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Abstract. The classical Frobenius problem over N is to compute the largest integer g

not representable as a non-negative integer linear combination of non-negative integers
x1, x2, . . . , xk, where gcd(x1, x2, . . . , xk) = 1. In this paper we consider novel generaliza-
tions of the Frobenius problem to the noncommutative setting of a free monoid. Unlike
the commutative case, where the bound on g is quadratic, we are able to show exponential
or subexponential behavior for several analogues of g, with the precise bound depending
on the particular measure chosen.

1. Introduction

Let x1, x2, . . . , xk be positive integers. It is well-known that every sufficiently large
integer can be written as a non-negative integer linear combination of the xi if and only
if gcd(x1, x2, . . . , xk) = 1. The famous Frobenius problem (so-called because, according to
Brauer [2], “Frobenius mentioned it occasionally in his lectures”) is the following:

Given positive integers x1, x2, . . . , xk with gcd(x1, x2, . . . , xk) = 1, find the largest pos-
itive integer g(x1, x2, . . . , xk) which cannot be represented as a non-negative integer linear
combination of the xi.

Although it seems simple at first glance, the Frobenius problem on positive integers has
many subtle and intriguing aspects that continue to elicit study. A recent book by Ramı́rez
Alfonśın [23] lists over 400 references on this problem. Applications to many different fields
exist: to algebra [19]; the theory of matrices [11], counting points in polytopes [1]; the
problem of efficient sorting using Shellsort [17], the theory of Petri nets [25]; the liveness of
weighted circuits [8]; etc.

Generally speaking, research on the Frobenius problem can be classified into three
different areas:
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• Formulas or algorithms for the exact computation of g(x1, . . . , xk), including formu-
las for g where the xi obey certain relations, such as being in arithmetic progression;

• The computational complexity of the problem;
• Good upper or lower bounds on g(x1, . . . , xk).

For k = 2, it is folklore that

g(x1, x2) = x1x2 − x1 − x2; (1.1)

this formula is often attributed to Sylvester [24], although he did not actually state it.
Eq. (1.1) gives an efficient algorithm to compute g for two elements. For k = 3, efficient
algorithms have been given by Greenberg [15] and Davison [10]; if x1 < x2 < x3, these algo-
rithms run in time bounded by a polynomial in log x3. Kannan [18] gave a very complicated
algorithm that runs in polynomial time in log xk if k is fixed, but is wildly exponential in k.
However, Ramı́rez Alfonśın [22] proved that the general problem is NP-hard, under Turing
reductions, by reducing from the integer knapsack problem. So it seems very likely that
there is no simple formula for computing g(x1, x2, . . . , xk) for arbitrary k. Nevertheless,
recent work by Einstein, Lichtblau, Strzebonski, and Wagon [12] shows that in practice the
Frobenius number can be computed relatively efficiently, even for very large numbers, at
least for k ≤ 8.

Another active area of interest is estimating how big g is in terms of x1, x2, . . . , xk for
x1 < x2 < · · · < xk. It is known, for example, that g(x1, x2, . . . , xk) < x2

k. This follows
from Wilf’s algorithm [26]. Many other bounds are known.

One can also study variations on the Frobenius problem. For example, given positive
integers x1, x2, . . . , xk with gcd(x1, x2, . . . , xk) = 1, what is the number f(x1, x2, . . . , xk) of
positive integers not representable as a non-negative integer linear combination of the xi?
Sylvester, in an 1884 paper [24], showed that f(x1, x2) = 1

2(x1 − 1)(x2 − 1).
Our goal in this paper is to generalize the Frobenius problem to the setting of a free

monoid. In this framework, we start with a finite, nonempty alphabet Σ, and consider
the set of all finite words Σ∗. Instead of considering integers x1, x2, . . . , xk, we consider
words x1, x2, . . . , xk ∈ Σ∗. Instead of considering linear combinations of integers, we in-
stead consider the languages {x1, x2, . . . , xk}

∗ and x∗
1x

∗
2 · · · x

∗
k. Actually, we consider several

additional generalizations, which vary according to how we measure the size of the input,
conditions on the input, and measures of the size of the result. For an application of the
noncommutative Frobenius problem, see Clément, Duval, Guaiana, Perrin, and Rindone
[9].

In sections 2 and 3, we introduce the definition of the generalized Frobenius problem.
In sections 4 and 5, we discuss the state complexity of this generalized problem. In sections
5 and 6, we will discuss the longest length and number of omitted words, respectively.

In order to motivate our definitions, we consider the easiest case first: where Σ = {0},
a unary alphabet.

2. The unary case

Suppose xi = 0
ai , where ai ∈ N for 1 ≤ i ≤ k. The Frobenius problem is evidently

linked to many problems over unary languages. It figures, for example, in estimating the
size of the smallest DFA equivalent to a given NFA [7].

