
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 49-60

Runtime Monitoring of Metric
First-order Temporal Properties

David Basin 1, Felix Klaedtke 1, Samuel Müller 2, Birgit Pfitzmann 3

1ETH Zurich, Switzerland

{basin,felixkl}@inf.ethz.ch

2IBM Zurich Research Lab and ETH Zurich, Switzerland

sml@zurich.ibm.com

3IBMWatson Research Lab, USA

bpfitzm@us.ibm.com

ABSTRACT. We introduce a novel approach to the runtime monitoring of complex system proper-
ties. In particular, we present an online algorithm for a safety fragment of metric first-order temporal
logic that is considerably more expressive than the logics supported by prior monitoring methods.
Our approach, based on automatic structures, allows the unrestricted use of negation, universal and
existential quantification over infinite domains, and the arbitrary nesting of both past and bounded
future operators. Moreover, we show how to optimize our approach for the common case where
structures consist of only finite relations, over possibly infinite domains. Under an additional restric-
tion, we prove that the space consumed by our monitor is polynomially bounded by the cardinality
of the data appearing in the processed prefix of the temporal structure being monitored.

1 Introduction

Runtime monitoring [1] is an approach to verifying system properties at execution time by us-

ing an online algorithm to check whether a system trace satisfies a temporal property. While

novel application areas such as compliance or business activity monitoring [13, 15] require

expressive property specification languages, current monitoring techniques are restricted in

the properties they can handle. They either support properties expressed in propositional

temporal logics and thus cannot cope with variables ranging over infinite domains [6,16,20,

23,29], do not provide both universal and existential quantification [4,12,17,23–25] or only in

restricted ways [4,28,30], do not allow arbitrary quantifier alternation [4,22], cannot handle

unrestricted negation [8, 22, 27, 30], do not provide quantitative temporal operators [22, 25],

or cannot simultaneously handle past and future temporal operators [8, 22–24,26, 27].

In this paper, we present a runtime monitoring approach for an expressive safety frag-

ment of metric first-order temporal logic (MFOTL) [8] that overcomes most of these limita-

tions. The fragment consists of formulae of the form � φ, where φ is bounded, i.e., its tem-

poral operators refer only finitely into the future. Our monitor uses automatic structures [7]

to finitely represent infinite structures, which allows for the unrestricted use of negation and
c© Basin, Klaedtke, Müller, Pfitzmann; licensed under Creative Commons License-NC-ND

FSTTCS 2008
IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1740

50 RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

quantification in monitored formulae. Moreover, our monitor supports the arbitrary nest-

ing of both (metric) past and bounded future operators. This means that complex properties

can be specified more naturally than with only past operators.1

In a nutshell, our monitor works as follows: Given a MFOTL formula � φ over a sig-

nature S, where φ is bounded, we first transform φ into a first-order formula φ̂ over an

extended signature Ŝ, obtained by augmenting Swith auxiliary predicates for every tempo-

ral subformula in φ. Our monitor then incrementally processes a temporal structure (D, τ)
over S and determines for each time point i those elements in (D, τ) that violate φ. This is

achieved by incrementally constructing a collection of automata that finitely represent the

(possibly infinite) interpretations of the auxiliary predicates and by evaluating the trans-

formed first-order formula ¬φ̂ over the extended Ŝ-structure at every time point. In doing

so, our monitor discards any information not required for evaluating ¬φ̂ at the current and

future time points.

We also show how to adapt our monitoring approach to the common case where all

relations are required to be finite and hence relational databases can serve as an alternative

to automata. Under the additional (realistic) restriction that time increases after at most a

fixed number of time points, our incremental construction ensures that our monitor requires

only polynomial space in the cardinality of the data appearing in the processed prefix of the

monitored temporal structure. This is in contrast to complexity results for other approaches,

such as the logical data expiration technique proposed for 2-FOL [30]. While this logic is at

least as expressive as MFOTL, the space required for monitoring (syntactically-restricted)

2-FOL formulae is non-elementary in the cardinality of the data in the processed prefix.

Overall, we see our contributions as follows. First, the presented monitor admits a

substantially more expressive logic than previous monitoring approaches. In particular,

by supporting arbitrary bounded MFOTL formulae, it significantly extends Chomicki’s dy-

namic integrity checking approach for temporal databases [8]. Second, we extend runtime

monitoring to automatic structures, which allows for the unrestricted use of negation and

quantification in monitored formulae. Third, for the restricted setting where all relations are

finite, we show how to implement our monitor using relational databases. Here, we extend

the rewrite procedure of [11] to handle a larger class of temporal formulae. We then prove

that, under an additional restriction, the space consumed by our monitor is polynomially

bounded in the cardinality of the data appearing in the processed prefix of a monitored

temporal structure. Finally, our work shows how to effectively combine ideas from differ-

ent, but related areas, including database theory, runtime monitoring, model checking, and

model theory.

This paper is an extended abstract. Full details are presented in [5].

2 Metric First-order Temporal Logic

In this section, we introduce metric first-order temporal logic (MFOTL) [8], which extends

propositional metric temporal logic [19] in a standard way. In the forthcoming sections, we

present a method for monitoring requirements formalized within MFOTL.

1It is unknown whether the past-only fragment of MFOTL is as expressive as the fragment with both past
and bounded future operators and whether formulae in the past-only fragment can be expressed as succinctly
as those in the future-bounded fragment.

