# Leaf languages and string compression* 

Markus Lohrey<br>Universität Leipzig, Institut für Informatik, Germany<br>lohrey@informatik.uni-leipzig.de


#### Abstract

Tight connections between leafs languages and strings compressed via straight-line programs (SLPs) are established. It is shown that the compressed membership problem for a language $L$ is complete for the leaf language class defined by $L$ via logspace machines. A more difficult variant of the compressed membership problem for $L$ is shown to be complete for the leaf language class defined by $L$ via polynomial time machines. As a corollary, a fixed linear visibly pushdown language with a PSPACE-complete compressed membership problem is obtained. For XML languages, the compressed membership problem is shown to be coNP-complete.


## 1 Introduction

Leaf languages were introduced in [7,25] and became an important concept in complexity theory. Let us consider a nondeterministic Turing machine $M$. For a given input $x$, one considers the yield string of the computation tree (i.e. the string obtained by listing all leafs from left to right), where accepting (resp. rejecting) leaf configurations yield the letter 1 (resp. 0 ). This string is called the leaf string corresponding to the input $x$. For a given language $K \subseteq\{0,1\}^{*}$ let $\operatorname{LEAF}(M, K)$ denote the set of all inputs for $M$ such that the corresponding leaf string belongs to $K$. By fixing $K$ and taking for $M$ all nondeterministic polynomial time machines, one obtains the polynomial time leaf language class $\operatorname{LEAF}_{a}^{P}(K)$. The index $a$ indicates that we allow Turing machines with arbitrary (non-balanced) computation trees. If we restrict to machines with balanced computation trees, we obtain the class $\operatorname{LEAF}_{b}^{P}(K)$, see $[13,16]$ for a discussion of the different shapes for computation trees.

Many complexity classes can be defined in a uniform way with this construction. For instance, $\mathrm{NP}=\operatorname{LEAF}_{x}^{P}\left(0^{*} 1\{0,1\}^{*}\right)$ and $\operatorname{coNP}=\operatorname{LEAF}_{x}^{P}\left(1^{*}\right)$ for both $x=a$ and $x=b$. In [14], it was shown that PSPACE $=\operatorname{LEAF}_{b}^{P}(K)$ for a fixed regular language $K$. In [16], logspace leaf language classes $\operatorname{LEAF}_{a}^{L}(K)$ and $\operatorname{LEAF}_{b}^{L}(K)$, where $M$ varies over all (resp. all balanced) nondeterministic logspace machines, were investigated. Among other results, a fixed deterministic context-free language $K$ with PSPACE $=\operatorname{LEAF}_{a}^{L}(K)$ was presented. In [8], it was shown that in fact a fixed deterministic one-counter language $K$ as well as a fixed linear deterministic context-free language [15] suffices in order to obtain PSPACE. Here "linear" means that the pushdown automaton makes only one turn.

In $[6,24]$, a tight connection between leaf languages and computational problems for succinct input representations was established. More precisely, it was shown that the membership problem for a language $K \subseteq\{0,1\}^{*}$ is complete (w.r.t. polynomial time reductions in [6] and projection reductions in [24]) for the leaf language class $\operatorname{LEAF}_{b}^{P}(K)$, if the input string $x$ is represented by a Boolean circuit. A Boolean circuit $C\left(x_{1}, \ldots, x_{n}\right)$ with $n$ inputs represents a string $x$ of length $2^{n}$ in the natural way: the $i$-th position in $x$ carries a 1 if
*This work is supported by the DFG research project ALKODA.
(C) Lohrey; licensed under Creative Commons License-NC-ND
and only if $C\left(a_{1}, \ldots, a_{n}\right)=1$, where $a_{1} \cdots a_{n}$ is the $n$-bit binary representation of $i$. In this paper we consider another more practical compressed representation for strings, namely straight-line programs (SLPs) [23]. A straight-line program is a context-free grammar $\mathbb{A}$ that generates exactly one string $\operatorname{val}(\mathbb{A})$. In an SLP, repeated subpatterns in a string have to be represented only once by introducing a nonterminal for the pattern. An SLP with $n$ productions can generate a string of length $2^{n}$ by repeated doubling. Hence, an SLP can be seen indeed as a compressed representation of the string it generates. Several other dictionarybased compressed representations, like for instance Lempel-Ziv (LZ) factorizations, can be converted in polynomial time into SLPs and vice versa [23]. This implies that complexity results can be transfered from SLP-encoded input strings to LZ-encoded input strings.