If L ⊆ Σ∗, by L we mean Σ∗−L, the complement of L. If L is a finite language, by |L|
we mean the cardinality of L. Evidently we have
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Proposition 2.1. Suppose xi = 0
ai where ai ∈ N for 1 ≤ i ≤ k, and write S =

{x1, x2, . . . , xk}. Then S∗ is co-finite if and only if gcd(a1, a2, . . . , ak) = 1. Further-
more, if S∗ is co-finite, then the length of the longest word in S∗ is g(a1, a2, . . . , ak), and
|S∗ | = f(a1, a2, . . . , ak).

This result suggests that one appropriate noncommutative generalization of the condi-
tion gcd(a1, a2, . . . , ak) = 1 is that S∗ = {x1, x2, . . . , xk}

∗ be co-finite, and one appropriate
generalization of the g function is the length of the longest word not in S ∗.

But there are other possible generalizations. Instead of measuring the length of the
longest omitted word, we could instead consider the state complexity of S ∗. By the state
complexity of a regular language L, written sc(L), we mean the number of states in the
(unique) minimal deterministic finite automaton (DFA) accepting L. In the unary case,
this alternate measure has a nice expression in terms of the ordinary Frobenius function:

Theorem 2.2. Let gcd(a1, a2, . . . , ak) = 1. Then

sc({0a1 , 0a2 , . . . , 0ak}∗) = g(a1, a2, . . . , ak) + 2.

Proof. Let L = {0a1 , 0a2 , . . . , 0ak}∗. Since gcd(a1, a2, . . . , ak) = 1, every word of length >
g(a1, a2, . . . , ak) is contained in L. Thus we can accept L with a DFA having g(a1, . . . , ak)+2
states, using a “tail” of g(a1, . . . , ak) + 1 states and a “loop” of one accepting state. Thus
sc(L) ≤ g(a1, a2, . . . , ak) + 2.

To see sc(L) ≥ g(a1, a2, . . . , ak) + 2, we show that the words ε, 0, 02, . . . , 0g(a1 ,...,ak)+1

are pairwise inequivalent under the Myhill-Nerode equivalence relation. Pick 0
i and 0

j,
0 ≤ i < j ≤ g(a1, . . . , ak) + 1. Choose z = 0

g(a1,...,ak)−i. Then 0
iz = 0

g(a1,...,ak) 6∈ L, while

0
jz = 0

g(a1,...,ak)+j−i ∈ L, since j > i.

Corollary 2.3. Let gcd(a1, . . . , ak) = d. Then

sc({0a1 , 0a2 , . . . , 0ak}∗) = d
(

g(a1/d, a2/d, . . . , ak/d) + 1
)

+ 1.

Hence it follows that sc({0a1 , 0a2 , . . . , 0ak}∗) = O(a2) for a = max1≤i≤k ai. Further-
more, this bound is essentially optimal; since g(n, n +1) = n2 −n− 1, there exist examples
with sc({0a1 , 0a2 , . . . , 0ak}∗) = Ω(a2).

3. The case of larger alphabets

We now turn to the main results of the paper. Given as input a list of words x1, x2, . . . , xk,
not necessarily distinct, and defining S = {x1, x2, . . . , xk}, we can measure the size of the
input in a number of different ways:

(a) k, the number of words;
(b) n = max1≤i≤k |xi|, the length of the longest word;
(c) m =

∑

1≤i≤k |xi|, the total number of symbols;

(d) sc({x1, x2, . . . , xk}), the state complexity of the language represented by the input.

We may impose various conditions on the input:

(i) Each xi is defined over the unary alphabet;
(ii) S∗ = {x1, x2, . . . , xk}

∗ is co-finite
(iii) k = 2, or k is fixed.
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And finally, we can explore various measures on the size of the result:

(1) L = maxx∈Σ∗−S∗ |x|, the length of the longest word not in S∗;
(2) K = maxx∈Σ∗−x∗

1
x∗
2
···x∗

k
|x|, the length of the longest word not in x∗

1x
∗
2 · · · x

∗
k;

(3) S = sc(S∗), the state complexity of S∗;
(4) M = |Σ∗ − S∗|, the number of words not in S∗;
(5) S ′ = sc(x∗

1x
∗
2 · · · x

∗
k);

Clearly not every combination results in a sensible question to study. In order to study
L, the length of the longest word omitted by S∗, we clearly need to impose condition (ii),
that S∗ be co-finite.

We now study under what conditions it makes sense to study K = maxx∈Σ∗−x∗
1
x∗
2
···x∗

k
|x|,

the length of the longest word not in x∗
1x

∗
2 · · · x

∗
k.

