
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 235-243

Explicit Muller Games are PTIME∗

Florian Horn
horn@liafa.jussieu.fr

LIAFA

Université Paris 7

Case 7014,

75205 Paris cedex 13

France

LI7

RWTH

Ahornstraße 55

52056 Aachen

Germany

LABRI

Université Bordeaux 1

351, cours de la Libération

33405 Talence cedex

France

ABSTRACT. Regular games provide a very useful model for the synthesis of controllers in reactive
systems. The complexity of these games depends on the representation of the winning condition: if
it is represented through a win-set, a coloured condition, a Zielonka-DAG or Emerson-Lei formulae,
the winner problem is PSPACE-complete; if the winning condition is represented as a Zielonka tree,
the winner problem belongs to NP and co-NP. In this paper, we show that explicit Muller games can
be solved in polynomial time, and provide an effective algorithm to compute the winning regions.

1 Introduction

There has been a long history of using infinite games to model reactive processes [BL69,

PR89]. The system is represented as a game arena, i.e. a graph whose states belong either to

Eve (controller) or to Adam (environment). The desired behaviour is represented as an ω-

regular winning condition, which naturally expresses temporal specifications and fairness

assumptions of transition systems [MP92]. The game is played by moving a token on the

arena: when it is in one of Eve’s states, she chooses its next location among the successors

of the current state; when it is in one of Adam’s states, he chooses its next location. The

result of playing the game for ω moves is an infinite path of the graph. Eve wins if the path

satisfies the specification, and Adam wins otherwise.

A fundamental determinacy result of Büchi and Landweber shows that from any initial

state, one of the players has a winning strategy [BL69]. The problem of the winner is in

∗This work was supported in part by the French ANR AVERISS.

c© Florian Horn; licensed under Creative Commons License-NC-ND

FSTTCS 2008 
IARCS Annual Conference on  
Foundations of Software Technology and Theoretical Computer Science 
http://drops.dagstuhl.de/opus/volltexte/2008/1756



236 EXPLICIT MULLER GAMES ARE PTIME

PSPACE for any reasonable representation of the winning condition [McN93,NRY96], but

its exact complexity depends on how the winning condition is represented. For example, if

the winning condition is represented as a Zielonka tree [Zie98], the problem of the winner

is in NP ∩ co-NP [DJW97]. Hunter and Dawar list in [HD05] five other “general purpose”

representations: explicit Muller, win-set, Muller, Zielonka DAGs, Emerson-Lei. They show

that the problem of the winner is PSPACE-hard for the last four representations, and leave

the complexity of explicit Muller games as an open question. In this paper, we answer this

question: the winner problem in explicit Muller games belongs to PTIME. We provide an

effective cubic algorithm computing the winning regions of the players.

Outline of the paper. Section 2 recalls the classical notions about regular games, and Sec-

tion 3 gives an overview of the different representations of regular winning conditions. In

Section 4, we introduce the notions of semi-alternation and sensibleness, and show that any

explicit Muller game can be translated in polynomial time into a semi-alternating and sen-

sible game. We also study the family of games where Eve wins if all the states are visited

infinitely often. These games are used repeatedly in our algorithm, which is the subject of

Section 5.

2 Definitions

We recall here several classical notions about regular games, and refer the reader to [GTW02]

for more details.

Arenas.

An arena A is a directed graph (Q, T ) without deadlocks whose states are partitioned be-

tween Eve’s states (QE, represented as #’s) and Adam’s states (QA, represented as 2’s). A

sub-arena A|B of A is the restriction of A to a subset B of Q such that each state of B has a

successor in B.

Plays and Strategies.

A play on the arena A is a (possibly infinite) sequence ρ = ρ0ρ1 . . . of states such that ∀i <

|ρ|−2, (ρi, ρi+1) ∈ T . The set of occurring states is Occ(ρ) = {q | ∃i ∈ N, ρi = q}, and the set

of limit states is Inf(ρ) = {q | ∃∞i ∈ N, ρi = q}.

