
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 37-48

Analyzing Asynchronous Programs
with Preemption

Mohamed Faouzi Atig, Ahmed Bouajjani, Tayssir Touili
LIAFA, CNRS and University Paris Diderot

France

{atig,abou,touili}@liafa.jussieu.fr

ABSTRACT. Multiset pushdown systems have been introduced by Sen and Viswanathan as an ad-
equate model for asynchronous programs where some procedure calls can be stored as tasks to be
processed later. The model is a pushdown system supplied with a multiset of pending tasks. Tasks
may be added to the multiset at each transition, whereas a task is taken from the multiset only when
the stack is empty. In this paper, we consider an extension of these models where tasks may be of dif-
ferent priority level, and can be preempted at any point of their execution by tasks of higher priority.
We investigate the control point reachability problem for these models. Our main result is that this
problem is decidable by reduction to the reachability problem for a decidable class of Petri nets with
inhibitor arcs. We also identify two subclasses of these models for which the control point reachabil-
ity problem is reducible respectively to the reachability problem and to the coverability problem for
Petri nets (without inhibitor arcs).

1 Introduction

In the last few year, a lot of effort has been devoted to the verification problem for models of

concurrent programs (see, e.g., [17, 7, 15, 19, 4, 3, 2, 23, 13, 1]). Multiset Pushdown Systems

(MPDS) have been introduced in [22] as an adequate model for asynchronous programs.

These programs constitute an important class of program widely used in the management of

concurrent interactions with the environment, e.g., in building networked software systems,

distributed systems, etc. In these programs, procedure calls can be either synchronous,

which means that the caller waits as usual until the callee returns, or asynchronous, which

means that the callee is rather stored as a task to be processed later. Repetitively, pending

tasks are chosen and executed until completion, which may generate other pending tasks.

The MPDS model consists of a pushdown system supplied with a multiset store con-

taining pending tasks. When (and only when) the stack is empty, a task is taken from the

multiset and put into the stack. Then, the system starts executing the task using push-

down transition rules which, in addition to usual push and pop operations (modeling syn-

chronous procedure calls) can generate new tasks (modeling asynchronous procedure calls).

Notice that in this model, both the stack and the multiset store are of unbounded sizes. The

control point reachability problem has been proved to be decidable in [22], and an efficient

procedure for deciding this problem has been developed in [12].

In this paper, we consider a wider class of programs where tasks may have different

priority levels (assuming that there is a finite number of such levels), and that at any point

in time tasks are executed according to their priority level ordering. This means that tasks

can be preempted by tasks of higher priority level: When a task γ of level i generates a
c© M.F. Atig, A. Bouajjani, T. Touili; licensed under Creative Commons License-NC-ND

FSTTCS 2008
IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1739

38 ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

task γ′ of level j > i, the task γ is preempted and must wait until the task γ′ as well as

all its descendants (i.e., tasks it created) of level greater than i are done. We consider that

in general the task γ′ may also have descendant of level less or equal to i; these tasks are

stored among the other pending tasks of their level for later execution.

To reason about this class of programs, we introduce the model of k-MPDS correspond-

ing to MPDS with k + 1 priority levels and preemption (i.e., 0-MPDS coincides with the

model of [22]). We address the control point/configuration reachability problem in these

models. Our main result is that both of these problems are decidable. The proof is not triv-

ial. The main difficulty to face is that a preempted task can be resumed only when there

are no pending tasks of higher level. This involves a kind of test to 0 of some counters

(which count the number of pending tasks at each priority level). We show that in fact these

reachability problems can be reduced to the reachability problem in a class of Petri nets with

inhibitor arcs shown to be decidable by Reinhardt in [21].

Then, we consider two classes of k-MPDS obtained by introducing some restrictions

either on the way priority levels are assigned to newly created tasks, or on the allowed kind

of communication through return values between asynchronous calls. The first subclass of

models we consider, called hierarchical MPDS, corresponds to systems where each created

task is assigned a priority level which is at least as high as the one of its caller. We show

that this inheritance-based policy of priority assignment leads to a model for which both the

control point and the configuration reachability problem can be reduced to the reachability

problem in Petri nets without inhibitor arcs.

The second subclass we consider, called restricted MPDS, corresponds to systems

where return values are taken into account (1) for synchronous calls at any level, (2) for

asynchronous calls at level 0, and (3) between tasks of different levels when a preemption

or a resumption occurs. This means that returns values by asynchronous calls within lev-

els greater than 0 are not taken into account (i.e., they are abstracted away), but these calls

may have an influential side effect by creating new tasks at any level, and this is taken into

account in our model. We prove that for the corresponding models to this class of pro-

grams the control point and the configuration reachability problems are reducible to the

corresponding problems in Petri nets using Parikh image computations of context-free lan-

guages. This means in particular that the control point problem (which the relevant problem

for proving safety properties) for these models can be reduced to the coverability problem

in Petri nets. As far as we know, our results are not covered by any existing result in the

literature.

2 Preliminaries
Words and Languages. Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set of all

words (resp. non empty words) over Σ, and by ǫ the empty word. A language is a (possibly

infinite) set of words. Given two disjoint finite alphabets Σ and Σ′ and a language L over

Σ ∪ Σ′, the projection of L on Σ, denoted LΣ, is the set of words a1 . . . an ∈ Σ∗ such that
(

Σ′∗a1Σ′∗a2Σ′∗ · · · Σ′∗anΣ′∗
)

∩ L 6= ∅.

Finite State Automata. A Finite State Automaton (FSA) is a tuple S = (S, Σ, δ, si, s f) where

S is a finite set of states, Σ is a finite alphabet, δ ⊆ S × (Σ ∪ {ǫ}) × S is a set of rules, si ∈ S

is an initial state, and s f ∈ S is a final state. Let L(S) denotes the language accepted by S .