BASIN, KLAEDTKE, MÜLLER, PFITZMANN FSTTCS 2008 51

Syntax and Semantics. Let I be the set of nonempty intervals over N. We often write an

interval in I as [c, d), where c ∈ N, d ∈ N ∪ {∞}, and c < d, i.e., [c, d) := {a ∈ N | c ≤
a < d}. A signature S is a tuple (C,R, a), where C is a finite set of constant symbols, R is a

finite set of predicates disjoint from C, and the function a : R→ N associates each predicate

r ∈ R with an arity a(r) ∈ N. For the rest of this paper, V denotes a countably infinite set of

variables, where we assume that V ∩ (C ∪ R) = ∅, for every signature S = (C,R, a). In the

following, let S = (C,R, a) be a signature.

DEFINITION 1. The formulae over S are inductively defined: (i) For t, t′ ∈ V ∪ C, t ≈ t′

and t ≺ t′ are formulae. (ii) For r ∈ R and t1, . . . , ta(r) ∈ V ∪ C, r(t1, . . . , ta(r)) is a formula.
(iii) For x ∈ V, if θ and θ′ are formulae then (¬θ), (θ ∧ θ′), and (∃x. θ) are formulae. (iv) For
I ∈ I, if θ and θ′ are formulae then (I θ), (#I θ), (θ SI θ′), and (θ UI θ′) are formulae.

To define the semantics of MFOTL, we need the following notions: A (first-order) struc-

ture D over S consists of a domain |D| 6= ∅ and interpretations cD ∈ |D| and rD ⊆ |D|a(r),
for each c ∈ C and r ∈ R. A temporal (first-order) structure over S is a pair (D, τ), where

D = (D0,D1, . . .) is a sequence of structures over S and τ = (τ0, τ1, . . .) is a sequence of

natural numbers (time stamps), where:

1. The sequence τ is monotonically increasing (i.e., τi ≤ τi+1, for all i ≥ 0) and makes

progress (i.e., for every i ≥ 0, there is some j > i such that τj > τi).

2. D has constant domains, i.e., |Di| = |Di+1|, for all i ≥ 0. We denote the domain by |D|
and require that |D| is linearly ordered by the relation <.

3. Each constant symbol c ∈ C has a rigid interpretation, i.e., cDi = cDi+1 , for all i ≥ 0. We

denote the interpretation of c by cD.

A valuation is a mapping v : V → |D|. We abuse notation by applying a valuation v also to

constant symbols c ∈ C, with v(c) = cD. For a valuation v, a variable vector x̄ = (x1, . . . , xn),
and d̄ = (d1, . . . , dn) ∈ |D|

n, v[x̄/d̄] is the valuation that maps xi to di, for i such that

1 ≤ i ≤ n, and the valuation of the other variables is unaltered.

DEFINITION 2. Let (D, τ) be a temporal structure over S, with D = (D0,D1, . . .) and τ =
(τ0, τ1, . . .), θ a formula over S, v a valuation, and i∈N. We define (D, τ, v, i) |= θ as follows:

(D, τ, v, i) |= t ≈ t′ iff v(t) = v(t′)
(D, τ, v, i) |= t ≺ t′ iff v(t) < v(t′)
(D, τ, v, i) |= r(t1, . . . , ta(r)) iff (v(t1), . . . , v(ta(r))) ∈ rDi

(D, τ, v, i) |= (¬θ1) iff (D, τ, v, i) 6|= θ1
(D, τ, v, i) |= (θ1 ∧ θ2) iff (D, τ, v, i) |= θ1 and (D, τ, v, i) |= θ2
(D, τ, v, i) |= (∃x. θ1) iff (D, τ, v[x/d], i) |= θ1, for some d ∈ |D|
(D, τ, v, i) |= (I θ1) iff i > 0, τi − τi−1 ∈ I, and (D, τ, v, i− 1) |= θ1
(D, τ, v, i) |= (#I θ1) iff τi+1 − τi ∈ I and (D, τ, v, i + 1) |= θ1
(D, τ, v, i) |= (θ1 SI θ2) iff for some j ≤ i, τi − τj ∈ I, (D, τ, v, j) |= θ2,

and (D, τ, v, k) |= θ1, for all k ∈ [j + 1, i + 1)
(D, τ, v, i) |= (θ1 UI θ2) iff for some j ≥ i, τj − τi ∈ I, (D, τ, v, j) |= θ2,

and (D, τ, v, k) |= θ1, for all k ∈ [i, j)

Note that the temporal operators are augmented with lower and upper bounds. A

temporal formula is only satisfied if it is satisfied within the bounds given by the temporal

operator, which are relative to the current time stamp τi.

52 RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

Terminology and Notation. We use standard syntactic sugar such as the standard con-

ventions concerning the binding strength of operators to omit parentheses (e.g., temporal

operators bind weaker than Boolean connectives and quantifiers) and we use standard tem-

poral operators (e.g., �I θ := true SI θ, where true abbreviates ∃x. x ≈ x). Note that the

non-metric variants of the temporal operators are easily defined (e.g., � θ := �[0,∞) θ).

We call formulae of the form t ≈ t′, t ≺ t′, and r(t1, . . . , ta(r)) atomic, and formulae

with no temporal operators first-order. The outermost connective (i.e., Boolean connective,

quantifier, or temporal operator) occurring in a formula θ is called the main connective of

θ. A formula that has a temporal operator as its main connective is a temporal formula. A

formula θ is bounded if the interval I of every temporal operator UI occurring in θ is finite.