A strategy of Eve on the arenaA is a function σ fromQ∗QE toQ such that ∀w ∈ Q∗, ∀q ∈
QE, (q, σ(wq)) ∈ T . Strategies can also be defined as strategies with memory. In this case, σ is

a triple (M, σu, σn), where M is the (possibly infinite) set ofmemory states, σu : (M×Q)→ M

is the memory update function, and σn : (M ×Q) → Q is the next-move function. Adam’s

strategies are defined in a similar way. A strategy is finite-memory if M is a finite set, and

memoryless if M is a singleton.

A (finite or infinite) play ρ is consistent with σ if, ∀i < |ρ|−2, ρi ∈ QE ⇒ ρi+1 =
σ(ρ0 . . . ρi).
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Traps and Attractors.

The attractor of Eve to the set U in the arena A, denoted AttrE(U,A), is the set of states from

where Eve can force the token to go to the set U. It is defined inductively by:

U0 = U

Ui+1 = Ui ∪ {q ∈ QE, ∃r ∈ Ui | (q, r) ∈ T }

Ui ∪ {q ∈ QA | ∀r, (q, r) ∈ E⇒ r ∈ Ui}

AttrE(U,A) =
⋃

i>0

Ui

The corresponding attractor strategy to U for Eve is a positional strategy σU such that for

any state q ∈ QE ∩ (AttrE(U,A) \U), q ∈ Ui+1 ⇒ σU(q) ∈ Ui.

The dual notion of a trap for Eve denotes a set from where Eve cannot escape, unless

Adam allows her to do so: a set U is a trap for Eve if and only if ∀q ∈ U ∩QE, (q, r) ∈ T ⇒
r ∈ U and ∀q ∈ U ∩QA, ∃r ∈ U | (q, r) ∈ T . Notice that a trap is always a sub-arena.

Regular Winning Conditions.

A regular winning condition is a specification Φ ⊆ Qω on infinite plays which depends only

on the set of states visited infinitely often: Inf(ρ) = Inf(ν) ⇒ (ρ ∈ Φ ⇔ ν ∈ Φ). Eve wins

a play ρ if ρ ∈ Φ. Adam wins if ρ /∈ Φ. Regular winning conditions can be described in

different ways, which are presented in the next section.

Winning Strategies.

Given a winning condition Φ and a state q ∈ Q, a strategy σ is winning for Eve from q if any

play starting in q and consistent with σ is winning for Eve. The winning region of Eve is the

set of states from where she has a winning strategy. Adam’s winning strategies and regions

are defined in a similar way.

3 Representations of regular conditions

The most straightforward way to represent a regular condition F is to provide an explicit

list of sets of states F1, . . . ,Fℓ: F = {Fi | 1 ≤ i ≤ ℓ}. A play ρ is winning for Eve if and

only if Inf(ρ) ∈ F . The complexity of these explicit Muller games is the subject of this paper.

There are several other ways to represent regular conditions. In win-set games [McN93],

the winner depends only on a subset R of relevant states, and the winning condition R lists

only subsets of R: ρ is winning for Eve if Inf(ρ) ∩ R ∈ R. Muller games extend this idea by

adding a colouring function χ, from the states to a set of colours C. The winning condition

F lists subsets of C, and ρ is winning for Eve if χ(Inf(ρ)) ∈ F . Emerson-Lei games [EL85]

provide a boolean formula ϕ, whose variables are the states of Q. A play ρ is winning for

Eve if the valuation Inf(ρ)← true and Q \ Inf(ρ)← false satisfies ϕ.
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Zielonka’s representation of regular conditions [Zie98] proceeds from a different ap-

proach: it focuses on alternation between sets winning for Eve and sets winning for Adam.

In his split tree (usually called “Zielonka tree”), the nodes are labelled by sets of colours, the

children are subsets of their parent with C at the root, and a child and its parent are never

winning for the same player. Finally, Zielonka DAGs [HD05] are the result of merging the

nodes of the Zielonka tree with the same labels.