M.F. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008 39

Multi-sets. Let Σ be a finite alphabet. A Multi-set over Σ is a function M : Σ → N. We

denote by M[Σ] the collection of all multi-sets over Σ and by ∅ the empty multi-set. Given

two multi-sets M and M′, we write M′ ≤ M iff M′(a) ≤ M(a) for every a ∈ Σ; and M + M′

(resp. M − M′ if M′ ≤ M) to denote the multi-set where (M + M′)(a) = M(a) + M′(a)
(resp. (M − M′)(a) = M(a) − M′(a)) for every a ∈ Σ. For a word w ∈ Σ∗, ⌊w⌋ is the multi-

set formed by counting the number of symbols occurring in w; and for a language L ⊆ Σ∗,

⌊L⌋ = {⌊w⌋ : w ∈ L}. A set M ⊆ M[Σ] is semi-linear iff there is a FSA S s.t. M = ⌊L(S)⌋.

Context-Free Grammars. A Context-Free Grammar (CFG) is a tuple G = (V, Σ, R, S)
where V is a set of non terminal symbols, Σ is an input alphabet, S ∈ V is the start symbol

(called also axiom), and R ⊆ V ×
(

V ∪ Σ
)∗

is a finite set of production rules. Given two

words u, v ∈
(

V ∪ Σ
)∗

, we write u ⊢G v iff ∃(α, β) ∈ R such that u = u1αu2 and v = u1βu2

for some u1, u2 ∈
(

V ∪ Σ
)∗

. We denote by ⊢∗
G the transitive and reflexive closure of ⊢G and

by L(G) = {w ∈ Σ∗ | S ⊢∗
G w} the context free language generated by G.

Labeled Pushdown Systems. A Labeled Pushdown System (LPDS) is a tuple P =
(Q, Σ, Γ, δ) where Q is a finite set of states, Σ is an input alphabet, Γ is a stack alphabet,

and δ is a finite set of transition rules of the form: qγ
a
→֒ q′w′ where q, q′ ∈ Q, γ ∈ Γ,

a ∈ Σ ∪ {ǫ}, and w ∈ Γ∗. A configuration of P is a tuple (q, σ, w) where q ∈ Q is a state,

σ ∈ Σ∗ is an input word, and w ∈ Γ∗ is a stack content. We define the binary relation ⇒P

between configurations as follows: (q, aσ, wγ) ⇒P (q′, σ, ww′) iff qγ
a
→֒ q′w′ ∈ ∆. The

transition relation ⇒∗
P is the reflexive transitive closure of ⇒P .

Given a LPDS P , a pair of states q1, q2 ∈ Q, and a stack symbol γ ∈ Γ, we define

LP(q1, q2, γ) as the set of words {σ ∈ Σ∗ | (q1, σ, γ) ⇒∗
P (q2, ǫ, ǫ)}. It is well-known that

LP(q1, q2, γ) is a context-free language, and conversely, every context-free language can be

defined as a trace language of some LPDS.

Finally, we recall a result due to Parikh [18] which will be used later in the paper.

PROPOSITION 1. Given a LPDS P = (Q, Σ, Γ, δ), two states q1, q2 ∈ Q, and a stack symbol
γ ∈ Γ, it is possible to construct a FSA S such that ⌊LP(q1, q2, γ)⌋ = ⌊L(S)⌋.

Petri Nets with Inhibitor arcs. A Petri net with inhibitor arcs is a pair N = (P, T) where P

is a finite set of places, and T ⊆ 2P × P∗ × P∗ is a finite set of transitions. Given a transition

t = (I, w, w′), we define the relation
t
→⊆ M[P] × M[P] as follows: W

t
→ W ′ iff W ≥ ⌊w⌋,

W ′ = W + ⌊w′⌋ − ⌊w⌋ and W(p) = 0 for every p ∈ I. We define the transition relation →N

on multi-sets over P by the union of the
t
→, i.e., →N=

⋃

t∈T
t
→. The transition relation →∗

N
is the reflexive transitive closure of →N .

A Petri net with weak inhibitor arcs is a Petri-net with inhibitor arcs (P, T) such that

there is a function f : P → N \ {0} such that ∀p, p′ ∈ P, f (p) ≤ f (p′) ⇒ (∀(I, w, w′) ∈
T, p′ ∈ I ⇒ p ∈ I). A Petri net can be seen as a subclass of Petri nets with inhibitor arcs

where all the transitions (I, w, w′) ∈ T are such that I = ∅. In this case, the transitions T can

be described in P∗ × P∗.

The reachability (resp. coverability) problem for a Petri net with inhibitor arcs N is the

problem of deciding for two given multi-sets W ′ and W whether W →∗
N W ′ (resp. there is a

multi-set W ′′ ≥ W ′ such that W →∗
N W ′′). Reachability and coverability problems for Petri

40 ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

nets with inhibitor arcs are undecidable [10]. Fortunately, they become decidable for Petri

nets Petri nets with weak inhibitor arcs.

THEOREM 2. Reachability and coverabilty problems for Petri nets with weak inhibitor arcs
are decidable [21]. Moreover, the reachability (resp. coverability) problem for Petri nets is
decidable and EXSPACE-hard (resp. EXSPACE-complete) [14, 20, 16, 5].

3 Multi-set Pushdown Systems with Preemption
3.1 Definition of the Model

We introduce multiset pushdown systems with preemptive task generation according to a

finite number of priority classes. The model of MPDS defined in [22] corresponds to the par-

ticular case where all tasks have the same priority (and therefore preemption never occurs).

DEFINITION 3. Let k be a natural number. A k-Multi-set Pushdown System with Preemp-
tion (k-MPDS) is a tuple A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) where Q is a finite set of states,
Γ =

⋃

0≤j≤k Γj is a finite set of multi-set symbols, q0 ∈ Q is the initial state, γ0 ∈ Γ0 is the

initial task, and the sets ∆ ⊆
⋃k

j=0

(

Q × Γj

)

×
(

Q × Γ∗
j × (Γ ∪ {ǫ})

)

and ∆′ ⊆ Q × Q × Γ

form together the transition rules.

For presentation matter, transitions in ∆ (resp. ∆′) will be represented respectively by

qγ →֒ q′w′
⊲ γ′ (resp. q →֒ q′ ⊳ γ′) with q, q′ ∈ Q, γ ∈ Γj, w′ ∈ Γ∗

j , and γ′ ∈ Γ for some

j ∈ {0, . . . , k}. Intuitively, rules of the form qγ →֒ q′w′
⊲ γ′ correspond, in addition to the

usual pushdown operations (popping γ and then pushing w′ while changing the control

state from q to q′), to generate the task γ′. Rules of the form q →֒ q′ ⊳ γ correspond to move

the control state from q to q′ and to start executing the pending task γ if the priority level of

the topmost symbol in the stack is strictly less than the priority level of γ.