MFOTL denotes the set of MFOTL formulae and FOL the set of first-order formulae. For

θ∈MFOTL, we define its immediate temporal subformulae tsub(θ) to be: (i) tsub(α) if θ =¬α

or θ =∃x. α; (ii) tsub(α) ∪ tsub(β) if θ = α ∧ β; (iii) {θ} if θ is a temporal formula; and (iv) ∅

otherwise. E.g., for θ := (α)∧ ((# β) S[1,9) γ), we have that tsub(θ) = { α, (# β) S[1,9) γ}.
If θ ∈ MFOTL has the free variables given by the vector x̄ = (x1, . . . , xn), we define the

set of satisfying assignments at time instance i as

θ(D,τ,i) :=
{

d̄ ∈ |D|n
∣

∣ (D, τ, v[x̄/d̄], i) |= θ, for some valuation v
}

.

For θ ∈ FOL, we write (Di, v) |= θ instead of (D, τ, v, i) |= θ and θDi for θ(D,τ,i). Note that

(Di, v) |= θ agrees with the standard definition of satisfaction in first-order logic.

3 Monitoring by Reduction to First-order Queries

To effectively monitor MFOTL formulae, we restrict both the formulae and the temporal

structures under consideration. We discuss these restrictions in §3.1 and describe monitor-

ing in §3.2–§3.5.

3.1 Restrictions

Throughout this section, let (D, τ) be a temporal structure over the signature S = (C,R, a)
and ψ the formula to be monitored. We make the following restrictions on ψ and D. First,

we require ψ to be of the form � φ, where φ is bounded. It follows that ψ describes a safety

property [3]. Note though that not all safety properties can be expressed by formulae of

this form [9]. This is in contrast to propositional linear temporal logic, where every safety

property can be expressed as � β, where β contains only past-time operators [21].

Second, we require that each structure in D is automatic [18]. Roughly speaking, this

means that each structure in D can be finitely represented by a collection of automata over

finite words. Let us briefly recall some background on automatic structures [7, 18]. Let Σ

be an alphabet and # a symbol not in Σ. The convolution of the words w1, . . . ,wk ∈ Σ∗ with

wi = wi1 · · ·wiℓi is the word

w1 ⊗ · · · ⊗ wk :=





w′11
...

w′k1



 · · ·





w′1ℓ
...

w′kℓ



 ∈
((

Σ ∪ {#}
)k)∗

,

where ℓ = max{ℓ1, . . . , ℓk} and w′ij = wij, for j ≤ ℓi and w′ij = # otherwise. The padding

symbol # is added to the words wi to ensure that all of them have the same length.

BASIN, KLAEDTKE, MÜLLER, PFITZMANN FSTTCS 2008 53

DEFINITION 3. A structure A over a signature S = (C,R, a) is automatic if there is a reg-
ular language L|A| ⊆ Σ∗ and a surjective function ν : L|A| → |A| such that the languages
L≈ := {u ⊗ v | u, v ∈ L|A| with ν(u) = ν(v)} and Lr := {u1 ⊗ · · · ⊗ ua(r) | u1, . . . , ua(r) ∈

L|D| with (ν(u1), . . . , ν(ua(r))) ∈ rA}, for each r ∈ R, are regular.

An automatic representation of the automatic structure A consists of (i) the function ν :

L|A| → |A|, (ii) a family of words (wc)c∈C with wc ∈ L|A| and ν(wc) = cA, for all c ∈ C,

and (iii) a collection (A|A|,A≈, (Ar)r∈R) of automata that recognize the languages L|A|, L≈,
and Lr, for all r ∈ R. In the following, we assume that for an automatic structure, we

always have an automatic representation for it at hand. A relation rA ⊆ |A|k is regular if

the language {u1 ⊗ · · · ⊗ uk | u1, . . . , uk ∈ L|A| with (ν(u1), . . . , ν(uk)) ∈ r} is regular. Note

that an automaton reads the components of the convolution of a representative of ā ∈ |A|k

synchronously.

In addition to the requirement that each structure in D is automatic, we require that D

has a constant domain representation. This means that the domain of each Di is represented

by the same regular languageL|D| and eachword inL|D| represents the same element in |D|,
i.e., each automatic representation has the same function ν : L|D| → |D|. Finally, we assume

that |D| = N and that < is the standard ordering on N. This is without loss of generality

whenever the function ν is injective, i.e., every element in |D| has only one representative in

L|D|. Furthermore, note that every automatic structure has an automatic representation in

which the function ν is injective [18].

Note that for a first-order formula θ, we can effectively construct an automaton that

represents the set θDi . Moreover, various basic arithmetical relations are first-order defin-

able in the structure (N,<) and thus regular. For example, the successor relation {(x, y) ∈
N

2 | y = x + 1} and the relation {(x, y) ∈ N
2 | x + d ≤ y}, for any d ∈ N, are regular.