Theorem 3.1. Let x1, x2, . . . , xk ∈ Σ+. Then Q = x∗
1x

∗
2 · · · x

∗
k is co-finite if and only if

|Σ| = 1 and gcd(|x1|, . . . , |xk|) = 1.

Proof. If |Σ| = 1 and gcd(|x1|, . . . , |xk|) = 1, then every sufficiently long unary word can be
obtained by concatenations of the xi, so Q is co-finite.

For the other direction, suppose Q is co-finite. If |Σ| = 1, let gcd(|x1|, . . . , |xk|) = d. If
d > 1, Q contains only words of length divisible by d, and so is not co-finite. So d = 1.

Hence assume |Σ| ≥ 2, and let a, b be distinct letters in Σ. Let l = max1≤i≤k |xi|, the
length of the longest word. Let Q′ = ((a2lb2l)k)+. Then we claim that Q′ ∩ Q = ∅. For
if none of the xi consists of powers of a single letter, then the longest block of consecutive
identical letters in any word in Q is < 2l, so no word in Q′ can be in Q. Otherwise, say
some of the xi consist of powers of a single letter. Take any word w in Q, and count the
number n(w) of maximal blocks of 2l or more consecutive identical letters in w. Clearly
n(w) ≤ k. But n(w′) ≥ 2k for any word w′ in Q′. Thus Q is not co-finite, as it omits all
the words in Q′.

4. State complexity results

In this section we study the measures S = sc(S∗), and S ′ = sc(x∗
1x

∗
2 · · · x

∗
k). First we

review previous results.
Yu, Zhuang, and Salomaa [27] showed that if L is accepted by a DFA with n states,

then L∗ can be accepted by a DFA with at most 2n−1 + 2n−2 states. Furthermore, they
showed this bound is realized, in the sense that for all n ≥ 2, there exists a DFA M with n
states such that the minimal DFA accepting L(M)∗ needs 2n−1 + 2n−2 states. This latter
result was given previously by Maslov [21].

Câmpeanu et al. [3, 5] showed that if a DFA with n states accepts a finite language L,
then L∗ can be accepted by a DFA with at most 2n−3 +2n−4 states for n ≥ 4. Furthermore,
this bound is actually achieved for n > 4 for an alphabet of size 3 or more. Unlike the
examples we are concerned with in this section, however, the finite languages they construct
contain exponentially many words in n.

Holzer and Kutrib [16] examined the nondeterminstic state complexity of Kleene star.
They showed that if an NFA M with n states accepts L, then L∗ can be accepted by an
NFA with n+ 1 states, and this bound is tight. If L is finite, then n− 1 states suffices, and
this bound is tight.

Câmpeanu and Ho [4] gave tight bounds for the number of states required to accept a
finite language whose words are all bounded by length n.
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Proposition 4.1.

(a) nsc({x1, x2, . . . , xk}
∗) ≤ m − k + 1.

(b) sc({x1, x2, . . . , xk}
∗) ≤ 2m−k+1.

(c) If no xi is a prefix of any other xj, then sc({x1, x2, . . . , xk}
∗) ≤ m − k + 2.

We now recall an example providing a lower bound for the state complexity of {x1, x2, . . . , xk}
∗

[13]. Let t be an integer ≥ 2, and define words as follows: y := 01
t−1

0 and xi := 1
t−i−1

01
i+1

for 0 ≤ i ≤ t − 2. Let St := {0, x0, x1, . . . , xt−2, y}.

Theorem 4.2. S∗
t has state complexity 3t2t−2 + 2t−1.

Corollary 4.3. There exists a family of sets St, each consisting of t + 1 words of length
≤ t + 1, such that sc(S∗

t ) = 2Ω(t). If m is the total number of symbols in these words, then

sc(S∗
t ) = 2Ω(

√
m).

Using similar ideas, we can also create an example achieving subexponential state com-
plexity for x∗

1x
∗
2 · · · x

∗
k.

Theorem 4.4. Let y and xi be as defined above. Let L = (0∗x∗
1x

∗
2 · · · x

∗
n−1y

∗)e where

e = (t + 1)(t − 2)/2 + 2t. Then sc(L) ≥ 2t−2.

Proof. Define A = {x0, x1, . . . , xt−2, y, 0} and T = {x1, x2, . . . , xt−2}. For any subset S of
T , say {s1, s2, . . . , sj} with s1 < s2 < · · · sj define

x(S) = yxt−2yxt−3xt−2y · · · yx1x2 · · · xt−2yxs1
xs2

· · · xsjy.

Note that x(S) contains t copies of y and at most (t− 2)(t− 1)/2 + t− 2 = (t + 1)(t − 2)/2
x’s. Thus |x(S)| ≤ (t + 1)(t + (t + 1)(t − 2)/2) and |x(S)|0 ≤ 2t + (t + 1)(t − 2)/2.

