
For this we can apply (the multivariate version of) Newton’s method [20]: starting at some

x(0) ∈ R
n (we use uppercase to denote variables and lowercase to denote values), compute

the sequence
x(k+1) := x(k) − (F ′(x(k)))−1F (x(k))

where F ′(X) is the Jacobian matrix of partial derivatives.

While in general the method may not even be defined (F ′(x(k)) may be singular for
some k), Etessami and Yannakakis proved in [10, 12] that this is not the case for the
Decomposed Newton’s Method (DNM), that decomposes the MSPE into strongly connected
components (SCCs) and applies Newton’s method to them in a bottom-up fashion1.

The results of [10, 12] provide no information on the number of iterations needed to
compute i valid bits of µf , i.e., to compute a vector ν such that

∣∣µf j − νj

∣∣ /
∣∣µf j

∣∣ ≤ 2−i

for every 1 ≤ j ≤ n. In a former paper [16] we have obtained a first positive result on this
problem. We have proved that for every strongly connected MSPE X = f(X) there exists
a threshold kf such that for every i ≥ 0 the (kf + i)-th iteration of Newton’s method has
at least i valid bits of µf . So, loosely speaking, after kf iterations DNM is guaranteed to
compute at least 1 new bit of the solution per iteration; we say that DNM converges linearly
with rate 1.

The problem with this result is that its proof provides no information on kf other than
its existence. In this paper we show that the threshold kf can be chosen as

kf = 3n2m + 2n2 |log µmin|

where n is the number of equations of the MSPE, m is such that all coefficients of the
MSPE can be given as ratios of m-bit integers, and µmin is the minimal component of the
least solution µf .

It can be objected that kf depends on µf , which is precisely what Newton’s method
should compute. However, for MSPEs coming from stochastic models, such as the ones
listed above, we can do far better. The following observations and results help to deal with
µmin:

• We obtain a syntactic bound on µmin for probabilistic programs with procedures
(having stochastic context-free grammars and back-button stochastic processes as
special instances) and prove that in this case kf ≤ n2n+2m.

1A subset of variables and their associated equations form an SCC, if the value of any variable in the
subset influences the value of all variables in the subset, see Section 2 for details.
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• We show that if every procedure has a non-zero probability of terminating, then
kf ≤ 3nm. This condition always holds in the special case of back-button pro-
cesses [13, 14]. Hence, our result shows that i valid bits can be computed in time
O((nm + i) · n3) in the unit cost model of Blum, Shub and Smale [1], where each
single arithmetic operation over the reals can be carried out exactly and in constant
time. It was proved in [13, 14] by a reduction to a semidefinite programming prob-
lem that i valid bits can be computed in poly(i, n,m)-time in the classical (Turing-
machine based) computation model. We do not improve this result, because we
do not have a proof that round-off errors (which are inevitable on Turing-machine
based models) do not crucially affect the convergence of Newton’s method. But our
result sheds light on the convergence of a practical method to compute µf .

• Finally, since x(k) ≤ x(k+1) ≤ µf holds for every k ≥ 0, as Newton’s method
proceeds it provides better and better lower bounds for µmin and thus for kf . In the
paper we exhibit a MSPE for which, using this fact and our theorem, we can prove
that no component of the solution reaches the value 1. This cannot be proved by
just computing more iterations, no matter how many.

The paper contains two further results concerning non-strongly-connected MSPEs: Firstly,
we show that DNM still converges linearly even if the MSPE has more than one SCC, albeit
the convergence rate is poorer. Secondly, we prove that Newton’s method is well-defined
also for non-strongly-connected MSPEs. Thus, it is not necessary to decompose an MSPE
into its SCCs – although decomposing the MSPE may be preferred for efficiency reasons.

The paper is structured as follows. In Section 2 we state preliminaries and give some
background on Newton’s method applied to MSPEs. Sections 3, 5, and 6 contain the three
results of the paper. Section 4 contains applications of our main result. We conclude in
Section 7. Missing proofs can be found in a technical report [5].

2. Preliminaries

In this section we introduce our notation and formalize the concepts mentioned in the
introduction.