A configuration of A is a tuple (q, w, M0, . . . , Mk) where q ∈ Q, w ∈ Γ∗
0 × · · · × Γ∗

k ,

and Mj ∈ M[Γj], 0 ≤ j ≤ k, is a multiset representing the waiting tasks of priority j. The

content of the stack w is always of the form w0w1 . . . wi where for every j ∈ {0, . . . , i}, wj ∈
Γ∗

j is the tasks of priority j that are waiting in the stack. The initial configuration of A

is (q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅). The transition relation ⇒A is defined as the union of the binary

relations →0≤j≤k, →֒0≤j≤k, and ;0≤j<k defined as follows:

• Move with task creation (→֒j): (q, wγj, M0, . . . , Mj, ∅, . . . , ∅) →֒j (q′, ww′, M0, . . . , Mi +
⌊γi⌋, . . . , Mj, ∅, . . . , ∅) iff (qγj →֒ q′w′

⊲ γi) ∈ ∆, γj ∈ Γj, γi ∈ Γi ∪ {ǫ}, and i ≤ j.

Such transitions correspond to move the control state from q to q′, pop γj from the top

of the stack, push w′ into the stack, and generate the task γi.

• Move with task preemption (;j): (q, wγj, M0, . . . , Mj, ∅, . . . , ∅) ;j (q′, ww′γi, M0, . . . ,

Mj, ∅, . . . , ∅) iff (qγj →֒ q′w′
⊲ γi) ∈ ∆, γj ∈ Γj, γi ∈ Γi, and i > j. Such transitions

correspond to move the control state from q to q′, pop γj from the top of the stack,

push w′ into the stack, and to start executing the task γi.

• Treatment of a new task (→j): (q, w, M0, . . . , Mj + ⌊γj⌋, ∅, . . . , ∅) →j (q′, wγj, M0,

. . . , Mj, ∅, . . . , ∅) iff (q →֒ q′ ⊳ γi) ∈ ∆′, γj ∈ Γj, and w ∈ Γ∗
0 × · · · × Γ∗

j−1. Such

transitions correspond to move the control state from q to q′ and to start executing

the pending task γj if its priority level is strictly greater than the priority level of the

topmost symbol in the stack.

M.F. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008 41

Finally, let ⇒∗
A denotes the reflexive and transitive closure of the binary relation ⇒A.

3.2 Reachability Problems

The configuration (resp. control state) reachability problem is to determine, given

a k-MPDS A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) and a configuration (q, w, M0, . . . , Mk)
(resp. a control state q), whether (q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅) ⇒∗

A (q, w, M0, . . . , Mk) (resp.

(q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅) ⇒∗
A (q, w′, M′

0, . . . , M′
k) for some w′ and M′

0, . . . , M′
k). The empty

stack configuration (resp. control state) reachability problem is to determine, given a k-

MPDS A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) and a control state q, whether (q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅)
⇒∗

A (q, ǫ, ∅, . . . , ∅) (resp. (q0, ǫ, ⌊γ0⌋, ∅, . . . , ∅) ⇒∗
A (q, ǫ, M′

0, ∅, . . . , ∅) for some M′
0).

LEMMA 4. The configuration (resp. control state) reachability problem is polynomially re-
ducible to empty stack configuration (resp. control state) reachability problem for k-MPDSs
and vice-versa.

From now, we sometimes use configuration (resp. control state) reachability problem

to denote the empty stack configuration (resp. control state) reachability problem.

3.3 Sub-classes of Multi-set Pushdown Systems with preemption

Two subclasses of our models can be defined by restricting either (1) the way the priorities

are assigned to newly created tasks, or (2) the way tasks returns values after their executions.

The first class we define, called Hierarchical k-MPDS, corresponds to systems where

created tasks inherit is a priority which at least as high as the one of their parents.

DEFINITION 5. A Hierarchical k-MPDS (k-HMPDS) A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) is a

k-MPDS such that ∆ ⊆
⋃k

j=0

(

Q × Γj

)

× (Q × Γ∗
j × (

⋃

l≥j Γl ∪ {ǫ})
)

.

The second class we consider, called Restricted k-MPDS, corresponds to systems where

communication between tasks through shared memory can only happen (1) for tasks of level

0, or (2) between tasks at different levels (at the preemption and resumption operations). In

other words, intra-level communication cannot occur between asynchronous tasks of level

greater or equal to 1 (but value passing at synchronous procedure calls and returns is not

restricted). Formally, the restriction we consider can be modeled by the fact that for each

level j ≥ 1, there is a designated state qj such that tasks of level j can be treated only if the

control state of the system is qj.

DEFINITION 6. A Restricted k-MPDS (k-RMPDS) is a tuple R = (Q, Γ0, . . . , Γk, ∆, ∆′, q0,

. . . , qk, γ0) where A = (Q, Γ0, . . . , Γk, ∆, ∆′, q0, γ0) is an k-MPDS, q1, . . . , qk ∈ Q is a fixed

sequence of states, and ∆′ ⊆ (Q × Q × Γ0) ∪ (
⋃k

j=1

(

{qj} × {qj} × Γj

)

).

4 0-MPDSs vs Petri nets

In the case of 0-MPDS, the decidability of the control state reachability problem has been

shown to be decidable in [22]. We present hereafter an alternative proof based on a reduction

of this problem to the coverability problem for Petri nets. We show actually that 0-MPDS can

be simulated by Petri nets and vice-versa (in some sense that will be made clear later). Our

principal aim by showing this relationship between the two models is to introduce smoothly

42 ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

ideas and constructions which constitute the basis of the constructions presented in the next

sections that are our main contributions. Actually, the reduction we show provides also

a more robust proof principle, since it allows us to establish the decidability not only for

control state reachability problem but also for configuration reachability problem.