The complexity of regular games depends directly on the representation of the winning

condition:

THEOREM 1.[DJW97] The problem of thewinner in regular gameswhosewinning condition
is represented by a Zielonka tree is in NP ∩ co-NP .

THEOREM 2.[HD05] The problem of the winner in win-set games, Muller games, Zielonka
DAG games, and Emerson-Lei games are PSPACE-complete.

For explicit Muller games, the best complexity result so far was the membership of

the winner problem in PSPACE, derived from the “all-purpose” algorithms of [McN93] and

[NRY96]. The main result of this paper is Theorem 3:

THEOREM 3. The winner problem of explicit Muller games can be solved in polynomial
time.

4 Useful notions for explicit Muller games

We first define three properties of explicit Muller games. A game is:

1. semi-alternating if there is no transition between two states of Adam (but there can be

between two states of Eve);

2. sensible if each set in F induces a sub-arena of A;
3. ordered for inclusion if i < j⇒ Fi + Fj.

Our algorithm for explicit Muller games, Algorithm 1, relies on the fact that its in-

put satisfies these three properties. However, this does not restrict the generality of our

result, since any explicit Muller game can be transformed in polynomial time into an equiv-

alent semi-alternating, sensible, and ordered game of polynomial size. The semi-alternation

transformation consists in replacing each state q ∈ QA of Adam by a pair of states r ∈
QE, s ∈ QA, as in Figure 1. Each set containing q in the winning condition is modified ac-

cordingly: F ← (λq.(r, s))F . This is where the classical alternation transformation fails:

adding a state to each transition leads to an exponential blow-up in the size of the winning

condition.

A game can be made sensible by removing from F all the sets that do not induce a

sub-arena of A: no matter how Eve and Adam play, the limit of the play is a a sub-arena,

so the modification is transparent with respect to deciding the winning nature of a play, a

strategy, or a state. Finally, ordering the sets for inclusion can be done in quadratic time.

The games of the form (A, {Q}), where Eve wins if and only if the token visits all

the states infinitely often, play an important part in our solution to explicit Muller games.

These games, which have also been studied in routing problems [DK00, IK02], are easy to

solve and there is always only one winner in the whole game:
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q

(a) Original arena A

r s

(b) Semi-alternating arena A

Figure 1: Semi-alternating arena construction

PROPOSITION 4. Let A be an arena, and G be the game (A, {Q}). Either, for any state
q ∈ Q, Eve’s attractor to q is equal to Q, and Eve wins everywhere in G, or there is a state
q ∈ Q such that AttrE({q},A) 6= Q, and Adam wins everywhere in G.

PROOF. In the first case, Eve can win with a strategy whose memory states are the states

of Q: in the memory state q, she plays the attractor strategy to q, until the token reaches it.

She updates then her memory to the next state r, in a circular way. In the second case, Adam

can win surely with any trapping strategy out of AttrE({q},A): if the token ever gets out of

AttrE({q},A), it never goes back.

5 Solving explicit Muller games in PTIME

Our algorithm takes as input a semi-alternating, sensible explicit Muller game whose win-

ning condition is ordered for inclusion; it returns the winning regions of the players. Each

set in F is considered at most once, starting with the (smallest) set F1. At each step, the

operation of a set Fi modifies the arena and the winning condition in one of the following

ways:

If Adam wins (A|Fi
, {Fi}), Fi is removed from F .

If Eve wins (A|Fi
, {Fi}), and Fi is a trap for Adam in A, Eve’s attractor to Fi in A,

AttrE(Fi,A), is removed from A (and added to the winning region of Eve), and all the sets

intersecting AttrE(Fi,A) are removed from F .

If Eve wins (A|Fi
, {Fi}), and Fi is not a trap for Adam in A, a new state Fi, described

in Figure 2, is added to A with the following attributes:

• Fi is a state of Adam;

• the predecessors of Fi are all the states of Eve in Fi;

• the successors of Fi are the successors outside Fi of the states of Adam in Fi.