Algorithmic problems for SLP-compressed strings were studied e.g. in [5, 18, 19, 20, 22, 23]. A central problem in this context is the compressed membership problem for a language $K$ : it is asked whether $\operatorname{val}(\mathbb{A}) \in K$ for a given SLP $\mathbb{A}$. In [19] it was shown that there exists a fixed linear deterministic context-free language with a PSPACE-complete compressed membership problem. A straightforward argument shows that for every language $K$, the compressed membership problem for $K$ is complete for the logspace leaf language class $\operatorname{LEAF}_{a}^{L}(K)$ (Prop. 2). As a consequence, the existence of a linear deterministic context-free language with a PSPACE-complete compressed membership problem [19] can be deduced from the above mentioned $\operatorname{LEAF}_{a}^{L}$-characterization of PSPACE from [8], and vice versa. For polynomial time leaf languages, we reveal a more subtle relationship to SLPs. Recall that the convolution $u \otimes v$ of two strings $u, v \in \Sigma^{*}$ is the string over the paired alphabet $\Sigma \times \Sigma$ that is obtained from gluing $u$ and $v$ in the natural way (we cut off the longer string to the length of the shorter one). We define a fixed projection homomorphism $\rho:\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$ such that for every language $K$, the problem of checking $\rho(\operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B})) \in K$ for two given SLPs $\mathbb{A}, \mathbb{B}$ is complete for the class $\operatorname{LEAF}_{b}^{P}(K)$ (Cor. 4 ). By combining Cor. 4 with the main result from [14] (PSPACE $=\operatorname{LEAF}_{b}^{P}(K)$ for a certain regular language $K$ ), we obtain a regular language $L$ for which it is PSPACE-complete to check whether the convolution of two SLP-compressed strings belongs to $L$ (Cor. 6). Recently, the convolution of SLPcompressed strings was also studied in [5], where for every $n \geq 0$, SLPs $\mathbb{A}_{n}, \mathbb{B}_{n}$ of size $n^{O(1)}$ were constructed such that every SLP for $\operatorname{val}\left(\mathbb{A}_{n}\right) \otimes \operatorname{val}\left(\mathbb{B}_{n}\right)$ has size $\Omega\left(2^{n / 2}\right)$.

From Cor. 6 we obtain a strengthening of one of the above mentioned results from [8] $\left(\right.$ PSPACE $=\operatorname{LEAF}_{a}^{L}(K)$ for a linear deterministic context-free language $K$ as well as a deterministic one-counter language $K$ ) to visibly pushdown languages [1]. The latter constitute a subclass of the deterministic context-free languages which received a lot of attention in recent years due to its nice closure and decidability properties. Visibly pushdown languages can be recognized by deterministic pushdown automata, where it depends only on the input symbol whether the automaton pushes or pops. Visibly pushdown languages were already introduced in [27] as input-driven languages. In [9] it was shown that every visibly pushdown language can be recognized in $\mathrm{NC}^{1}$; thus the complexity is the same as for regular languages [2]. In contrast to this, there exist linear deterministic context-free languages as well as deterministic one-counter languages with an L-complete membership problem [15]. We show that there exists a linear visibly pushdown language with a PSPACE-complete compressed membership problem (Thm. 7). Together with Prop. 2, it follows that PSPACE $=\operatorname{LEAF}_{a}^{L}(K)$ for a linear visibly pushdown language $K$ (Cor. 8).

In [21], nondeterministic finite automata (instead of polynomial time (resp. logspace) Turing-machines) were used as a device for generating leaf strings. This leads to the definition of the leaf language class $\operatorname{LEAF}^{\mathrm{FA}}(K)$. It was shown that $\mathrm{CFL} \subsetneq \operatorname{LEAF}^{\mathrm{FA}}(\mathrm{CFL}) \subseteq$ $\operatorname{DSPACE}\left(n^{2}\right) \cap \operatorname{DTIME}\left(2^{O(n)}\right)$, and the question for sharper upper and lower bounds was posed. Here we give a partial answer to this question. For the linear visibly pushdown language mentioned in the previous paragraph, the class $\operatorname{LEAF}^{\mathrm{FA}}(K)$ contains a PSPACEcomplete language (Thm. 9).