Before presenting our monitoring method, we give two examples of system proper-

ties expressed in the MFOTL fragment that our monitor can handle. First, the property

“whenever the program variable in stores the input x, then x must be stored in the pro-

gram variable out within 5 time units” can be expressed by � ∀x. in(x) → ♦[0,6) out(x).
Second, the property “the value of the program variable v increases by 1 in each step

from an initial value 0 until it becomes 5 and then it stays constant” can be formalized

as �(¬(true) → v(0)) ∧ (∃i. v(i) ∧ i ≺ 5 → # v(i + 1)) ∧ (v(5) → # v(5)). Note that we

use relations that are singletons to model program variables.

3.2 Overview of the Monitoring Method

To monitor the formula � φ over a temporal structure (D, τ), we incrementally build a se-

quence of structures D̂0, D̂1, . . . over an extended signature Ŝ. The extension depends on the

temporal subformulae of φ. For each time point i, we determine the elements that violate φ

by evaluating a transformed formula ¬φ̂ ∈ FOL over D̂i. Observe that with future opera-

tors, we usually cannot do this yet when time point i occurs. Our monitor, which we present

in §3.5, therefore maintains a list of unevaluated subformulae for past time points. In the

following, we first describe how we extend S and transform φ. Afterwards, we explain how

we incrementally build D̂i. Finally, we present our monitor and prove its correctness.

54 RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

3.3 Signature Extension and Formula Transformation

In addition to the predicates in R, the extended signature Ŝ contains an auxiliary predicate

pα for each temporal subformula α of φ. For subformulae of the form β SI γ and β UI γ,

we introduce further predicates, which store information that allows us to incrementally

update the auxiliary relations.

DEFINITION 4. Let Ŝ := (Ĉ, R̂, â) be the signature with Ĉ := C and R̂ is the union of the sets
R, {pα | α temporal subformula of φ}, {rα | α subformula of φ of the form β SI γ or β UI γ},
and {sα | α subformula of φ of the form β UI γ}. For r ∈ R, let â(r) := a(r). If α is a temporal
subformula with n free variables, then â(pα) := n, and â(rα) := n + 1 and â(sα) := n + 2, if
rα and sα exist. We assume that pα, rα, sα 6∈ C∪ R∪ V.

We transform MFOTL formulae over the signature S into first-order formulae over the

extended signature Ŝ as follows.

DEFINITION 5. For θ ∈ MFOTL, we define (i) θ̂ := ¬β̂ if θ is of the from ¬β, (ii) θ̂ := β̂∧ γ̂ if
θ is of the form β ∧ γ, (iii) θ̂ := ∃y. β̂ if θ is of the form ∃y. β, (iv) θ̂ := pθ(x̄) if θ is a temporal
formula with the vector of free variables x̄, and (v) θ̂ := θ if θ is an atomic formula.

We assume throughout this section, without loss of generality, that each subformula

of φ has the vector of free variables x̄ = (x1, . . . , xn). The formula transformation has the

following properties, which are easily shown by an induction over the formula structure.

LEMMA 6. Let θ be a subformula of φ. For all i ∈ N, the following properties hold:

(i) If pD̂i
α = α(D,τ,i) for all α ∈ tsub(θ), then θ̂D̂i = θ(D,τ,i).

(ii) If pD̂i
α is regular for all α ∈ tsub(θ), then θ̂D̂i is regular.

3.4 Incremental Extended Structure Construction

We now show how the auxiliary relations in the D̂is are incrementally constructed. Their in-

stantiations are computed recursively both over time and over the formula structure, where

evaluations of subformulae may also be needed from future time points. We later show that

this is well-defined and can be evaluated incrementally.

For c ∈ C and r ∈ R, we define cD̂i := cDi and rD̂i := rDi . We address the auxiliary

relations for each type of main temporal operator separately.

Previous and Next. For α = I β with I ∈ I, we define pD̂i
α as β̂D̂i−1 if i > 0 and τi − τi−1 ∈

I, and pD̂i
α := ∅ otherwise. Intuitively, a tuple ā is in pD̂i

α if ā satisfies β at the previous time

point i− 1 and the difference of the two successive time stamps is in the interval I.

LEMMA 7. Let α = I β. For i > 0, if p
D̂i−1

δ is regular and p
D̂i−1

δ = δ(D,τ,i−1) for all δ ∈ tsub(β),

then pD̂i
α is regular and pD̂i

α = α(D,τ,i). Moreover, pD̂0
α is regular and pD̂0

α = α(D,τ,0).

PROOF. For i = 0, the lemma obviously holds. For i > 0, the regularity of pD̂i
α follows

from the assumption that the relations p
D̂i−1

δ are regular and Lemma 6(ii). The equality of

the two sets follows from Lemma 6(i) and the semantics of the temporal operator I .

BASIN, KLAEDTKE, MÜLLER, PFITZMANN FSTTCS 2008 55

For α = #I β with I ∈ I, we define pD̂i
α as β̂D̂i+1 if τi+1 − τi ∈ I, and pD̂i

α := ∅ otherwise.

Note that the definition of pD̂i
α depends on the relations of the next structure Di+1 and on the

auxiliary relations for δ ∈ tsub(β) of the next extended structure D̂i+1. Hence, the monitor

instantiates pD̂i
α with a delay of at least one time step.

LEMMA 8. Let α = #I β. If p
D̂i+1

δ is regular and p
D̂i+1

δ = δ(D,τ,i+1) for all δ ∈ tsub(β), then pD̂i
α

is regular and pD̂i
α = α(D,τ,i).

Since and Until. We first address the past-time operator SI with I = [c, d) ∈ I. Assume

that α = β SI γ. We start with the initialization and update of the auxiliary relations for rα.