4.1 From 0-MPDSs to Petri nets

We prove that every 0-MPDS can be simulated by a Petri net in the following sense:

THEOREM 7. Given a 0-MPDS A = (Q, Γ0, ∆, ∆′, q0, γ0), it is possible to construct a Petri net
N such that (q0, ǫ, ⌊γ0⌋) ⇒∗

A (q, ǫ, M) iff ⌊q0⌋ + ⌊γ0⌋ →∗
N M + ⌊q⌋.

Proof (Sketch): First, we observe that for any run (q0, ǫ, {γ0}) ⇒∗
A (q, ǫ, M) of A there are

q0, q′0, . . . , qn, q′n ∈ Q, M1, . . . , Mn ∈ M[Γ0], and γ0, . . . , γn ∈ Γ0 such that:

(q0, ǫ, ⌊γ0⌋) →0 (q′0, γ0, ǫ) →֒∗
0 (q1, ǫ, M1 + ⌊γ1⌋) →0 (q′1, γ1, M1) →֒∗

0 (q2, ǫ, M2 + ⌊γ2⌋) →0

· · · →֒∗
0 (qn−1, ǫ, Mn−1 + ⌊γn−1⌋) →0 (q′n−1, γn−1, Mn−1) →֒∗

0 (qn, ǫ, Mn + ⌊γn⌋) →0

(q′n, γn, Mn) →֒∗
0 (q, ǫ, M)

(Notice that ;0 is never used since there are no preemptions for 0-MPDS models.)

Then, the first step of the reduction is to show using Proposition 1 that, for every p, p′ ∈
Q and γ ∈ Γ0, the set M(p, p′, γ) = {M′ | (p, γ, ∅) →֒∗

0 (p′, ǫ, M′)} is a semi-linear set.

In fact, a transition rule p1γ1 →֒ p2w ⊲ γ2 of ∆ (and therefore of →֒0) can be seen as a

transition rule p1γ1

γ2
→֒ p2w of the LPDS P = (Q, Γ0, Γ0, δ). Thus, a word in the trace

language LP(p, p′ , γ) corresponds to the set of waiting tasks added to the multi-set during

the execution of γ to its completion, i.e. ⌊LP (p, p′, γ)⌋ = M(p, p′, γ). Hence, it is possible to

construct a finite state automaton S(p,p′,γ) = (S(p,p′,γ), Γ0, δ(p,p′,γ), si
(p,p′,γ), s

f

(p,p′,γ)
) such that

⌊L(S(p,p′,γ))⌋ = M(p, p′, γ).

In the second step, we prove that every run of A of the form: (p1, ǫ, ⌊γ⌋) →0

(p2, γ, ∅) →֒∗
0 (p3, ǫ, M′) can be simulated by a computation of the Petri net N(p1,p3,γ) =

(P(p1,p3,γ), T(p1,p3,γ)) such that P(p1,p3,γ) = Q ∪ (
⋃

p2∈Q S(p2,p3,γ))∪ Γ0 and T(p1,p3,γ) is the small-

est set of transitions containing:

• Initialization: A transition (p1γ, si
(p2,p3,γ)) for every transition rule (p1 →֒ p2 ⊳ γ) in

∆′. Such a transition takes a token from each of the places p1 and γ and puts a token

in the place si
(p2,p3,γ). This allows to simulate the move (p1, ǫ, ⌊γ⌋) →0 (p2, γ, ∅).

• Simulation of S(p2,p3,γ): A transition (s, s′γ′) (resp. (s, s′)) for every (s, γ′, s′) (resp.

(s, ǫ, s′)) in δ(p2,p3,γ). Such transitions allow the simulation of computation of the form

(p2, γ, ∅) →֒∗
0 (p3, ǫ, M′).

LEMMA 8. Given a multi-set M′ ∈ M[Γ0], states p1, p2, p3 ∈ Q, and a task γ ∈ Γ0,

(p1, ǫ, ⌊γ⌋) →0 (p2, γ, ∅) →֒∗
0 (p3, ǫ, M′) iff ⌊p1⌋ + ⌊γ⌋ →∗

N(p1,p3,γ)
M′ + ⌊s

f

(p2,p3,γ)
⌋.

Since any run that reaches a configuration (q, ǫ, M) can be decomposed as a sequence

of runs of the form: (p1, ǫ, ⌊γ⌋) →0 (p2, γ, ∅) →֒∗
0 (p3, ǫ, M′), then (q0, ǫ, ⌊γ0⌋) ⇒∗

A (q, ǫ, M)
can be simulated by the following Petri net N = (P, T) where: P =

⋃

p1,p3∈Q, γ∈Γ0
P(p1,p3,γ)

is a finite set of places, and T is the smallest set of transitions such that: T(p1,p3,γ) ⊆ T

and (s
f

(p2,p3,γ)
, p3) is in T for every p1, p2, p3 ∈ Q and γ ∈ Γ0. Hence, Theorem 7 follows

immediately from the following lemma:

M.F. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008 43

LEMMA 9. Given a state q ∈ Q and a multi-set M ∈ M[Γ0], (q0, ǫ, ⌊γ0⌋) ⇒∗
A (q, ǫ, M) iff

W ′ = M + ⌊q⌋ is reachable by the Petri net N from W = ⌊γ0⌋ + ⌊q0⌋.
2

The following fact follows immediately from Proposition 4 and Theorem 7.

COROLLARY 10. Configuration and control state reachability for 0-MPDSs are decidable.

4.2 From Petri nets to 0-MPDSs

We show that every Petri net can be simulated by a 0-MPDS in the following sense:

THEOREM 11. Given a Petri net N = (P, T), it is possible to construct a 0-MPDS A with a
special state q0 such that W →∗

N W ′ iff (q0, ǫ, W) ⇒∗
A (q0, ǫ, W ′).

This can be done by adapting the construction given in [22] to prove the lower bound

on the complexity for control state reachability problem for 0-MPDS.

By Theorem 11 and the fact that the set of reachable multi-sets for Petri nets is in general

not semi-linear [11], it is possible to show that:

COROLLARY 12. The set of reachable multi-set configurations {M | (q0, ǫ, ⌊γ0⌋) ⇒∗
A

(q, ǫ, M)} by an 0-MPDS A = (Q, Γ0, ∆, ∆′, q0, γ0) is in general not semi-linear.