Finally, in Sec. 5 we consider XML-languages [4], which constitute a subclass of the visibly pushdown languages. XML-languages are generated by a special kind of context-free grammars (XML-grammars), where every right-hand side of a production is enclosed by a matching pair of brackets. XML-grammars capture the syntactic features of XML document type definitions (DTDs), see [4]. We prove that, unlike for visibly pushdown languages, for every XML-language the compressed membership problem is in coNP and that there are coNP-complete instances.

Proofs that are omitted due to space restriction will appear in a long version.

## 2 Preliminaries

Let $\Gamma$ be a finite alphabet. The empty word is denoted by $\varepsilon$. Let $s=a_{1} \cdots a_{n} \in \Gamma^{*}$ be a word over $\Gamma\left(n \geq 0, a_{1}, \ldots, a_{n} \in \Gamma\right)$. The length of $s$ is $|s|=n$. For $1 \leq i \leq n$ let $s[i]=a_{i}$ and for $1 \leq i \leq j \leq n$ let $s[i, j]=a_{i} a_{i+1} \cdots a_{j}$. If $i>j$ we set $s[i, j]=\varepsilon$. We denote with $\bar{\Gamma}=\{\bar{a} \mid a \in \Gamma\}$ a disjoint copy of $\Gamma$. For $\bar{a} \in \bar{\Gamma}$ let $\overline{\bar{a}}=a$. For $w=a_{1} \cdots a_{n} \in(\Gamma \cup \bar{\Gamma})^{*}$ let $\bar{w}=\overline{a_{n}} \cdots \overline{a_{1}}$. For two strings $u, v \in \Gamma^{*}$ we define the convolution $u \otimes v \in(\Gamma \times \Gamma)^{*}$ as the string of length $\ell=\min \{|u|,|v|\}$ with $(u \otimes v)[i]=(u[i], v[i])$ for all $1 \leq i \leq \ell$.

A sequence $\left(u_{1}, \ldots, u_{n}\right)$ of natural numbers is superdecreasing if $u_{i}>u_{i+1}+\cdots+u_{n}$ for all $1 \leq i \leq n$. An instance of the subsetsum problem is a tuple $\left(w_{1}, \ldots, w_{k}, t\right)$ of binary coded natural numbers. It is a positive instance if there are $x_{1}, \ldots, x_{k} \in\{0,1\}$ such that $t=$ $x_{1} w_{1}+\cdots+x_{k} w_{k}$. Subsetsum is a classical NP-complete problem. The superdecreasing subsetsum problem is the restriction of subsetsum to instances $\left(w_{1}, \ldots, w_{k}, t\right)$, where $\left(w_{1}, \ldots, w_{k}\right)$ is superdecreasing. In [17] it was shown that superdecreasing subsetsum is P-complete ([17] deals with the superincreasing subsetsum problem; but the results from [17] can be easily transfered to superdecreasing subsetsum). In fact, something more general is shown in [17]: Let $C\left(x_{1}, \ldots, x_{m}\right)$ be a Boolean circuit with variable input gates $x_{1}, \ldots, x_{m}$ (and some additional input gates that are set to fixed Boolean values). Then from $C\left(x_{1}, \ldots, x_{m}\right)$ an instance $\left(t\left(x_{1}, \ldots, x_{m}\right), w_{1}, \ldots, w_{k}\right)$ of superdecreasing subsetsum is constructed. Here, $t\left(x_{1}, \ldots, x_{m}\right)=t_{0}+x_{1} t_{1}+\cdots+x_{m} t_{m}$ is a linear expression such that:

- $t_{1}>t_{2}>\cdots>t_{m}$ and the $t_{i}$ are pairwise distinct powers of 4 . Hence also the sequence $\left(t_{1}, \ldots, t_{m}\right)$ is superdecreasing.
- For all $a_{1}, \ldots, a_{m} \in\{0,1\}: C\left(a_{1}, \ldots, a_{m}\right)$ evaluates to true if and only if $\exists b_{1}, \ldots, b_{k} \in$ $\{0,1\}: t_{0}+a_{1} t_{1}+\cdots+a_{m} t_{m}=b_{1} w_{1}+\cdots+b_{k} w_{k}$.
- $t_{0}+t_{1}+\cdots+t_{m} \leq w_{1}+\cdots+w_{k}$