We define rD̂0
α := γ̂D̂0 × {0} and for i > 0, we define

rD̂i
α :=

(

γ̂D̂i×{0}
)

∪
{

(ā, y)∈N
n+1

∣

∣ ā∈ β̂D̂i , y<d, and (ā, y′)∈ r
D̂i−1
α , for y′=y− τi + τi−1

}

.

Intuitively, a pair (ā, y) is in rD̂i
α if ā satisfies α at time point i independent of the lower bound

c, where the “age” y indicates how long ago the formula γ was satisfied by ā. If ā satisfies

γ at the time point i, it is added to rD̂i
α with the age 0. For i > 0, we additionally update the

tuples (ā, y) ∈ r
D̂i−1
α . First, ā must satisfy β at the time point i. Second, the age is adjusted

by the difference of the time stamps τi−1 and τi. Third, the new age must be less than d,

otherwise it is too old to satisfy α.

The arithmetic constraint y′ = y− τi + τi−1 in the definition of rD̂i
α for i > 0 is first-order

definable in D. Note that τi + τi−1 is a constant value. Now it is not hard to see that rD̂i
α is

regular if all its components are regular.

With the relation rD̂i
α , we can determine the elements that satisfy α at the time point i.

We define pD̂i
α :=

{

ā ∈ N
n
∣

∣ (ā, y) ∈ rD̂i
α , for some y ≥ c

}

.

LEMMA 9. Let α = β S[c,d) γ. Assume that p
D̂j

δ is regular and p
D̂j

δ = δ(D,τ,j), for all j ≤ i and
δ ∈ tsub(β) ∪ tsub(γ). Then the following properties hold:

(i) The relation rD̂i
α is regular and for all ā ∈ N

n and y ∈ N,

(ā, y) ∈ rD̂i
α iff

there is a j ∈ [0, i + 1) such that y = τi − τj < d , ā ∈ γ(D,τ,j) ,

and ā ∈ β(D,τ,k), for all k ∈ [j + 1, i + 1) .

(ii) The relation pD̂i
α is regular and pD̂i

α = α(D,τ,i).

Note that the definition of rD̂i
α only depends on the relation r

D̂i−1
α , if i > 0, and on the

relations in D̂i for which the corresponding predicates occur in the subformulae of β̂ or γ̂.

Furthermore, the definition of pD̂i
α only depends on rD̂i

α .

We now address the bounded future-time operator UI with I = [c, d) ∈ I and d ∈ N.

Assume that α = β UI γ. For all i ∈ N, let ℓi := max{j ∈ N | τi+j − τi < d}. We call ℓi the

lookahead offset at time point i. For convenience, let ℓ−1 := 0. To instantiate the relation pD̂i
α ,

only the relations pD̂i
δ , . . . , p

D̂i+ℓi
δ are relevant, where δ ∈ tsub(β) ∪ tsub(γ). The definition of

pD̂i
α is based on the auxiliary relations rD̂i

α and sD̂i
α , which we first show how to initialize and

update.

56 RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

We define rD̂i
α as the union of the sets Nr and Ur. Nr contains the tuples that are new in

the sense that they are obtained from data at the time points i + ℓi−1, . . . , i + ℓi; Ur contains

the updated data from the time points i, . . . , i + ℓi−1 − 1. Formally, we define

Nr :=
{

(ā, j) ∈ N
n+1

∣

∣ ℓi−1 ≤ j ≤ ℓi, ā ∈ γ̂D̂i+j , and τi+j − τi ≥ c
}

Ur :=

{

{

(ā, j) ∈ N
n+1

∣

∣ (ā, j + 1) ∈ r
D̂i−1
α and τi+j − τi ≥ c

}

if i > 0,

∅ otherwise.

Intuitively, rD̂i
α stores the tuples satisfying the formula ♦I γ at the time point i, where each

tuple in rD̂i
α is augmented by the index relative to i where the tuple satisfies γ.

Similarly to rD̂i
α , the relation sD̂i

α is the union of a set Ns for the new elements and a set

Us for the updates. These two sets are defined as

Ns :=
{

(ā, j, j′) ∈ N
n+2

∣

∣ ℓi−1 ≤ j ≤ j′ ≤ ℓi and ā ∈ β̂D̂i+k , for all k ∈ [j, j′ + 1)
}

and Us := ∅ if i = 0, and

Us :=
{

(ā, j, j′) ∈ N
n+2

∣

∣ (ā, j + 1, j′ + 1) ∈ s
D̂i−1
α

}

∪
{

(ā, j, j′) ∈ N
n+2

∣

∣ (ā, j + 1, ℓi−1) ∈ s
D̂i−1
α and (ā, ℓi−1, j

′) ∈ Ns

}

otherwise. Intuitively, sD̂i
α stores the tuples and the bounds of the interval (relative to i) in

which β is satisfied.

With the relations rD̂i
α and sD̂i

α at hand, we define

pD̂i
α :=

{

ā ∈ N
n
∣

∣ (ā, j) ∈ rD̂i
α and (ā, 0, j′) ∈ sD̂i

α , for some j ≤ j′ + 1
}

.