Furthermore, the state Fi is added to all the supersets of Fi in F , and Fi itself is removed

from F .

The important case, from an intuitive point of view, is the last one: it corresponds to a

“threat” of Eve to win by visiting exactly the states of Fi. Adam has to answer by getting

out, but he can choose his exit from any of his states. Notice that it would not do to simply

replace the whole region Fi by the state Fi: as in Figure 2, Adam may be able to avoid a
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ab

c

F = {{a, b}, {a, b, c}}

(a) Before

ab

c“{a, b}”

F = {{a, b, c, “{a, b}”}}

(b) After

Figure 2: Removal of a set in an explicit Muller condition

state of Fi in a larger arena, even if he is incapable of doing so in A|Fi
.

As only one state is added each step, the number of states in the game is bounded by

|A|+ |F |. The whole procedure is described as Algorithm 1.

In the proof of correctness, we use typewriter fonts to denote the modified arena and

condition, and calligraph fonts to denote the original game. Furthermore, we denote by F|Fi

the intersection of F and P(Fi), i.e. the sets of F that are also subsets of Fi. We can now

proceed to the three main lemmas:

LEMMA 5. If, in the course of a run of Algorithm 1, the game (A|Fi , {Fi}) is winning for Eve
at line 6, then Eve wins everywhere in the game (A|Fi

,F|Fi
).

PROOF. LetH1, . . . ,Hk be the sets of F|Fi
such that (A|Hj , {H

j}) was winning for Eve in the

run of Algorithm 1. Notice that Fi itself is one of these states, say Hk. The σj’s denote her

corresponding winning strategies. We build a strategy σ for Eve in A|Fi
, whose memory

states are stacks of pairs (Hj, ρj). At any time, ρj is a play of A|Hj which can be extended

by the current state q. The initial memory state is (Hk, ε), and the operation of σ when the

memory state is (Hj,w) and the current state is q is described below:

1. If q /∈ Hj, the top pair is removed, and the procedure restarts at step 1 with the new

memory. Notice that it may involve further pops if q still does not belong to the top

set.

2. If q is a state of Eve, and σj(wq) is a new state H
h, thememory ismodified as follows: w

becomes wqH
h, and a new pair (Hh, ε) is pushed at the top of the stack. The procedure

restarts at step 2 with the new memory. Notice that it may involve further pushes if

σh(q) is also a new state.

3. The new memory state is (Hj,wq); if q belongs to Eve, she plays σj(wq).

We claim that σ is winning for Eve in the game (A|Fi
,F|Fi

). Let ρ be a play consistent with

σ, and Hj be the highest set that is never unstacked. We denote by ρj the (infinite) limit of

the “play” part. As ρj is consistent with σj, Inf(ρj) = Hj. Furthermore, Inf(ρ) ⊇ Inf(ρj) ∩Q
and Inf(ρ) ⊆ Hj. So, Inf(ρ) = Hj ∈ F , and Lemma 5 follows.
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Input: An explicit Muller game (A,F )
Output: The winning regions of Eve and Adam

A = (Q, QE, QA, T)← A = (Q,QE,QA, T );1

F← F ;2

WE ← ∅;3

while F 6= ∅ do4

Fi ← pop(F);5

if Eve wins (A|Fi , {Fi}) then6

if Fi is a trap for Adam in A then7

remove AttrE(Fi, A) from A and add it to WE;8

remove all the sets intersecting AttrE(Fi, A) from F;9

else10

add a state Fi to QA;11

add transitions from Fi ∩ QE to Fi;12

add transitions from Fi to T(Fi ∩ QA) \ Fi;13

add Fi to all the supersets of Fi in F;14

end15

end16

end17

return WE ∩Q, Q∩Q18

Algorithm 1: Polynomial algorithm for explicit Muller games

For Adam, the problem is a little more complex: we need two lemmas, whose proofs

are mutually recursive:

LEMMA 6. If, in the course of a run of Algorithm 1, the game (A|Fi , {Fi}) is winning for
Adam at line 6, then Adam wins everywhere in the game (A|Fi

,F|Fi
).