To get the bound sc(L) ≥ 2t−2, we exhibit 2t−2 pairwise distinct words under the Myhill-
Nerode equivalence relation. Let R and S be two distinct subsets of T , and without loss of
generality, let m ∈ R, m 6∈ S. By the proof of [13, Theorem 13] we have x(R)1t−m ∈ A∗

but x(S)1t−m 6∈ A∗. Since L ⊆ A∗, x(S)1t−m 6∈ L. It remains to see x(R)1t−m ∈ L.
Since x(R)1t−m ∈ A∗, there exists a factorization of x(R)1t−m in terms of elements of

A. However, |x(R)1t−m| ≤ |x(R)|+ t ≤ (t +1)(t + (t + 1)(t− 2)/2 + t) so any factorization
of x(R)1t−m into elements of A contains at most (t + 1)(t− 2)/2 + 2t copies of words other
than 0. Similarly |x(R)1t−m|0 ≤ |x(R)| ≤ (t + 1)(t − 2)/2 + 2t, so any factorization of
x(R)1t−m into elements of A contains at most (t + 1)(t − 2)/2 + 2t copies of the word 0.
Thus a factorization of x(R)1t−m into elements of A is actually contained in L.

Corollary 4.5. There exists an infinite family of tuples (x1, x2, . . . , xk) where m, the total

number of symbols, is O(t4), and sc(x∗
1 · · · x

∗
k) = 2Ω(t) = 2Ω(m1/4).

We now turn to an upper bound on the state complexity of S∗ in the case where the
number of words in S is not specified, but we do have a bound on the length of the longest
word.

Theorem 4.6. Let S = {x1, x2, . . . , xk} be a finite set with max1≤i≤k |xi| = n, that is, the
longest word is of length n. Then sc(S∗) ≤ 2

2|Σ|−1(2n|Σ|n − 1).

Proof. The idea is to create a DFA M = (Q,Σ, δ, q0, F ) that records the last n− 1 symbols
seen, together with the set of the possible positions inside those n − 1 symbols where the
factorization of the input into elements of S could end.

The number of states in this DFA is
∑

0≤i<n |Σ|i2i+1 = 2
2|Σ|−1(2n|Σ|n − 1).
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5. State complexity for two words

In this section we develop formulas bounding the state complexity of {w, x}∗ and w∗x∗.
Here, as usual, g(x1, x2) denotes the Frobenius function introduced in Section 1. We need
the following lemma, which is of independent interest and which generalizes a classical
theorem of Fine and Wilf [14].

Lemma 5.1. Let w and x be nonempty words. Let y ∈ w{w, x}ω and z ∈ x{w, x}ω. Then
the following conditions are equivalent:

(a) y and z agree on a prefix of length |w| + |x| − gcd(|w|, |x|);
(b) wx = xw;
(c) y = z.

Furthermore, the bound in (a) is optimal, in the sense that for all pairs of lengths (m,n)
there exist w, x with (m,n) = (|w|, |x|) such that wω and xω agree on a prefix of length
|w| + |x| − gcd(|w|, |x|) − 1.

Proof. (a) =⇒ (b): We prove the contrapositive. Suppose wx 6= xw. Then we prove that
y and z differ at a position ≤ |w|+ |x|−gcd(|w|, |x|). The proof is by induction on |w|+ |x|.
The base case is |w| = |x| = 1 and is left to the reader.

Now assume the result is true for |w| + |x| < k. We prove it for |w| + |x| = k. If
|w| = |x| then y and z must disagree at the |w|’th position or earlier, for otherwise w = x
and wx = xw; since |w| ≤ d = |w|, the result follows. So, without loss of generality, assume
|w| < |x|. If w is not a prefix of x, then y and z disagree at the |w|’th position or earlier,
and again |w| ≤ d.

So w is a proper prefix of x. Write x = wt for some nonempty word t. Now any common
divisor of |w| and |x| must also divide |x| − |w| = |t|, and similarly any common divisor of
both |w| and |t| must also divide |w| + |t| = |x|. So gcd(|w|, |x|) = gcd(|w|, |t|).

Now wt 6= tw, for otherwise we have wx = wwt = wtw = xw, a contradiction. Then y
begins with ww and z begins with wt. By induction (since |w| + |t| < k) w−1y and w−1z
disagree at position |w| + |t| − gcd(|w|, |t|) or earlier. Hence y and z disagree at position
2|w| + |t| − gcd(|w|, |t|) = d or earlier.

(b) =⇒ (c): If wx = xw, then by the theorem of Lyndon-Schützenberger, both w and
x are powers of a common word u. Hence y = uω = z.

(c) =⇒ (a): Trivial.