LEMMA 10. Let α = β UI γ. Assume that pD̂k
δ is regular and pD̂k

δ = δ(D,τ,k), for all k ≤ i + ℓi

and δ ∈ tsub(β) ∪ tsub(γ). Then the following properties hold:

(i) The relation rD̂i
α is regular and for all ā ∈ N and j ∈ N,

(ā, j) ∈ rD̂i
α iff ā ∈ γ(D,τ,i+j) and τi+j − τi ∈ I .

(ii) The relation sD̂i
α is regular and for all ā ∈ N

n and j, j′ ∈ N,

(ā, j, j′) ∈ sD̂i
α iff j ≤ j′, τi+j′ − τi < d, and ā ∈ β(D,τ,i+k), for all k ∈ [j, j′ + 1) .

(iii) The relation pD̂i
α is regular and pD̂i

α = α(D,τ,i).

3.5 Monitor and Correctness

Figure 1 presents the monitorM(φ). Without loss of generality, it assumes that each tem-

poral subformula occurs only once in φ. In the following, we outline its operation.

The monitor uses two counters i and q. The counter i is the index of the current element

(Di, τi) in the input sequence (D0, τ0), (D1, τ1), . . . , which is processed sequentially. Initially,

i is 0 and it is incremented at the end of each loop iteration (lines 4–16). The counter q ≤ i

is the index of the next time point q (possibly in the past, from the point of view of i) for

which we evaluate ¬φ̂ over the structure D̂q. The evaluation is delayed until the relations

p
D̂q
α for α ∈ tsub(φ) are all instantiated (lines 10–13). Furthermore, the monitor uses the list2

2We abuse notation by using set notation for lists. Moreover, we assume that Q is ordered in that (α, j, S)
occurs before (α′, j′, S′), whenever α is a proper subformula of α′, or α = α′ and j < j′.

BASIN, KLAEDTKE, MÜLLER, PFITZMANN FSTTCS 2008 57

1: i← 0 % current index in input sequence (D0, τ0), (D1, τ1), . . .
2: q← 0 % index of next query evaluation in sequence (D0, τ0), (D1, τ1), . . .
3: Q←

{(

(α, 0,waitfor(α)
) ∣

∣ α temporal subformula of φ
}

4: loop
5: Carry over constants and relations of Di to D̂i.
6: for all (α, j,∅) ∈ Q do % respect ordering of subformulae

7: Build relations for α in D̂j (e.g., build r
D̂j
α and p

D̂j
α if α = β SI γ).

8: Discard auxiliary relations for α in D̂j−1 if j− 1 ≥ 0 (e.g., discard r
D̂j−1
α if α = β SI γ).

9: Discard relations p
D̂j

δ , where δ is a temporal subformula of α.

10: while all relations p
D̂q
α are built for α ∈ tsub(φ) do

11: Output valuations violating φ at time point q, i.e., output (¬φ̂)D̂q and q.
12: Discard structure D̂q−1 if q− 1 ≥ 0.
13: q← q + 1
14: Q←

{(

α, i + 1,waitfor(α)
) ∣

∣ α temporal subformula of φ
}

∪
{(

α, j,
⋃

θ∈update(S,τi+1−τi) waitfor(θ)
) ∣

∣ (α, j, S) ∈ Q and S 6= ∅
}

15: i← i + 1 % process next element in input sequence (Di+1, τi+1)
16: end loop

Figure 1: MonitorM(φ)

Q to ensure that the auxiliary relations of D̂0, D̂1, . . . are built at the right time: if (α, j,∅)
is an element of Q at the beginning of a loop iteration, enough time has elapsed to build

the relations for the temporal subformula α of the structure D̂j. The monitor initializes Q

in line 3. The function waitfor extracts the subformulae that cause a delay of the formula

evaluation. We define waitfor(θ) to be: (i) waitfor(β) if θ = ¬β, θ = ∃x. β, or θ = I β;

(ii) waitfor(β) ∪waitfor(γ) if θ = β ∧ γ or θ = β SI γ, (iii) {θ} if θ = #I β or θ = β UI γ, and

(iv) ∅ otherwise. The list Q is updated in line 14 before we increment i and start a new loop

iteration. For the update we use the function update that is defined as

update(U,∆) := {β | #I β ∈ U} ∪ {β U[max{0,c−∆},d−∆) γ | β U[c,d) γ ∈ U, with d− ∆ > 0} ∪

{β | β U[c,d) γ ∈ U or γ U[c,d) β ∈ U, with d− ∆ ≤ 0} ,

for a formula set U and ∆ ∈ N. The update adds a new tuple (α, i + 1,waitfor(α)) to Q,

for each temporal subformula α of φ, and it removes the tuples of the form (α, j,∅) from Q.

Moreover, for tuples (α, j, S) with S 6= ∅, the set S is updated using the functions waitfor

and update by taking into account the elapsed time to the next time point, i.e. τi+1 − τi.

In lines 6–9, we build the relations for which enough time has elapsed, i.e., the auxiliary

relations for α in D̂j with (α, j,∅) ∈ Q. Since a tuple (α′, j,∅) does not occur before a tuple

(α, j,∅) in Q, where α is a subformula of α′, the relations in D̂j for α are built before those

for α′. To build the relations, we use the incremental constructions described earlier in this

section. We thus discard certain relations after we have built the relations for α in D̂j to

reduce space consumption. For instance, if j > 0 and α = β SI γ, we discard the relation

r
D̂j−1
α , and we discard r

D̂j−1
α and s

D̂j−1
α when α = β UI γ.