We encode a superdecreasing sequence $\left(w_{1}, \ldots, w_{k}\right)$ by the string $S\left(w_{1}, \ldots, w_{k}\right) \in\{0,1\}^{*}$ of
length $w_{1}+\cdots+w_{k}+1$ such that for all $0 \leq p \leq w_{1}+\cdots+w_{k}$ :

$$
S\left(w_{1}, \ldots, w_{k}\right)[p+1]= \begin{cases}1 & \text { if } \exists x_{1}, \ldots, x_{k} \in\{0,1\}: p=x_{1} w_{1}+\cdots+x_{k} w_{k}  \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Since $\left(w_{1}, \ldots, w_{k}\right)$ is superdecreasing, the number of 1 's in $S\left(w_{1}, \ldots, w_{k}\right)$ is $2^{k}$.
The lexicographic order on $\mathbb{N}^{*}$ is denoted by $\preceq$, i.e. $u \preceq v$ if either $u$ is a prefix of $v$ or there exist $w, x, y \in \mathbb{N}^{*}$ and $i, j \in \mathbb{N}$ such that $u=w i x, v=w j y$, and $i<j$. A finite ordered tree is a finite set $T \subseteq \mathbb{N}^{*}$ such that for all $w \in \mathbb{N}^{*}, i \in \mathbb{N}$ : if $w i \in T$ then $w, w j \in T$ for every $0 \leq j<i$. The set of children of $u \in T$ is $u \mathbb{N} \cap T$. A node $u \in T$ is a leaf of $T$ if it has no children. We say that $T$ is a full binary tree if (i) every node has at most two children, and (ii) every maximal path in $T$ has the same number of branching nodes (i.e., nodes with exactly two children). A left initial segment of a full binary tree is a tree $T$ such that there exists a full binary tree $T^{\prime}$ and a leaf $v \in T^{\prime}$ such that $T=\left\{u \in T^{\prime} \mid u \preceq v\right\}$.

### 2.1 Leaf languages

A nondeterministic Turing-machine (NTM) $M$ is adequate, if (i) for every input $w \in \Sigma^{*}, M$ does not have an infinite computation on input $w$ and (ii) the set of finitely many transition tuples of $M$ is linearly ordered. For an input $w$ for $M$, we define the computation tree by unfolding the configuration graph of $M$ from the initial configuration. By condition (i) and (ii), the computation tree can be identified with a finite ordered tree $T(w) \subseteq \mathbb{N}^{*}$. For $u \in T(w)$ let $q(u)$ be the $M$-state of the configuration that is associated with the tree node $u$. Then, the leaf string leaf $(M, w)$ is the string $\alpha\left(q\left(v_{1}\right)\right) \cdots \alpha\left(q\left(v_{k}\right)\right)$, where $v_{1}, \ldots, v_{k}$ are all leafs of $T(w)$ listed in lexicographic order, and $\alpha(q)=1$ (resp. $\alpha(q)=0$ ) if $q$ is an accepting (resp. rejecting) state.

An adequate NTM $M$ is balanced, if for every input $w \in \Sigma^{*}, T(w)$ is a left initial segment of a full binary tree. With a language $K \subseteq\{0,1\}^{*}$ we associate the language $\operatorname{LEAF}(M, K)=$ $\left\{w \in \Sigma^{*} \mid \operatorname{leaf}(M, w) \in K\right\}$ and the following four complexity classes:

$$
\begin{aligned}
\operatorname{LEAF}_{a}^{P}(K) & =\{\operatorname{LEAF}(M, K) \mid M \text { is an adequate polynomial time } \operatorname{NTM}\} \\
\operatorname{LEAF}_{b}^{P}(K) & =\{\operatorname{LEAF}(M, K) \mid M \text { is a balanced polynomial time } \operatorname{NTM}\} \\
\operatorname{LEAF}_{a}^{L}(K) & =\{\operatorname{LEAF}(M, K) \mid M \text { is an adequate logarithmic space NTM }\} \\
\operatorname{LEAF}_{b}^{L}(K) & =\{\operatorname{LEAF}(M, K) \mid M \text { is a balanced logarithmic space NTM }\}
\end{aligned}
$$

The first two (resp. last two) classes are closed under polynomial time (resp. logspace) reductions. More details on leaf languages can be found in [7,13,14,16].