For the optimality statement, the words constructed in the paper [6] suffice.

Theorem 5.2. Let w, x ∈ Σ+. Then

sc({w, x}∗) ≤

{

|w| + |x|, if wx 6= xw;

d (g(|w|/d, |x|/d) + 1) + 2, if wx = xw and d = gcd(|w|, |x|) .

Proof. If wx = xw, then by a classical theorem of Lyndon and Schützenberger [20], we
know there exists a word z and integers i, j ≥ 1 such that w = z i, x = zj . Thus {w, x}∗ =
{zi, zj}∗. Let e = gcd(i, j). Then L = {zi, zj}∗ consists of all words of the form zke for
k > g(i/e, j/e), together with some words of the form zke for 0 ≤ k < g(i/e, j/e). Thus,
as in the proof of Corollary 2.3, we can accept L with a “tail” of e|z|g(i/e, j/e) + 1 states
and a “loop” of e|z| states. Adding an additional state as a “dead state” to absorb unused
transitions gives a total of (e|z|(g(i/e, j/e)+1)+2 states. Since d = e|z|, the bound follows.
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Otherwise, xw 6= wx. Without loss of generality, let us assume that |w| ≤ |x|. Suppose
w is not a prefix of x. Let p be the longest common prefix of w and x. Then we can write
w = paw′ and x = pbx′ for a 6= b. Then we can accept {w, x}∗ with a transition diagram
that has one chain of nodes labeled p leading from q0 to a state q, and two additional
chains leading from q back to q0, one labled aw′ and one labeled bx′. Since a 6= b, this is
a DFA. One additional “dead state” might be required to absorb transitions on letters not
mentioned. The total number of states is |p| + 1 + |w ′| + |x′| + 1 ≤ |w| + |x|.

Finally, suppose |w| ≤ |x| and w is a prefix of x. We claim it suffices to bound the longest
common prefix between any word of w{w, x}∗ and x{w, x}∗. For if the longest common
prefix is of length b, we can distinguish between them after reading b + 1 symbols. The
b+1’th symbol must be one of two possibilities, and we can use back arrows in the transition
diagram to the appropriate state. We may need one additional state as a “dead state”, so
the total number of states needed is b + 2. But from Lemma 5, we know b ≤ |w|+ |x| − 2.

Theorem 5.3. Let w, x ∈ Σ+. Then

sc(w∗x∗) ≤

{

|w| + 2|x|, if wx 6= wx;

d(g(|w|/d, |x|/d) + 1) + 2, if wx = xw and d = gcd(|w|, |x|) .

Proof. Similar to the proof of the previous theorem. Omitted.

6. Longest word omitted

In this section we assume that S = {x1, x2, . . . , xk} for finite words x1, x2, . . . , xk, and
S∗ is co-finite. We first obtain an upper bound on the length of the longest word not in S ∗.

Theorem 6.1. Suppose |xi| ≤ n for all i. Then if S∗ is co-finite, the length of the longest
word not in S∗ is < 2

2|Σ|−1(2n|Σ|n − 1).

In the rest of this section we show that the length of the longest word not in S ∗ can be
exponentially long in n. We need several preliminary results first.

We say that x is a proper prefix of a word y if y = xz for a nonempty word z. Similarly,
we say x is a proper suffix of y if y = zx for a nonempty word z.

Proposition 6.2. Let S be a finite set of nonempty words such that S∗ is co-finite, and
S∗ 6= Σ∗. Then for all x ∈ S, there exists x′ ∈ S such that x is a proper prefix of x, or vice
versa. Similarly, for all x ∈ S, there exists x′ ∈ S such that x is a proper suffix of x′, or
vice versa.

Proof. Let x ∈ S. Since S∗ 6= Σ∗, there exists v ∈ S∗. Since S∗ is co-finite, S∗ ∩ x∗v is
nonempty. Let i ≥ 0 be the smallest integer such that xiv ∈ S∗; then i ≥ 1, for otherwise
v ∈ S∗. Since xiv ∈ S∗, there exist y1, y2, . . . , yj ∈ S such that xiv = y1y2 . . . yj. Now
y1 6= x, for otherwise by cancelling an x from both sides, we would have xi−1v ∈ S∗,
contradicting the minimality of i. If |x| < |y1|, then x is a proper prefix of y1, while if
|x| > |y1|, then y1 is a proper prefix of x.

A similar argument applies for the result about suffixes.
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Next, we give two lemmas that characterize those sets S such that S∗ is co-finite, when
S is a set containing words of no more than two distinct lengths.

Lemma 6.3. Suppose S ⊆ Σm ∪ Σn, 0 < m < n, and S∗ is co-finite. Then Σm ⊆ S.