5 Reachability Analysis for k-MPDSs

In this section, we prove that the configuration (resp. the control state) reachability problem

for k-MPDSs is decidable by reduction to the reachability (resp. coverability) problem for

Petri nets with weak inhibitor arcs.

THEOREM 13. Configuration and control state reachability are decidable for k-MPDSs.

Proof (Sketch): We consider here that k ≥ 1 (since k = 0 has been already considered in

the previous section). To simplify the presentation of the proof, we consider first the case of

k = 1. The generalization to any k ≥ 1 is given later.

Case k = 1: Let A = (Q, Γ0, Γ1, ∆, ∆′, q0, γ0) be an 1-MPDS. Let ⇒1=→1 ∪ →֒1 and

⇒0=;0 ∪ ⇒1 ∪ →֒0 be two transition relations. Thanks to Proposition 4, we con-

sider w.l.o.g configurations of the form (q, ǫ, M, ∅) with M ∈ M[Γ0]. We observe that

(q, ǫ, M, ∅) is reachable by A iff there are some q0, q′0, q1, . . . , qn ∈ Q, γ0, . . . , γn−1 ∈ Γ0,

and M1, . . . , Mn ∈ M[Γ0] such that qn = q, Mn = M, and:

Path 0: (q0, ǫ, ⌊γ0⌋, ∅) →0 (q′0, γ0, ∅, ∅) ⇒∗
0 (q1, ǫ, M1 + ⌊γ1⌋, ∅) →0 (q′1, γ1, M1, ∅) ⇒∗

0

(q2, ǫ, M2 + ⌊γ2⌋, ǫ) →0 (q′2, γ2, M2, ∅) · · · (q′n−1, γn−1, Mn−1, ∅) ⇒∗
0 (qn, ǫ, Mn, ∅)

Indeed, any computation of A of the form (p, γ, ∅, ∅) ⇒∗
0 (p′, ǫ, N, ∅) for some p, p′ ∈

Q, γ ∈ Γ0, and N, N′ ∈ M[Γ0], there are p′0, p0, p′′1 , p′1, . . . , p′′m ∈ Q, γ′
0, . . . , γ′

m−1 ∈ Γ1,

w′
0, w1, w′

1, . . . , wm ∈ Γ∗
0, and N′

0, N1, N′
1, . . . , Nm ∈ M[Γ0] such that:

Path 1: (p, γ, ∅, ∅) →֒∗
0 (p′0, w′

0, N′
0, ∅) ;0 (p0, w1γ′

0, N′
0, ∅) ⇒∗

1 (p′′1 , w1, N1, ∅) →֒∗
0

(p′1, w′
1, N′

1, ∅) ;0 (p1, w2γ′
1, N′

1, ∅) ⇒∗
1 (p′′2 , w2, N2, ∅) →֒∗

0 (p′2, w′
2, N′

2, ∅) ;0

(p2, w3γ′
2, N′

2, ∅) ⇒∗
1 (p′′3 , w3, N3, ∅) →֒∗

0 · · · ⇒∗
1 (p′′m, wm, Nm, ∅) →֒∗

0 (p′, ǫ, N, ∅)

Then the proof is structured as follows:

44 ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

• For every g, g′ ∈ Q and γ′ ∈ Γ1, we construct a Petri net N ′
(g,g′,γ′) with a spe-

cial place c counting the number of pending tasks of priority 1, such that the set of

reachable multi-sets when the place c is empty is precisely M1(g, g′, γ′) = {N′ ∈
M[Γ0] | (g, γ′ , ∅, ∅) ⇒∗

1 (g′, ǫ, N′, ∅)}.

• For every p, p′ ∈ Q and γ ∈ Γ0, we construct a Petri net N(p,p′,γ) with weak in-

hibitor arcs that characterizes the set M0(p, p′, γ) = {N ∈ M[Γ0] | (p, γ, ∅, ∅) ⇒∗
0

(p′, ǫ, N, ∅)}. The Petri net N(p,p′,γ) simulates the runs of the form Path 1 by delegat-

ing the ⇒∗
1 segments of these runs to the networks N ′

(g,g′,γ′) introduced above.

The difficulties to face in doing that are: (1) transitions ;0 are not always taken when

the stack is empty (since at level 1 the context of the interrrupted task of level 0 is

still present in the stack), and (2) the effect of ⇒∗
1 computations on the multiset of

pending tasks of level 0 must be computed precisely and this should be done only

for such computations that reach at their end a configuration where the multiset of

pending tasks of level 1 is empty. Since computations at level 1 can be as general as

computations of any Petri net, the latter problem needs to be addressed using some

notion of place emptyness testing. Then, inhibitor arcs are used to check at the end of

⇒∗
1 computations that the place c of N ′

(g,g′,γ′) is empty.

To tackle the first issue, the idea is to reason about the whole computations of level

0 by inserting instead of the level 1 segments a tuple (g1, g2, γ′) ∈ Q × Q × Γ1 corre-

sponding to the guess that an interruption by a task γ′ of level 1 is able to bring the

control state from g1 to g2. So, we build a pushdown system labelled by the generated

task of level 0 as well as the guessed tuples (g1, g2, γ′) defined as above. Then, the

key observation is that the information represented in the traces of this LPDS can be

represented by the traces of a finite state automata S . Indeed, (1) like in the previous

section, the ordering between tasks generated by level 0 computations between two

given control states does not need to be kept, and (2) it is sufficient to know for each

Path 1 computation how many times each guessing pair (g1, g2, γ′) occurs; the consis-

tency of these occurrences within the computation (i.e., these guesses can indeed be

inserted in the computation) can be checked using a finite control.

Then, to simulate the computations of the form Path 1, the Petri net N(p,p′,γ) simulates

in parallel the evolution of the control states and the finite-state automaton S by (1)

generating a level 0 task whenever the transition of the automaton is labelled by this

task, and (2) simulating the network N ′(g1, g2, γ′) whenever the transition of S is

labelled by (g1, g2, γ′) where γ′ is a level 1 task (which is supposed to be the one

which preempts the current level 0 task).