2.1. Notation

R and N denote the sets of real, respectively natural numbers. We assume 0 ∈ N. R
n

denotes the set of n-dimensional real valued column vectors and R
n
≥0 the subset of vectors

with non-negative components. We use bold letters for vectors, e.g. x ∈ R
n, where we

assume that x has the components x1, . . . , xn. Similarly, the ith component of a function
f : R

n → R
n is denoted by fi.

R
m×n denotes the set of matrices having m rows and n columns. The transpose of a

vector or matrix is indicated by the superscript >. The identity matrix of R
n×n is denoted

by Id.
The formal Neumann series of A ∈ R

n×n is defined by A∗ =
∑

k∈N
Ak. It is well-known

that A∗ exists if and only if the spectral radius of A is less than 1, i.e. max{|λ| | C 3
λ is an eigenvalue of A} < 1. If A∗ exists, we have A∗ = (Id − A)−1.

The partial order ≤ on R
n is defined as usual by setting x ≤ y if xi ≤ yi for all

1 ≤ i ≤ n. By x < y we mean x ≤ y and x 6= y. Finally, we write x ≺ y if xi < yi in every
component.
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We use X1, . . . , Xn as variable identifiers and arrange them into the vector X. In the
following n always denotes the number of variables, i.e. the dimension of X. While x,y, . . .
denote arbitrary elements in R

n, resp. R
n
≥0, we write X if we want to emphasize that a

function is given w.r.t. these variables. Hence, f(X) represents the function itself, whereas
f(x) denotes its value for x ∈ R

n.
If Y is a set of variables and x a vector, then by xY we mean the vector obtained by

restricting x to the components in Y .
The Jacobian of a differentiable function f(X) with f : R

n → R
m is the matrix f ′(X)

given by

f ′(X) =




∂f1

∂X1
. . . ∂f1

∂Xn

...
...

∂fm

∂X1
. . . ∂fm

∂Xn


 .

2.2. Monotone Systems of Polynomials

Definition 2.1. A function f(X) with f : R
n
≥0 → R

n
≥0 is a monotone system of polyno-

mials (MSP), if every component fi(X) is a polynomial in the variables X1, . . . , Xn with
coefficients in R≥0. We call an MSP f(X) feasible if y = f(y) for some y ∈ R

n
≥0.

Fact 2.2. Every MSP f is monotone on R
n
≥0, i.e. for 0 ≤ x ≤ y we have f(x) ≤ f(y).

Since every MSP is continuous, Kleene’s fixed-point theorem (see e.g. [18]) applies.

Theorem 2.3 (Kleene’s fixed-point theorem). Every feasible MSP f(X) has a least fixed
point µf in R

n
≥0 i.e., µf = f(µf) and, in addition, y = f(y) implies µf ≤ y. Moreover,

the sequence (κ
(k)
f )k∈N with κ

(0)
f := 0, and κ

(k+1)
f := f(κ

(k)
f ) = fk+1(0) is monotonically

increasing with respect to ≤ (i.e. κ
(k)
f ≤ κ

(k+1)
f ) and converges to µf .

In the following we call (κ
(k)
f )k∈N the Kleene sequence of f(X), and drop the subscript

whenever f is clear from the context. Similarly, we sometimes write µ instead of µf .

A variable Xi of an MSP f(X) is productive if κ
(k)
i > 0 for some k ∈ N. An MSP is

clean if all its variables are productive. It is easy to see that κ
(n)
i = 0 implies κ

(k)
i = 0 for

all k ∈ N. As for context-free grammars we can determine all productive variables in time
linear in the size of f .

Notation 2.4. In the following, we always assume that an MSP f is clean and feasible.
I.e., whenever we write “MSP”, we mean “clean and feasible MSP”, unless explicitly stated
otherwise.

For the formal definition of the Decomposed Newton’s Method (DNM) (see also Section 1)
we need the notion of dependence between variables.