Proof. If S∗ = Σ∗, then S must contain every word x of length m, for otherwise S∗ would
omit x. So assume S∗ 6= Σ∗.

Let x ∈ Σm. Then S∗ ∩ xΣ∗ is nonempty, since S∗ is co-finite. Choose v such that
xv ∈ S∗; then there is a factorization xv = y1y2 · · · yj where each yi ∈ S. If y1 ∈ Σm, then
x = y1 and so x ∈ S. Otherwise y1 ∈ Σn. By Proposition 6.2, there exists z ∈ S such that
y1 is a proper prefix of z or vice versa. But since S contains words of only lengths m and
n, and y1 ∈ Σn, we must have z ∈ Σm, and z is a prefix of y1. Then x = z, and so x ∈ S.

Lemma 6.4. Suppose S ⊆ Σm ∪ Σn, with 0 < m < n < 2m and S∗ is co-finite. Then
Σl ⊆ S∗, where l = m|Σ|n−m + n − m.

Proof. Let x be a word of length l that is not in S∗. Then we can write x uniquely as

x = y0z0y1z1 · · · y|Σ|n−m−1z|Σ|n−m−1y|Σ|n−m , (6.1)

where yi ∈ Σn−m for 0 ≤ i ≤ |Σ|n−m, and zi ∈ Σ2m−n for 0 ≤ i < |Σ|n−m.
Now suppose that yiziyi+1 ∈ S for some i with 0 ≤ i < |Σ|n−m. Then we can write

x =




∏

0≤j<i

yjzj



 yiziyi+1




∏

i+1≤k≤|Σ|n−m

zkyk



 .

Note that |yjzj | = |zkyk| = m. From Lemma 6.3, each term in this factorization is in S.
Hence x ∈ S∗, a contradiction. It follows that

yiziyi+1 6∈ S for all i with 0 ≤ i < |Σ|n−m. (6.2)

Now the factorization of x in Eq. (6.1) uses |Σ|n−m + 1 y’s, and there are only |Σ|n−m

distinct words of length n − m. So, by the pigeonhole principle, we have yp = yq for some
0 ≤ p < q ≤ |Σ|n−m. Now define

u = y0z0 · · · yp−1zp−1

v = ypzp · · · yq−1zq−1

w = yqzq · · · y|Σ|n−m ,

so x = uvw. Since S∗ is co-finite, there exists a smallest exponent k ≥ 0 such that
uvkw ∈ S∗.

Now let uvkw = x1x2 · · · xj be a factorization into elements of S. Then x1 is a word of
length m or n. If |x1| = n, then comparing lengths gives x1 = y0z0y1. But by (6.2) we know
y0z0y1 6∈ S. So |x1| = m, and comparing lengths gives x1 = y0z0. By similar reasoning
we see that x2 = y1z1, and so on. Hence xj = y|Σ|n−m−1z|Σ|n−m−1y|Σ|n−m ∈ S. But this
contradicts (6.2).

Thus, our assumption that x 6∈ S∗ must be false, and so x ∈ S∗. Since x was arbitrary,
this proves the result.
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Now we can prove an upper bound on the length of omitted words, in the case where
S contains words of at most two distinct lengths.

Theorem 6.5. Suppose S ⊆ Σm ∪ Σn, where 0 < m < n < 2m, and S∗ is co-finite. Then
the length of the longest word not in S∗ is ≤ g(m, l) = ml−m−l, where l = m|Σ|n−m+n−m.

Proof. Any word in S∗ must be a concatenation of words of length m and n. If gcd(m,n) =
d > 1, then S∗ omits all words whose length is not congruent to 0 (mod d), so S∗ is not
co-finite, contrary to the hypothesis. Thus gcd(m,n) = 1.

By Lemmas 6.3 and 6.4, we have Σm ∪ Σl ⊆ S∗, where l = m|Σ|n−m + n − m. Hence
S∗ contains all words of length m and l; since gcd(m, l) = 1, S∗ contains all words of length
> g(m, l).

Remark. We can actually improve the result of the previous theorem to arbitrary m and n,
thus giving an upper bound in the case where S consists of words of exactly two distinct
lengths. Details will appear in a later version of the paper.

Corollary 6.6. Suppose S ⊆ Σm ∪ Σn, where 0 < m < n < 2m and gcd(m,n) = 1. Then
S∗ is co-finite if and only if Σm ⊆ S and Σl ⊆ S∗, where l = m|Σ|n−m + n − m.

Proof. If S∗ is co-finite, then by Lemmas 6.3 and 6.4 we get Σm ⊆ S and Σl ⊆ S∗. On
the other hand, if Σm ⊆ S and Σl ⊆ S∗, then since gcd(m, l) = 1, every word of length
> g(m, l) is contained in S∗, so S∗ is co-finite.

We need one more technical lemma.