LEMMA 7. If, in the course of a a run of Algorithm 1, the game (A|Fi , {Fi}) is winning for
Eve at line 6, then Adam wins everywhere in the game (A|Fi

,F|Fi
\ {Fi}).

PROOF. We start with the (simpler) proof of Lemma 7. Let H1, . . . ,Hk be the maximal

sets, with respect to inclusion, of F|Fi
. There is a winning strategy τ j for Adam in each Hj:

if Adam won (A|Hj , {H
j}), it is a winning strategy for the game (A|Hj ,F|Hj) (recursive use of

Lemma 6); if Eve won (A|Hj , {H
j}), it is a strategy for the game (A|Hj ,F|Hj \ Hj) (recursive

use of Lemma 7). The strategy τ for Adam in (A|Fi
, {F|Fi

}) uses k top-level memory states

to switch between the {τ j}1≤j≤k. Adam remains in a top-level memory state j only as long

as the token is in Hj. As soon as it gets out, he updates it to (j mod k) + 1. His actions

when the top-level memory state is j are described below:

• if he won (A|Hj , {H
j}), he plays τ j;

• if Eve won (A|Hj , {H
j}), he plays τ j unless he can get out ofHj.

We claim that τ is winning for Adam in (A|Fi
,F|Fi

). Any play ρ consistent with τ falls

in exactly one of the three following categories:
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• The top-level memory of τ is not ultimately constant; thus Inf(ρ) is not included in

any of theHj’s, and ρ is winning for Adam.

• The top-level memory of τ is ultimately constant at j, and (A|Hj , {H
j}) was winning for

Adam; ρ is ultimately a play of A|Hj consistent with τ j, so ρ is winning for Adam.

• The top-level memory of τ is ultimately constant at j, and (A|Hj , {H
j}) was winning for

Eve; ρ is ultimately a play of A|Hj consistent with τ j, so Eve can win only by visiting

all the states of Hj. But Hj is not a trap for Adam, and the definition of τ implies that

Adam leaves as soon as possible. So, at least one of the states of Hj was not visited,

and ρ is winning for Adam.

This completes the proof of Lemma 7. The proof of Lemma 6 is more involved, due to

the necessity to avoid at least one of the states of Fi. By Proposition 4 there is a state q in Fi

such that X = AttrE({q}, A|Fi) is not equal to A|Fi . It follows from the definition of A|Fi that

neither Fi ∩ X nor Fi \ X is empty. Adam’s strategy is then exactly the same as in the proof

of Lemma 7, with the provision that Adam never moves from Fi \ X to X: this guarantees

that the token cannot visit infinitely often all the states of Fi, and completes the proof of

Lemma 6.

The correctness of Algorithm 1 follows from Lemmas 5, 6, and 7: the first one guaran-

tees that the states in WE ∩Q are winning for Eve, and the others that the states remaining at

the end of Algorithm 1 are winning for Adam.

About complexity, there are at most |F | loops in a run, and the most time-consuming

operation is to compute the winner of the games (A|Fi , {Fi}), which are quadratic in |A| ≤
(|A|+ |F |). Thus, the worst-case time complexity of Algorithm 1 is O(|F | · (|A|+ |F |)2),
which completes the proof of Theorem 3.

6 Conclusion

We have shown that the complexity of the winner problem in explicit Muller game belongs

to PTIME, and provided a cubic algorithm computing the winning regions of both players.

It follows from the usual reduction between two-player games and tree automata that

the emptiness problem of explicit Muller tree automata can also be solved in polynomial

time; a natural question is whether this is also the case for other automata problems.

The existence of a polynomial algorithm for parity games remains an open problem:

representing explicitly a parity condition incurs an exponential blow-up in size.
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