Definition 2.5. Let f(X) be an MSP. Xi depends directly on Xk, denoted by Xi E Xk,

if ∂fi

∂Xk
(X) is not the zero-polynomial. Xi depends on Xk if Xi E∗ Xk, where E∗ is the

reflexive transitive closure of E. An MSP is strongly connected (short: an scMSP) if all its
variables depend on each other.
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Any MSP can be decomposed into strongly connected components (SCCs), where an SCC
S is a maximal set of variables such that each variable in S depends on each other variable
in S. The following result for strongly connected MSPs was proved in [10, 12]:

Theorem 2.6. Let f(X) be an scMSP and define the Newton operator Nf as follows

Nf (X) = X + (Id − f ′(X))−1(f (X) − X) .

We have: (1) Nf (x) is defined for all 0 ≤ x ≺ µf (i.e., (Id − f ′(x))−1 exists). Moreover,

f ′(x)∗ =
∑

k∈N
f ′(x)k exists for all 0 ≤ x ≺ µf , and so Nf (X) = X+f ′(X)∗(f(X)−X).

(2) The Newton sequence (ν
(k)
f )k∈N with ν(k) = N k

f (0) is monotonically increasing, bounded

from above by µf (i.e. ν (k) ≤ f(ν(k)) ≤ ν(k+1) ≺ µf), and converges to µf .

DNM works by substituting the variables of lower SCCs by corresponding Newton approx-
imations that were obtained earlier.

3. A Threshold for scMSPs

In this section we obtain a threshold after which DNM is guaranteed to converge linearly
with rate 1.

We showed in [16] that for worst-case results on the convergence of Newton’s method it is
enough to consider quadratic MSPs, i.e., MSPs whose monomials have degree at most 2. The
reason is that any MSP (resp. scMSP) f can be transformed into a quadratic MSP (resp.

scMSP) f̃ by introducing auxiliary variables. This transformation is very similar to the
transformation of a context-free grammar into Chomsky normal form. The transformation
does not accelerate DNM, i.e., DNM on f is at least as fast (in a formal sense) as DNM on

f̃ , and so for a worst-case analysis, it suffices to consider quadratic systems. We refer the
reader to [16] for details.

We start by defining the notion of “valid bits”.

Definition 3.1. Let f(X) be an MSP. A vector ν has i valid bits of the least fixed point
µf if

∣∣µf j − νj

∣∣ /
∣∣µf j

∣∣ ≤ 2−i for every 1 ≤ j ≤ n.

In the rest of the section we prove the following:

Theorem 3.2. Let f(X) be a quadratic scMSP. Let cmin be the smallest nonzero coefficient
of f and let µmin and µmax be the minimal and maximal component of µf , respectively. Let

kf = n · log

(
µmax

cmin · µmin · min{µmin, 1}

)
.

Then ν(dkf e+i) has i valid bits of µf for every i ≥ 0.

Loosely speaking, the theorem states that after kf iterations of Newton’s method, every
subsequent iteration guarantees at least one more valid bit. It may be objected that kf

depends on the least fixed point µf , which is precisely what Newton’s method should
compute. However, in the next section we show that there are important classes of MSPs
(in fact, those which motivated our investigation), for which bounds on µmin can be easily
obtained.

The following corollary is weaker than Theorem 3.2, but less technical in that it avoids
a dependence on µmax and cmin.
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Corollary 3.3. Let f(X) be a quadratic scMSP of dimension n whose coefficients are
given as ratios of m-bit integers. Let µmin be the minimal component of µf . Let kf =

3n2m + 2n2 |log µmin| . Then ν(dkf e+i) has at least i valid bits of µf for every i ≥ 0.

Corollary 3.3 follows from Theorem 3.2 by a suitable bound on µmax in terms of cmin and
µmin [5] (notice that, since cmin is the quotient of two m-bit integers, we have cmin ≥ 1/2m).

In the rest of the section we sketch the proof of Theorem 3.2. The proof makes crucial
use of vectors d � 0 such that d ≥ f ′(µf)d. We call a vector satisfying these two conditions
a cone vector of f or, when f is clear from the context, just a cone vector.

In a previous paper we have shown that if the matrix (Id−f ′(µf)) is singular, then f

has a cone vector ([16], Lemmata 4 and 8). As a first step towards the proof of Theorem 3.2
we show the following stronger proposition.

Proposition 3.4. Any scMSP has a cone vector.