Lemma 6.7. Suppose S ⊆ Σm ∪ Σn, where 0 < m < n < 2m, and S∗ is co-finite. Let τ
be a word not in S∗ where |τ | = n + jm for some j ≥ 0. Then S∗ ∩ (τΣm)i−1τ = ∅ for
1 ≤ i < m.

Proof. As before, since S∗ is co-finite we must have gcd(m,n) = 1. Define Li = (τΣm)i−1τ
for 1 ≤ i < m. We prove that S∗ ∩ Li = ∅ by induction on i.

The base case is i = 1. Then Li = L1 = {τ}. But S∗ ∩ {τ} = ∅ by the hypothesis
that τ 6∈ S∗.

Now suppose we have proved the result for some i, i ≤ m − 2, and we want to prove it
for i + 1. First we show that S∗ ∩ Σn−mLi = ∅. Assume that uw ∈ S∗ for some u ∈ Σn−m

and w ∈ Li. Then there is a factorization

uw = y1y2 · · · yt (6.3)

where yh ∈ S for 1 ≤ h ≤ t. Now |uw| = n − m + (n + jm + m)(i − 1) + n + jm =
n(i + 1) + m(ji + i− 2). Since 0 < i + 1 < m, m does not divide |uw|. Thus at least one of
the yh is of length n, for otherwise (6.3) could not be a factorization of uw into elements of
S. Let r be the smallest index such that |yr| = n. Then we have

uw =

all of length m
︷ ︸︸ ︷
y1y2 · · · yr−1

of length n
︷︸︸︷
yr yr+1 · · · yt.

Hence |y1y2 · · · yr| = m(r − 1) + n = mr + n − m. Since, by Lemma 6.3 we have Σm ⊆ S,
we can write y1 · · · yr = uz1 · · · zr, where zh ∈ S for 1 ≤ h ≤ r. Thus

uw = y1 · · · yr−1yryr+1 · · · yt

= uz1 · · · zryr+1 · · · yt;
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and, cancelling the u on both sides, we get w = z1 · · · zryr+1 · · · yt. But each term on the
right is in S, so w ∈ S∗. But this contradicts our inductive hypothesis that S∗ ∩ Li = ∅.

So now we know that
S∗ ∩ Σn−mLi = ∅; (6.4)

we’ll use this fact below.
Now assume that S∗ ∩ Li+1 6= ∅. Since Li+1 = τΣmLi, there exists α ∈ Σm and w ∈ Li

such that ταw ∈ S∗. Write ταw = g1g2 · · · gp, where gh ∈ S for 1 ≤ h ≤ p. We claim that
gh ∈ Σm for 1 ≤ h ≤ j + 1. For if not, let k be the smallest index such that |gk| = n. Then
by comparing lengths, we have

τ =

each of length m
︷ ︸︸ ︷
g1g2 · · · gk−1

of length n
︷︸︸︷
gk

each of length m
︷ ︸︸ ︷

g′1g
′
2 · · · g

′
j−k+1

for some g′1, g
′
2, . . . , g

′
j−k+1 ∈ Σm. But this shows τ ∈ S∗, a contradiction. We also have

gj+1 6∈ Σn, for otherwise τ = g1 · · · gjgj+1 ∈ S∗, a contradiction.
Now either gj+2 ∈ Σm or gj+2 ∈ Σn. In the former case, by comparing lengths, we

see that gj+3 · · · gp ∈ Σn−mLi. But this contradicts (6.4). In the latter case, by comparing
lengths, we see gj+3 · · · gp ∈ Li, contradicting our inductive hypothesis. Thus our assump-
tion that S∗ ∩ Li+1 6= ∅ was wrong, and the lemma is proved.

Now we are ready to give a class of examples achieving the bound in Theorem 6.5.
Without lose of generality, let Σ = {0, 1, · · · }. We define r(n, k, l) to be the word of length
l representing n in base k, possibly with leading zeros. For example, r(11, 2, 5) = 01011.
For integers 0 < m < n, we define

T (m,n) = {r(i, |Σ|, n − m)02m−nr(i + 1, |Σ|, n − m) : 0 ≤ i ≤ |Σ|n−m − 2}.

For example, over a binary alphabet we have T (3, 5) = {00001, 01010, 10011}.

Theorem 6.8. Let m,n be integers with 0 < m < n < 2m and gcd(m,n) = 1, and let
S = Σm ∪ Σn−T (m,n). Then S∗ is co-finite and the longest words not in S∗ are of length
g(m, l), where l = m|Σ|n−m + n − m.

Proof. First, let’s prove that S∗ is co-finite. Since Σm ⊆ S, by Corollary 6.6 it suffices to
show that Σl ⊆ S∗, where l = m|Σ|n−m + n − m.