• The collection of all the networks N(p,p′,γ) with p, p′ ∈ Q and γ ∈ Γ0 are used to

build a network N0 with weak inhibitor arcs that simulates all the runs that reaches a

configuration of the form (q, ǫ, M, ∅) (i.e. computations of the form Path 2).

Computing N ′
(g,g′,γ′): Let g, g′ ∈ Q be a pair of states and γ′ ∈ Γ1 be a task of prior-

ity 1. Then, any computation of the form (g, γ′, ∅, ∅) ⇒∗
1 (g′, N′, M′) can be seen as

a computation of the 0-MPDS A1 which mimics the execution of A over tasks of prior-

ity 1. Formally, A1 is defined by the tuple (Q, Γ0 ∪ Γ1, ∆1, ∆′
1, g, γ′) where ∆1 = ∆ and

∆′
1 = ∆′ ∩ (Q×Q× Γ1). Thus, (g, γ′, ∅, ∅) ⇒∗

1 (g′, N′, M′) iff (g, γ′, ∅) ⇒∗
A1

(g′, ǫ, N′ + M′).

M.F. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008 45

Then, by adapting the construction given in the previous section (see Theorem 7) to A1, we

can construct a Petri net N ′
(g,g′,γ′) = (P′

(g,g′,γ′), T′
(g,g′,γ′)) which has two special places c and

tg′ . The place c is used to count the number of pending task of priority 1. A token in the

place tg′ means that the guessed control state when all tasks of priority level 1 are done is

g′. The relation between A and N ′
(g,g′,γ′) is given by the following lemma:

LEMMA 14. Let g, g′ ∈ Q be a pair of states and γ′ ∈ Γ1 be a task of priority 1. Then,
(g, γ′, ∅, ∅) ⇒∗

1 (g′, ǫ, N′, ∅) iff ⌊g⌋ + ⌊γ′⌋ + ⌊tg′⌋ →
∗
N ′

(g,g′,γ′)
⌊g′⌋ + ⌊tg′⌋ + N′.

Computing N(p,p′,γ): For every p, p′ ∈ Q and γ ∈ Γ0, we construct a Petri net N(p,p′,γ)

with weak inhibitor arcs that simulates computations of A of the form: (p, ǫ, ⌊γ⌋, ∅) →0

(p′′, γ, ∅, ∅) ⇒∗
0 (p′, ǫ, M′, ∅). Then, let P ′ = (Q, Σ′, Γ0, δ′) be a LPDS with Σ′ = {(g, g′, γ′) |

g, g′ ∈ Q, γ′ ∈ Γ1} ∪ Γ0. For every g, g′ ∈ Q and γ′ ∈ Γ1, (g, g′, γ′) is a new symbol which

represents the set M1(g, g′ , γ′) (we have showed in the previous paragraph how these sets

can be characterized by the Petri nets N ′
(g,g′,γ′)). The set δ′ is defined as the smallest set of

transition rules such that:

• If g1γ1 →֒ g2w′
⊲ γ2 ∈ ∆, γ1 ∈ Γ0, and γ2 ∈ Γ0 ∪ {ǫ}, then g1γ1

γ2
→֒ g2w′ ∈ δ′;

• If g1γ1 →֒ g2w′
⊲ γ′ ∈ ∆, γ1 ∈ Γ0, and γ2 ∈ Γ1, then g1γ1

(g2,g3 ,γ2)
→֒ g3w′ ∈ δ′ for every

g3 ∈ Q. Such a transition rule records in its label the fact that a guess is made at this

point of the computation: The level 1 task γ2 interrupts the level 0 task γ0, and then

the level 1 computation of the form (g2, γ2, ∅, ∅) ⇒∗
1 (g3, ǫ, N, ∅) brings the control

state from g2 to g3.

Thanks to Proposition 1, it is possible to construct a finite state automaton S(p′′,p′,γ) =

(S(p′′,p′,γ), Σ′, δ(p′′,p′,γ), si
(p′′,p′,γ), s

f

(p′′,p′,γ)
) such that ⌊L(S(p′′,p′,γ))⌋ = ⌊LP ′(p′′, p′, γ)⌋. Then,

we can define a Petri net with weak inhibitor arcs N(p,p′,γ) = (P(p,p′,γ), T(p,p′,γ)) using the set

of automata S(p′′,p′,γ) as follows:

• P(p,p′,γ) = {⊤,⊥} ∪ P ∪ (
⋃

p′′∈Q S(p′′,p′,γ)) is a finite set of places where P =
⋃

g,g′∈Q, γ′∈Γ1
P′

(g,g′,γ′). The places ⊤ and ⊥ are flags that indicate if the simulation of

S(p′′,p′,γ) has been initiated or not. When the simulation starts, the place ⊤ is emp-

tied and a token is put in ⊥. This allows to ensure that the segments →0 ◦ ⇒∗
0 are

simulated in a serial manner and do not interfer.

• The set of transitions T(p,p′,γ) is the set of the following transitions:

– Initialization: A transition (∅,⊤pγ,⊥si
(p′′,p′,γ)) for each transition rule p →֒ p′′ ⊳

γ in ∆′. This transition simulates the move (p, ǫ, ⌊γ⌋, ∅) →0 (p′′, γ, ∅, ∅).

– Simulation of S(p′′,p′,γ): A transition rule (∅,⊥s,⊥s′γ′) (resp. (∅,⊥s,⊥s′)) for

each each transition (s, γ′, s′) (resp. (s, ǫ, s′)) in δ(p′′,p′,γ) with γ′ ∈ Γ0. A transition

rule (∅,⊥s, g tg′ γ′ s′) for each transition (s, (g, g′ , γ′), s′) of S(p,p′,γ) .

– Simulation of N ′
(g,g′,γ′): The set of transitions T′

(g,g′,γ′) of the network N ′
(g,g′,γ′) de-

fined previously for each g, g′ ∈ Q and γ′ ∈ Γ1.

– Checking the guessed tuple (g, g′, γ′): A transition rule (c, g′tg′ ,⊥) for each g′ ∈ Q.

This rule checks if there are no more tasks of level 1 (i.e. ⌊c⌋ = ∅) and that the

control state at the resumption of the preempted task of level 0 is g′.