In lines 10–13, the valuations violating φ at time point q are output together with q,

for all q where the relations p
D̂q
α of all immediate temporal subformulae α of φ have been

built. After an output, the remainder of the extended structure D̂q−1 is discarded and q is

incremented by 1.

58 RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

THEOREM 11. The monitorM(φ) from Figure 1 has the following properties:

(i) Whenever M(φ) outputs (¬φ̂)D̂q , then (¬φ̂)D̂q = (¬φ)(D,τ,q). Furthermore, the set

(¬φ̂)D̂q is effectively constructable and finitely representable.
(ii) For every n ∈ N,M(φ) eventually sets the counter q to n in some loop iteration.

4 MFOTL Monitoring with Finite Relations

In this section, we sketch how to use relational databases as an alternative to automata for

implementing our monitor and analyze its space complexity. Details are provided in [5].

In the following, we assume that all relations are finite and thus can be stored in a rela-

tional database. When replacing “regular” by “finite”, however, our constructions from §3.4,

in particular Lemmas 7–10, become invalid. The problem is that the auxiliary relations

constructed for the temporal subformulae are possibly infinite. We overcome this prob-

lem by extending work from database theory on domain independence [14]. In particular,

we generalize the solutions for first-order queries [2] and non-metric first-order temporal

logic [8, 10, 11] to MFOTL formulae by trying to rewrite the given MFOTL formula φ so that

all temporal subformulae and their direct subformulae have only finitely many satisfying

valuations. After rewriting the formula φ, we check, based on the syntax of the result ψ,

whether each θ ∈ {α | α = ψ, α is a temporal subformula of ψ, or α is a direct subformula of

a temporal subformula of ψ} is temporal domain independent. If ψ passes this check, we know

that it can be handled by our monitor for finite relations. Otherwise, no conclusions can be

drawn. For the rest of this section, we assume that φ, all temporal subformulae of φ, and all

direct subformulae of temporal subformulae of φ are temporal domain independent.

We now analyze the memory consumption of our monitor for finite relations. To obtain

a polynomial bound on the memory consumption, we modify M(φ) as follows: (i) the

counters i and q are replaced by the relative counter i− q and (ii) the update constructions

for subformulae of the form α = β S[c,∞) γ are modified to prevent the “age” y of a tuple

(ā, y) ∈ r
D̂i−1
α from increasing forever. The analyze the resources consumed by monitors in

general, we introduce the following abstract notion. Let C be a class of temporal structures

over the signature S = (C,R, a) and let pre(C) denote the set of nonempty finite prefixes of

the temporal structures in C.

DEFINITION 12. Let f , g : pre(C) → N and s : N → N be functions. We write f ⊳s g if
f (D̄, τ̄) < s(g(D̄, τ̄)), for all (D̄, τ̄) ∈ pre(C).

In our context, the function f : pre(C) → N measures the consumption of a particular

resource (e.g., storage) of a monitor after it has processed the finite prefix (D̄, τ̄). The func-
tion g : pre(C) → N measures the size of the prefix (D̄, τ̄). Intuitively, f ⊳s g means that,

at any time point, the resource consumption (measured by f) of the monitor is bounded by

the function s : N → N with respect to the size of the processed prefix (measured by g) of

an input from C. We use the following concrete functions f and g. Let (D̄, τ̄) ∈ pre(C) with

D̄ = (D0, . . . ,Di) and τ̄ = (τ0, . . . , τi).

– We define g(D̄, τ̄) := |adom(D̄)|, where adom(D̄) is the active domain of (D̄, τ̄), i.e.,
adom(D̄) := {cD0 | c ∈ C} ∪

⋃

0≤k≤i
⋃

r∈R{dj | (d1, . . . , da(r)) ∈ rDk and 1 ≤ j ≤ a(r)} .

BASIN, KLAEDTKE, MÜLLER, PFITZMANN FSTTCS 2008 59

Note that g only counts the number of elements of D̄ that are constants or that occur

in some of D̄’s relations. It ignores the sizes of these elements as well as the number

of times and where an element appears in D̄. It also ignores the time stamps in τ̄.

– We define f (D̄, τ̄) to be the sum of the cardinalities of the relations for r ∈ R̂ stored by

M(φ) after the (i+ 1)st loop iteration, having processed the input (D0, τ0), . . . , (Di, τi).

Note that f ⊳s g is a desirable property of a monitor. It says that the amount of data stored

does not depend on how long the monitor has been running but only on the number of

domain elements that appeared so far, and that the stored data is bounded by the func-

tion s. We remark that the property of a (polynomially) bounded history encoding [8] can

be formalized as f ⊳s g, for some (polynomial) s : N → N.

THEOREM 13. Let C be a class of temporal databases. Assume that there is some ℓ ∈ N

such that max{j | τi = τi+1 = . . .= τi+j} < ℓ, for all (D, τ) ∈ C and all i ∈ N. Then, we have
that f ⊳s g, where s : N → N is a polynomial of degree max{a(r) | r ∈ R̂}.

Note that if such a bound ℓ on the sequence τ of time stamps does not exist, we cannot

guarantee any upper bound on f . It is open whether Theorem 13 can be carried over to

temporal structures with possibly infinite relations and automatic representations.