To a cone vector d = (d1, . . . , dn) we associate two parameters, namely the maximum and
the minimum of the ratios µf 1/d1, µf2/d2, . . . , µfn/dn, which we denote by λmax and λmin,
respectively. The second step consists of showing (Proposition 3.6) that given a cone vector
d, the threshold kf ,d = log(λmax/λmin) satisfies the same property as kf in Theorem 3.2,

i.e., ν(dkf ,de+i) has i valid bits of µf for every i ≥ 0. This follows rather easily from the
following fundamental property of cone vectors: a cone vector leads to an upper bound on
the error of Newton’s method.

Lemma 3.5. Let d be a cone vector of an MSP f and let λmax = max{µf i

di
}. Then

µf − ν(k) ≤ 2−kλmax d.

Proof Idea. Consider the ray g(t) = µf − td starting in µf and headed in the direction −d

(the dashed line in the picture below). It is easy to see that g(λmax) is the intersection of g

with an axis which is located farthest from µf . One can then prove g( 1
2λmax) ≤ ν(1), where

g(1
2λmax) is the point of the ray equidistant from g(λmax) and µf . By repeated application

of this argument one obtains g(2−kλmax) ≤ ν(k) for all k ∈ N.

The following picture shows the Newton iterates ν (k) for 0 ≤ k ≤ 2 (shape: ×) and

the corresponding points g(2−kλmax) (shape: +) located on the ray g. Notice that ν (k) ≥
g(2−kλmax).

PSfrag replacements

X1 = f1(X)

X2 = f2(X)
µf = g(0)

0
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−0.2
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X1

X2

g(λmax)
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Now we easily obtain:

Proposition 3.6. Let f(X) be an scMSP and let d be a cone vector of f . Let kf ,d =

log λmax

λmin
, where λmax = maxj

µf j

dj
and λmin = minj

µf j

dj
. Then ν(dkf ,de+i) has at least i valid

bits of µf for every i ≥ 0.

We now proceed to the third and final step. We have the problem that kf ,d depends on the
cone vector d, about which we only know that it exists (Proposition 3.4). We now sketch
how to obtain the threshold kf claimed in Theorem 3.2, which is independent of any cone
vectors.

Consider Proposition 3.6 and let λmax = µf i

di
and λmin =

µf j

dj
. We have kf ,d =

log
(

dj

di
· µf i

µf j

)
. The idea is to bound kf ,d in terms of cmin. We show that if kf ,d is very

large, then there must be variables X,Y such that X depends on Y only via a monomial
that has a very small coefficient, which implies that cmin is very small.

4. Stochastic Models

As mentioned in the introduction, several problems concerning stochastic models can be
reduced to problems about the least solution µf of an MSPE f . In these cases, µf is a
vector of probabilities, and so µmax ≤ 1. Moreover, we can obtain information on µmin,
which leads to bounds on the threshold kf .

4.1. Probabilistic Pushdown Automata

Our study of MSPs was initially motivated by the verification of probabilistic pushdown
automata. A probabilistic pushdown automaton (pPDA) is a tuple P = (Q,Γ, δ,Prob) where
Q is a finite set of control states, Γ is a finite stack alphabet, δ ⊆ Q × Γ × Q × Γ∗ is a finite
transition relation (we write pX ↪−→ qα instead of (p,X, q, α) ∈ δ), and Prob is a function
which to each transition pX ↪−→ qα assigns its probability Prob(pX ↪−→ qα) ∈ (0, 1] so that

for all p ∈ Q and X ∈ Γ we have
∑

pX↪−→qα Prob(pX ↪−→ qα) = 1. We write pX
x

↪−→ qα

instead of Prob(pX ↪−→ qα) = x. A configuration of P is a pair qw, where q is a control state
and w ∈ Γ∗ is a stack content. A probabilistic pushdown automaton P naturally induces
a possibly infinite Markov chain with the configurations as states and transitions given by:

pXβ
x

↪−→ qαβ for every β ∈ Γ∗ iff pX
x

↪−→ qα. We assume w.l.o.g. that if pX
x

↪−→ qα is a
transition then |α| ≤ 2.