46 ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

LEMMA 15. (p, ǫ, ⌊γ⌋, ∅) →0 (p′′, γ, ∅, ∅) ⇒∗
0 (p′, ǫ, M′, ∅) iff the multi-set W ′ = M′ +

⌊s
f

(p′′,p′,γ)
⌋ + ⌊⊥⌋ is reachable by N(p,p′,γ) from W = ⌊⊤⌋ + ⌊γ⌋ + ⌊p⌋.

Computing the Petri net N0: We observe that any run (q0, ǫ, {γ0}, ∅) ⇒∗
A (q, ǫ, M, ∅) of

A can be simulated by a sequence of executions of the Petri nets N(p,p′,γ) with p, p′ ∈ Q and

γ ∈ Γ0. This can be obtained by defining the Petri net N0 = (P0, T0) as follows:

• P0 is a finite union of places P(p,p′,γ) for every p, p′ ∈ Q and γ ∈ Γ0.

• T0 is the smallest set of transitions satisfying the following conditions:

– T(p,p′,γ) ⊆ T0 for every p, p′ ∈ Q and γ ∈ Γ0,

– (∅,⊥s
f

(p′′,p′,γ)
,⊤p′) ∈ T0 for every p′′, p′ ∈ Q and γ ∈ Γ0, which makes possible

the iteration of the executions of Petri nets of the form N(p,p′,γ).

Then, Theorem 13 follows immediately from the following lemma:

LEMMA 16. (q0, ǫ, ⌊γ0⌋, ∅) ⇒∗
A (q, ǫ, M, ∅) iff ⌊γ0⌋ + ⌊q0⌋ + ⌊⊤⌋ →∗

N0
M + ⌊q⌋ + ⌊⊤⌋.

General Case: This construction can be extended to the case where we have an arbitrary

number k of priorities. In this case, we compute a Petri net with weak inhibitor arcs as

follows: we need k places c1, . . . , ck, where ci counts the number of tasks in the multiset

of level i. Then, these places can be ordered as follows: c1 > c2 > · · · > ck. Indeed, in

the computed Petri net with inhibitor arcs, we need to check whether ci = 0 only if the

other counters cj, j ≥ i are also null. This ensures that the network we construct is a weak

inhibitor arcs Petri net. 2

6 Reachability Analysis for k-RMPDSs and k-HMPDSs

6.1 Reachability Analysis of Restricted k-MPDSs

In this section, we prove that the configuration and control state reachability problems for

k-RMPDSs are decidable and reducible to the same problems for 0-MPDSs. In particular,

we show that the control state reachability problem for k-RMPDSs is reducible to the cover-

ability problem for Petri nets. This is based on the fact that it is possible to prove in this case

that the sets M1(g, g′, γ′) = {N′ ∈ M[Γ0] | (g, γ′, ∅, ∅) ⇒∗
1 (g′, ǫ, N′ , ∅)} are semi-linear

and can be computed as Parikh images of context free languages. Notice that for the case of

(unrestricted) k-MPDS these sets are not semi-linear in general (see Corrollary 12).

THEOREM 17. For any k > 0, control state and configuration reachability problems for
k-RMPDSs are reducible to the same problems for some (k − 1)-RMPDSs.

Proof (Sketch): Let us fix a 1-RMPDS R = (Q, Γ0, Γ1, ∆, ∆′, q0, q1, γ0) and its transition re-

lations ⇒1=→1 ∪ →֒1 and ⇒0=;0 ∪ ⇒1 →֒0. Given g, g′ ∈ Q and γ′ ∈ Γ1, we con-

struct a context free grammar G(g,g′,γ′) such that ⌊L(G(g,g′,γ′))⌋ = M1(g, g′, γ′) = {N′ ∈
M[Γ0] | (g, γ′ , ∅, ∅) ⇒∗

1 (g′, ǫ, N′, ∅)}. Indeed, let us observe that such computations can be

decomposed as follows:

(g, γ′, ∅, ∅) →֒∗
1 (q1, ǫ, N1

0 , N1
1 + ⌊γ1⌋) →1 (q1, γ1, N1

0 , N1
1) →֒∗

1 (q1, ǫ, N2
0 , N2

1 + ⌊γ2⌋) →1

(q1, γ2, N2
0 , N2

1) →֒∗
1 · · · →֒∗

1 (q1, ǫ, Nn
0 , Nn

1 + ⌊γn⌋) →1 (q1, γn, Nn
0 , Nn

1) →֒∗
1 (g′, ǫ, N′, ∅)

Then, given g1, g2 ∈ Q and γ ∈ Γ1, it is possible to characterize the set of com-

putations (g1, γ, ∅, ∅) →֒∗
1 (g2, ǫ, N0, N1) by a CFG G′

〈g1,g2,γ〉 such that ⌊L(G′
〈g1,g2 ,γ〉)⌋ =

M.F. ATIG, A. BOUAJJANI, T. TOUILI FSTTCS 2008 47

{N0 + N1 | (g1, γ, ∅, ∅) →֒∗
1 (g2, ǫ, N0, N1)} using a similar construction to the characteriza-

tion of →֒∗
0 computations in 0-MPDS (see proof of Theorem 7). Now, we use the set of CFGs

G′
〈g,g′,γ′〉, G′

〈g,q1,γ′〉, G′
〈q1,q1,γ〉, and G′

〈q1,g′,γ〉 to built G〈g,g′,γ′〉 as follows. Every computation

(g1, ǫ, ∅, ⌊γ⌋) →1 (g1, γ, ∅, ∅) →֒∗
1 (g2, ǫ, N0, N1) is simulated by G(g,g′,γ′): γ is rewritten by

the axiom of G′
〈g1,g2,γ〉, and then rules of G′

〈g1,g2,γ〉 are applied. This can be done because the

processing order of pending tasks of level 1 is not relevant due to the restriction in RMPDS

models (two pending tasks of level 1 cannot communicate).