5 Conclusion and Future Work

We have presented an automata-based monitoring approach for an expressive fragment of

a metric first-order temporal logic. The use of automata substantially generalizes both the

kinds of structures and the class of formulae that can be monitored. Moreover, it elimi-

nates the limitations that arise in databases, where relations must be finite. An interesting

question here is to what extent the use of automatic structures can be carried over to other

monitoring approaches, thereby solving the problems they have with infinite relations.

One direction for future work is to explore whether our approach can be used to moni-

tor temporal first-order logics that have an interval-based semantics instead of a point-based

semantics, or a combined interval and point-based semantics, which is useful for modeling

state and event predicates. Another direction is to conduct a refined complexity analysis for

our algorithm with automatic structures and to validate our results by implementation and

testing. In particular, we plan to design and evaluate data structures and algorithms for effi-

ciently incrementally updating relations, which is at the heart of our monitoring algorithm.

References
[1] Proceedings of the 1st to 8th Workshop on Runtime Verification (RV), 2001–2008.
[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[3] B. Alpern and F. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, 1985.
[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In Veri-

fication, Model Checking, and Abstract Interpretation (VMCAI’04), vol. 2937 of LNCS, pp. 44–57.
[5] D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring of metric first-order

temporal properties. Technical Report RZ 3702, IBM Research and ETH Zurich, 2008.
[6] A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In Foundations of

Software Technology and Theoretical Computer Science (FSTTCS’06), vol. 4337 of LNCS, pp. 260–272.

60 RUNTIME MONITORING OF METRIC FIRST-ORDER TEMPORAL PROPERTIES

[7] A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata and inter-
pretations. Theory Comput. Syst., 37(6):641–674, 2004.

[8] J. Chomicki. Efficient checking of temporal integrity constraints using bounded history encod-
ing. ACM Trans. Database Syst., 20(2):149–186, 1995.

[9] J. Chomicki and D. Niwiński. On the feasibility of checking temporal integrity constraints.
J. Comput. Syst. Sci., 51(3):523–535, 1995.

[10] J. Chomicki and D. Toman. Implementing temporal integrity constraints using an active DBMS.
IEEE Trans. on Knowl. and Data Eng., 7(4):566–582, 1995.

[11] J. Chomicki, D. Toman, and M. Böhlen. Querying ATSQL databases with temporal logic. ACM
Trans. Database Syst., 26(2):145–178, 2001.

[12] B. D’Angelo, S. Sankaranarayanan, C. Sánchez,W. Robinson, B. Finkbeiner, H. Sipma, S.Mehro-
tra, and Z. Manna. LOLA: Runtime monitoring of synchronous systems. In Temporal Represen-
tation and Reasoning (TIME’05), pp. 166–174.

[13] N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. Checking traces for regulatory conformance. In
Runtime Verification (RV’08).

[14] R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985, 1982.
[15] C. Giblin, A. Liu, S. Müller, B. Pfitzmann, and X. Zhou. Regulations expressed as logical models

(REALM). In Legal Knowledge and Information Systems (JURIX’05), vol. 134 of Frontiers in Artificial
Intelligence and Applications, pp. 37–48.

[16] K. Havelund and G. Rosu. Efficient monitoring of safety properties. Int. J. Softw. Tools Technol.
Transf., 6(2):158–173, 2004.

[17] J. Håkansson, B. Jonsson, and O. Lundqvist. Generating online test oracles from temporal logic
specifications. Int. J. Softw. Tools Technol. Transf., 4(4):456–471, 2003.

[18] B. Khoussainov and A. Nerode. Automatic presentations of structures. In Logical and Computa-
tional Complexity, vol. 960 of LNCS, pp. 367–392, 1995.

[19] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

[20] K. Kristoffersen, C. Pedersen, and H. Andersen. Runtime verification of timed LTL using dis-
junctive normalized equation systems. Electr. Notes Theor. Comput. Sci., 89(2):210–225, 2003.

[21] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logic of Programs, vol. 193 of
LNCS, pp. 196–218, 1985.

[22] U. Lipeck and G. Saake. Monitoring dynamic integrity constraints based on temporal logic. Inf.
Syst., 12(3):255–269, 1987.

[23] O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In Formal Modeling and
Analysis of Timed Systems (FORMATS’06), vol. 4202 of LNCS, pp. 274–289.

[24] D. Nickovic and O. Maler. AMT: A property-based monitoring tool for analog systems. In
Formal Modeling and Analysis of Timed Systems (FORMATS’07), vol. 4763 of LNCS, pp. 304–319.

[25] M. Roger and J. Goubault-Larrecq. Log auditing through model-checking. In Computer Security
Foundations Workshop (CSFW’01), pp. 220–234.

[26] G. Rosu and K. Havelund. Rewriting-based techniques for runtime verification. Autom. Softw.
Eng., 12(2):151–197, 2005.

[27] A. Sistla and O. Wolfson. Temporal triggers in active databases. IEEE Trans. Knowl. Data Eng.,
7(3):471–486, 1995.

[28] O. Sokolsky, U. Sammapun, I. Lee, and J. Kim. Run-time checking of dynamic properties. Electr.
Notes Theor. Comput. Sci., 144(4):91–108, 2006.

[29] P. Thati and G. Rosu. Monitoring algorithms for metric temporal logic specifications. Electr.
Notes Theor. Comput. Sci., 113:145–162, 2005.

[30] D. Toman. Logical data expiration. In Logics for Emerging Applications of Databases, pp. 203–238,
2003.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