pPDAs and the equivalent model of recursive Markov chains have been very thoroughly
studied [6, 2, 10, 8, 7, 9, 11]. These papers have shown that the key to the analysis of pPDAs
are the termination probabilities [pXq], where p and q are states, and X is a stack letter,
defined as follows (see e.g. [6] for a more formal definition): [pXq] is the probability that,
starting at the configuration pX, the pPDA eventually reaches the configuration qε (empty
stack). It is not difficult to show that the vector of termination probabilities is the least
fixed point of the MSPE containing the equation

[pXq] =
∑

pX
x

↪−→rY Z

x ·
∑

t∈Q

[rY t] · [tZq] +
∑

pX
x

↪−→rY

x · [rY q] +
∑

pX
x

↪−→qε

x

for each triple (p,X, q). Call this quadratic MSPE the termination MSPE of the pPDA
(we assume that termination MSPEs are clean, and it is easy to see that they are always
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feasible). We immediately have that if X = f(X) is a termination MSP, then µmax ≤ 1.
We also obtain a lower bound on µmin:

Lemma 4.1. Let X = f(X) be a termination MSPE with n variables. Then µmin ≥

c
(2n+1−1)
min

.

Together with Theorem 3.2 we get the following exponential bound for kf .

Proposition 4.2. Let f be a strongly connected termination MSP with n variables and
whose coefficients are expressed as ratios of m-bit numbers. Then kf ≤ n2n+2m.

We conjecture that there is a lower bound on kf which is exponential in n for the following

reason. We know a family (f (n))n=1,3,5,... of strongly connected MSPs with n variables and

irrational coefficients such that c
(n)
min = 1

4 for all n and µ
(n)
min is double-exponentially small in

n. Experiments suggest that Θ(2n) iterations are needed for the first bit of µf (n), but we
do not have a proof.

4.2. Strict pPDAs and Back-Button Processes

A pPDA is strict if for every pX ∈ Q×Γ the transition relation contains a pop-rule pX
x

↪−→ qε
for some q ∈ Q and some x > 0. Essentially, strict pPDAs model programs in which every
procedure has at least one terminating execution that does not call any other procedure.
The termination MSP of a strict pPDA is of the form b(X,X) + lX + c for c � 0. So we
have µf ≥ c, which implies µmin ≥ cmin. Together with Theorem 3.2 we get:

Proposition 4.3. Let f be a strongly connected termination MSP with n variables and
whose coefficients are expressed as ratios of m-bit numbers. If f is derived from a strict
pPDA, then kf ≤ 3nm.

Since in most applications m is small, we obtain an excellent convergence threshold.
In [13, 14] Fagin et al. introduce a special class of strict pPDAs called back-button

processes: in a back-button process there is only one control state p , and any rule is of the

form pA
bA

↪−→ pε or pA
lAB

↪−−→ pBA. So the stack corresponds to a path through a finite graph

with Γ as set of nodes and edges A → B for pA
lAB

↪−−→ pBA.
In [13, 14] back-button processes are used to model the behaviour of web-surfers: Γ is

the set of web-pages, lAB is the probability that a web-surfer uses a link from page A to page
B, and bA is the probability that the surfer pushes the “back”-button of the web-browser
while visiting A. Thus, the termination probability [pAp] is simply the probability that, if A
is on top of the stack, A is eventually popped from the stack. The termination probabilities
are the least solution of the MSPE consisting of the equations

[pAp] = bA +
∑

pA
lAB

↪−−→pBA

lAB[pBp][pAp] = bA + [pAp]
∑

pA
lAB

↪−−→pBA

lAB [pBp].
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4.3. An Example

As an example of application of Theorem 3.2 consider the following scMSPE X = f(X).



X1

X2

X3


 =




0.4X2X1 + 0.6
0.3X1X2 + 0.4X3X2 + 0.3

0.3X1X3 + 0.7




The least solution of the system gives the revocation probabilities of a back-button process
with three web-pages. For instance, if the surfer is at page 2 it can choose between following
links to pages 1 and 3 with probabilities 0.3 and 0.4, respectively, or pressing the back button
with probability 0.3.