By Proposition 1, we can construct a finite state automaton S(g,g′,γ′) such that

⌊L(S(g,g′,γ′))⌋ = ⌊L(G(g,g′,γ′))⌋ = M1(g, g′, γ′). Then, we construct a 0-MPDS A′

over the alphabet Γ0 that mimics any computation of R over tasks of priority 0, i.e.

g1γ1 →֒ g2w′
⊲ γ2 (resp. g1 →֒ g2 ⊳ γ1) is a rule of A′ iff g1γ1 →֒ g2w′

⊲ γ2 (resp.

g1 →֒ g2 ⊳ γ1) is a transition rule of R and γ1, γ2 ∈ Γ0 ∪ {ǫ}. On the other hand, any

computation (g, γ′, ∅, ∅) ⇒∗
1 (g′, ǫ, N′, ∅), with g, g′ ∈ Q and γ′ ∈ Γ1, can be simulated by

a computations of A′ that: (1) moves the control state from g to the initial state of S(g,g′,γ′);

(2) each transition (s, γ′′, s′) of S(g,g′,γ′) by rule that moves the control state from s to s′

and creates the task γ′′; and (3) changes the control state from the final state S(g,g′,γ′) to

g′. Hence, (q0, ǫ, ⌊γ0⌋, ∅) ⇒∗
R (q, ǫ, M, ∅) iff (q0, ǫ, ⌊γ0⌋) ⇒∗

A′ (q, ǫ, M) for any q ∈ Q and

M ∈ M[Γ0]. 2

6.2 Reachability Analysis of Hierarchical k-MPDSs

In this section, we study the reachability problem for Hierarchical k-MPDS. We show

that control state and configuration reachability problems for k-HMPDSs are decidable us-

ing reachability for Petri nets without inhibitor arcs. Here, we use the fact that the set

M1(g, g′, γ′) = {N′ ∈ M[Γ0] | (g, γ′ , ∅, ∅) ⇒∗
1 (g′, ǫ, N′, ∅)} is empty. Indeed, in that case,

the only relevant information about level 1 computation segments when simulating Path 1

computations is whether, given two states g and g’ and a task γ ∈ Γ1, it is possible to have

a run from gγ which reaches a configuration with control state g′ where no level 1 tasks

are left. This can be solved as a reachability problem in a Petri net simulating the level 1

computations of a configuration where there are no pending tasks of priority 1.

THEOREM 18. For any k ≥ 0, the control state and configuration reachability problems for
(k)-HMPDSs are reducible to the corresponding problems for (k − 1)-HMPDSs using the
reachability problem for Petri nets.

7 Conclusion

We have investigated the reachability problem for a model of concurrent programs where

tasks (1) can be dynamically created, (2) may have different levels of priority, and (3) may

be preempted by tasks of higher priority level. We have shown that this problem is difficult

but decidable. Our proof is based on a reduction to the reachability problem in a class

of Petri nets with inhibitor arcs. We have also identified a class of models for which the

(control point) reachability problem can be reduced to the reachability problem in Petri nets

without inhibitor arcs, and another class of models for which the control point reachability

problem can be reduced, using Parikh image computations of context-free languages, to

the coverability problem in Petri nets. For the latter class, although the problem of solving

48 ANALYZING ASYNCHRONOUS PROGRAMS WITH PREEMPTION

the control point reachability problem remains complex (EXPSPACE-hard), we believe that

it can be handled in practice using efficient algorithms and tools for (1) computing CFL

Parikh images using a Newton method based technique for solving polynomial equations

in commutative Kleene algebras [6], and for (2) solving the coverability problem in Petri

nets using forward reachability analysis and complete abstraction techniques [8, 9].

References
[1] M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks of push-

down systems. In CONCUR’08, LNCS, 2008.
[2] A. Bouajjani and J. Esparza. Rewriting models of boolean programs. In RTA, volume 4098 of

LNCS, pages 136–150. Springer, 2006.
[3] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks of

pushdown systems. In CONCUR’05, LNCS, 2005.
[4] A. Bouajjani and T. Touili. On Computing Reachability Sets of Process Rewrite Systems. In

RTA’05. LNCS, 2005.
[5] J. Esparza. Decidability and complexity of Petri net problems – an introduction. In G. Rozenberg

and W. Reisig, editors, Lectures on Petri Nets I: Basic Models. Advances in Petri Nets, number 1491
in Lecture Notes in Computer Science, pages 374–428, 1998.

[6] J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over commutative semir-
ings. In STACS, volume 4393 of LNCS, pages 296–307. Springer, 2007.

[7] J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interprocedural parallel
flow graphs. In POPL’00. ACM, 2000.

[8] G. Geeraerts, J.-F. Raskin, and L. V. Begin. Expand, enlarge, and check: New algorithms for the
coverability problem of wsts. In FSTTCS, volume 3328 of LNCS, 2004.

[9] G. Geeraerts, J.-F. Raskin, and L. V. Begin. Expand, enlarge and check... made efficient. In CAV,
volume 3576 of LNCS, pages 394–407. Springer, 2005.

[10] M. Hack. Decision problems for petri nets and vector addition systems. Technical Report TR
161, 1976.

[11] J. E. Hopcroft and J. J. Pansiot. On the reachability problem for 5-dimensional vector addition
systems. Theor. Comput. Sci., 8:135–159, 1979.

[12] R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous programs. In POPL, pages
339–350, 2007.

[13] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via locks. In CAV,
volume 3576 of LNCS. Springer, 2005.

[14] R. Lipton. The reachability problem requires exponential time. Technical Report TR 66, 1976.
[15] D. Lugiez and P. Schnoebelen. The regular viewpoint on pa-processes. Theor. Comput. Sci.,

274(1-2):89–115, 2002.
[16] E. W. Mayr. An algorithm for the general petri net reachability problem. In STOC ’81, pages

238–246, New York, NY, USA, 1981. ACM Press.
[17] R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Systems.

Phd. thesis, Technical University Munich, 1998.
[18] R. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.
[19] S. Qadeer, S. Rajamani, and J. Rehof. Procedure Summaries for Model Checking Multithreaded

Software. In POPL’04. ACM, 2004.
[20] C. Rackoff. The covering and boundedness problem for vector addition systems. In TCS, 1978.
[21] K. Reinhardt. Reachability in petri nets with inhibitor arcs. Revised manuscript, 2006.
[22] K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous

atomic methods. In CAV, pages 300–314, 2006.
[23] S. L. Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages. In

LICS, pages 161–170. IEEE, 2007.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