Let x ∈ Σl, and write

x = y0z0y1z1 · · · y|Σ|n−m−1z|Σ|n−m−1y|Σ|n−m

where yi ∈ Σn−m for 0 ≤ i ≤ |Σ|n−m, and zi ∈ Σ2m−n for 0 ≤ i < |Σ|n−m.
If yiziyi+1 ∈ T (m,n) for all i, 0 ≤ i < |Σ|n−m, then since the base-k expansions are

forced to match up, we have yi = r(i, |Σ|, n − m) for 0 ≤ i < |Σ|n−m. But the longest such
word is of length m|Σ|n−m + n − 2m < l, a contradiction. Hence yiziyi+1 ∈ S for some i.
Thus

x =




∏

0≤j<i

yjzj



 yiziyi+1




∏

i+1≤k≤|Σ|n−m

zkyk



 .

Note that |yjzj | = |zkyk| = m. Since Σm ⊆ S, this gives a factorization of x ∈ S∗. Since x

was arbitrary, we have Σl ⊆ S∗.
Now we will prove that τ 6∈ S∗, where

τ := r(0, |Σ|, n − m)02m−nr(1, |Σ|, n − m)02m−n · · · r(|Σ|n−m − 1, |Σ|, n − m).
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Note that |τ | = |Σ|n−m(n − m) + (|Σ|n−m − 1)(2m − n) = m|Σ|n−m + n − 2m = l − m.
Suppose there exists a factorization τ = w1w2 · · ·wt, where wi ∈ S for 1 ≤ i ≤ t. Since
|τ | is not divisible by m, at least one of these terms is of length n. Let k be the smallest
index such that wk ∈ Σn. then τ = w1 · · ·wk−1wkwk+1 · · ·wt. By comparing lengths, we get
wi = r(i−1, |Σ|, n−m)02m−n for 1 ≤ i < k. Thus wk = r(k−1, |Σ|, n−m)02m−nr(k, |Σ|, n−
m) ∈ S ∩ Σn. But r(k − 1, |Σ|, n − m)02m−nr(k, |Σ|, n − m) ∈ T (m,n), a contradiction.
Thus τ 6∈ S∗.

We may now apply Lemma 6.7 to get that S∗ omits words of the form (τΣm)m−2τ ;
these words are of length (l − m + m)(m − 2) + l − m = lm − l − m = g(m, l).

Corollary 6.9. For each odd integer n ≥ 5, there exists a set of binary words of length at
most n, such that S∗ is co-finite and the longest word not in S∗ is of length Ω(n22n/2).

Proof. Choose m = (n + 1)/2 and apply Theorem 6.8.

Example 6.10. Let m = 3, n = 5, Σ = {0, 1}. Then S = Σ3 +Σ5−{00001, 01010, 10011}.
Then a longest word not in S∗ is 00001010011 000 00001010011, of length 25.

7. Number of omitted words

Recall that f(x1, x2, . . . , xk) is the classical function which, for positive integers x1, . . . , xk

with gcd(x1, . . . , xk) = 1, counts the number of integers not representable as a non-negative
integer linear combination of the xi. In this section we consider a generalization of this
function to the setting of a free monoid, replacing the integers xi with finite words in Σ∗,
and replacing the condition gcd(x1, . . . , xk) = 1 with the requirement that {x1, . . . , xk}

∗ be
co-finite.

We have already studied this in the case of a unary alphabet in Section 2, so let us
assume that Σ has at least two letters.

Theorem 7.1. Let x1, x2, . . . , xk ∈ Σ∗ be such that |xi| ≤ n for 1 ≤ i ≤ n. Let S =
{x1, x2, . . . , xk} and suppose S∗ is co-finite. Then

M = |Σ∗ − S∗| ≤
|Σ|q − 1

|Σ| − 1
,

where q = 2
2|Σ|−1(2n|Σ|n − 1).

Proof. From Theorem 6.1, we know that if S∗ is co-finite, the length of the longest omitted
word is < q, where q = 2

2|Σ|−1(2n|Σ|n − 1). The total number of words < q is 1+ |Σ|+ · · ·+

|Σ|q−1 = |Σ|q−1
|Σ|−1 .

We now give an example achieving a doubly-exponential lower bound on M.

Theorem 7.2. Let m,n be integers with 0 < m < n < 2m and gcd(m,n) = 1, and let
S = Σm ∪ Σn − U(m,n), where U is defined by

U(m,n) = {r(i, |Σ|, n − m)02m−nr(j, |Σ|, n − m) : 0 ≤ i < j ≤ |Σ|n−m − 1}.

Then S∗ is co-finite and S∗ omits at least 2|Σ|n−m
− |Σ|n−m − 1 words.

Proof. Similar to that of Theorem 6.8.
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