We wish to know if any of the revocation probabilities is equal to 1. Performing 14 New-
ton steps (e.g. with Maple) yields an approximation ν (14) to the termination probabilities
with 


0.98
0.97
0.992


 ≤ ν(14) ≤




0.99
0.98
0.993


 .

We have cmin = 0.3. In addition, since Newton’s method converges to µf from below,
we know µmin ≥ 0.97. Moreover, µmax ≤ 1, as 1 = f(1) and so µf ≤ 1. Hence kf ≤

3 · log 1
0.97·0.3·0.97 ≤ 6. Theorem 3.2 then implies that ν (14) has (at least) 8 valid bits of µf .

As µf ≤ 1, the absolute errors are bounded by the relative errors, and since 2−8 ≤ 0.004
we know:

µf ≺ ν(14) +




2−8

2−8

2−8


 ≺




0.994
0.984
0.997


 ≺




1
1
1




So Theorem 3.2 gives a proof that all 3 revocation probabilities are strictly smaller than 1.

5. Linear Convergence of the Decomposed Newton’s Method

Given a strongly connected MSP f , Theorem 3.2 states that, if we have computed kf

preparatory iterations of Newton’s method, then after i additional iterations we can be sure
to have computed at least i bits of µf . We call this linear convergence with rate 1. Now we
show that DNM, which handles non-strongly-connected MSPs, converges linearly as well.
We also give an explicit convergence rate.

Let f(X) be any quadratic MSP (again we assume quadratic MSPs throughout this
section), and let h(f) denote the height of the DAG of strongly connected components
(SCCs). The convergence rate of DNM crucially depends on this height: In the worst

case one needs asymptotically Θ(2h(f)) iterations in each component per bit, assuming one
performs the same number of iterations in each component.

To get a sharper result, we suggest to perform a different number of iterations in each
SCC, depending on its depth. The depth of an SCC S is the length of the longest path in
the DAG of SCCs from S to a top SCC.

In addition, we use the following notation. For a depth t, we denote by comp(t) the
set of SCCs of depth t. Furthermore we define C(t) :=

⋃
comp(t) and C>(t) :=

⋃
t′>t C(t′)

and, analogously, C<(t). We will sometimes write vt for vC(t) and v>t for vC>(t) and v<t

for vC<(t), where v is any vector.
Figure 1 shows the Decomposed Newton’s Method (DNM) for computing an approx-

imation ν for µf , where f(X) is any quadratic MSP. The authors of [10] recommend to
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run Newton’s Method in each SCC S until “approximate solutions for S are considered
‘good enough’ ”. Here we suggest to run Newton’s Method in each SCC S for a number of
steps that depends (exponentially) on the depth of S and (linearly) on a parameter j that
controls the number of iterations (see Figure 1).

function DNM (f , j)
/* The parameter j controls the number of iterations. */
for t from h(f ) downto 0

forall S ∈ comp(t) /* all SCCs S of depth t */

νS := N j·2t

fS
(0) /* j · 2t iterations */

/* apply νS in the depending SCCs */
f<t(X) := f<t(X)[XS/νS ]

return ν

Figure 1: Decomposed Newton’s Method (DNM) for computing an approximation ν of µf

Recall that h(f ) was defined as the height of the DAG of SCCs. Similarly we define the
width w(f) to be maxt |comp(t)|. Notice that f has at most (h(f ) + 1) · w(f) SCCs. We
have the following bound on the number of iterations run by DNM.

Proposition 5.1. The function DNM(f , j) of Fig. 1 runs at most j ·w(f )·2h(f )+1 iterations
of Newton’s method.

We will now analyze the convergence behavior of DNM asymptotically (for large j). Let

∆
(j)
S denote the error in S when running DNM with parameter j, i.e., ∆

(j)
S := µS − ν

(j)
S .

Observe that the error ∆
(j)
t can be understood as the sum of two errors:

∆
(j)
t = µt − ν

(j)
t = (µt − µ̃t

(j)) + (µ̃t
(j) − ν

(j)
t ) ,

where µ̃t
(j) := µ

(
f t(X)[X>t/ν

(j)
>t ]

)
, i.e., µ̃t

(j) is the least fixed point of f t after the ap-

proximations from the lower SCCs have been applied. So, ∆
(j)
t consists of the propagation

error (µt − µ̃t
(j)) and the newly inflicted approximation error (µ̃t

(j) − ν
(j)
t ).

The following lemma, technically non-trivial to prove, gives a bound on the propagation
error.

Lemma 5.2 (Propagation error). Let ν>t be some approximation of µ>t, i.e., 0 ≤ ν>t ≤
µ>t. Let µ̃t = µ

(
f t(X)[X>t/ν>t]

)
. Then there is a constant c > 0 such that

‖µt − µ̃t‖ ≤ c ·
√

‖µ>t − ν>t‖ .

Intuitively, Lemma 5.2 states that if ν>t has k valid bits of µ>t, then µ̃t has roughly k/2
valid bits of µt. In other words, (at most) one half of the valid bits are lost on each level of
the DAG due to the propagation error.

The following theorem assures that after combining the propagation error and the
approximation error, DNM still converges linearly.

Theorem 5.3. Let f be a quadratic MSP. Let ν (j) denote the result of calling DNM(f , j)

(see Figure 1). Then there is a kf ∈ N such that ν(kf +i) has at least i valid bits of µf for
every i ≥ 0.
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We conclude that increasing i by one gives us asymptotically at least one additional bit in
each component and, by Proposition 5.1, costs w(f ) · 2h(f)+1 additional Newton iterations.

In the technical report [5] we give an example that shows that the bound above is
essentially optimal in the sense that an exponential (in h(f)) number of iterations is in
general needed to obtain an additional bit.

6. Newton’s Method for General MSPs

Etessami and Yannakakis [10] introduced DNM because they could show that the matrix
inverses used by Newton’s method exist if Newton’s method is run on each SCC separately
(see Theorem 2.6).

It may be surprising that the matrix inverses used by Newton’s method exist even if
the MSP is not decomposed. More precisely one can show the following theorem, see [5].

Theorem 6.1. Let f(X) be any MSP, not necessarily strongly connected. Let the Newton
operator Nf be defined as before:

Nf (X) = X + (Id − f ′(X))−1(f(X) − X)

Then the Newton sequence (ν
(k)
f )k∈N with ν(k) = N k

f (0) is well-defined (i.e., the matrix

inverses exist), monotonically increasing, bounded from above by µf (i.e. ν (k) ≤ ν(k+1) ≺
µf), and converges to µf .

By exploiting Theorem 5.3 and Theorem 6.1 one can show the following theorem which
addresses the convergence speed of Newton’s Method in general.

Theorem 6.2. Let f be any quadratic MSP. Then the Newton sequence (ν (k))k∈N is
well-defined and converges linearly to µf . More precisely, there is a kf ∈ N such that

ν(kf+i·(h(f)+1)·2h(f)) has at least i valid bits of µf for every i ≥ 0.

Again, the 2h(f) factor cannot be avoided in general as shown by an example in [5].

7. Conclusions

We have proved a threshold kf for strongly connected MSPEs. After kf+i Newton iterations
we have i bits of accuracy. The threshold kf depends on the representation size of f and
on the least solution µf . Although this latter dependence might seem to be a problem,
lower and upper bounds on µf can be easily derived for stochastic models (probabilistic
programs with procedures, stochastic context-free grammars and back-button processes).
In particular, this allows us to show that kf depends linearly on the representation size for
back-button processes. We have also shown by means of an example that the threshold kf

improves when the number of iterations increases.
In [16] we left the problem whether DNM converges linearly for non-strongly-connected

MSPEs open. We have proven that this is the case, although the convergence rate is poorer:
if h and w are the height and width of the graph of SCCs of f , then there is a threshold

k̃f such that k̃f + i · w · 2h+1 iterations of DNM compute at least i valid bits of µf , where
the exponential factor cannot be avoided in general.

Finally, we have shown that the Jacobian of the whole MSPE is guaranteed to exist,
whether the MSPE is strongly connected or not.
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[6] J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown automata. In Proceedings
of LICS 2004, pages 12–21, 2004.
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