### 2.2 Straight-line programs

Following [23], a straight-line program (SLP) over the terminal alphabet $\Gamma$ is a context-free grammar $\mathbb{A}=(V, \Gamma, S, P)(V$ is the set of variables, $\Gamma$ is the set of terminals, $S \in V$ is the initial variable, and $P \subseteq V \times(V \cup \Gamma)^{*}$ is the finite set of productions) such that: (i) for every $A \in V$ there exists exactly one production of the form $(A, \alpha) \in P$ for $\alpha \in(V \cup \Gamma)^{*}$, and (ii) the relation $\{(A, B) \in V \times V \mid(A, \alpha) \in P, B$ occurs in $\alpha\}$ is acyclic. Clearly, the
language generated by the SLP $\mathbb{A}$ consists of exactly one word that is denoted by $\operatorname{val}(\mathbb{A})$. The size of $\mathbb{A}$ is $|\mathbb{A}|=\sum_{(A, \alpha) \in P}|\alpha|$. Every SLP can be transformed in polynomial time into an equivalent SLP in Chomsky normal form, i.e. all productions have the form $(A, a)$ with $a \in \Gamma$ or $(A, B C)$ with $B, C \in V$.

As an example, consider the SLP $\mathbb{A}$ (in Chomsky normal form) that consists of the productions $A_{1} \rightarrow b, A_{2} \rightarrow a$, and $A_{i} \rightarrow A_{i-1} A_{i-2}$ for $3 \leq i \leq 7$. The start variable is $A_{7}$. Then $\operatorname{val}(\mathbb{A})=$ abaababaabaab, which is the 7 -th Fibonacci word. We have $|\mathbb{A}|=12$.

One may also allow exponential expressions of the form $A^{i}$ for $A \in V$ and $i \in \mathbb{N}$ in right-hand sides of productions. Here the number $i$ is coded binary. Such an expression can be replaced by a sequence of $\lceil\log (i)\rceil$ many ordinary productions.

Let us state some simple algorithmic problems that can be easily solved in polynomial time (but not in deterministic logspace under reasonable complexity theoretic assumptions: problem (a) is \#L-complete, problems (b) and (c) are complete for functional P [18]):
(a) Given an SLP $\mathbb{A}$, calculate $|\operatorname{val}(\mathbb{A})|$.
(b) Given an SLP $\mathbb{A}$ and a number $i \in\{1, \ldots,|\operatorname{val}(\mathbb{A})|\}$, calculate $\operatorname{val}(\mathbb{A})[i]$.
(c) Given an SLP $\mathbb{A}$ and two positions $1 \leq i \leq j \leq|\operatorname{val}(\mathbb{A})|$, calculate an SLP for the string $\operatorname{val}(\mathbb{A})[i, j]$.
In [22], Plandowski presented a polynomial time algorithm for testing whether $\operatorname{val}(\mathbb{A})=$ $\operatorname{val}(\mathbb{B})$ for two given SLPs $\mathbb{A}$ and $\mathbb{B}$. For a language $L \subseteq \Sigma^{*}$, we denote with $\operatorname{CMP}(L)$ (compressed membership problem for $L$ ) the following computational problem:

INPUT: An SLP $\mathbb{A}$ over the terminal alphabet $\Sigma$
QUESTION: $\operatorname{val}(\mathbb{A}) \in L$ ?
The following result was shown in $[3,16,20]$ :
Theorem 1. For every regular language $L, \operatorname{CMP}(L)$ can be decided in polynomial time. Moreover, there exists a fixed regular language $L$ such that $\mathrm{CMP}(L)$ is $P$-complete.

In [18], we constructed in logspace from a given superdecreasing sequence ( $w_{1}, \ldots, w_{k}$ ) an SLP $\mathbb{A}$ over $\{0,1\}$ such that $\operatorname{val}(\mathbb{A})=S\left(w_{1}, \ldots, w_{k}\right)$, where $S\left(w_{1}, \ldots, w_{k}\right)$ is the stringencoding from (1). This construction was used in order to prove P-hardness of the problem (b) above. Let us briefly repeat the construction. For $1 \leq i \leq k$ let

$$
d_{i}= \begin{cases}w_{k}-1 & \text { if } i=k  \tag{2}\\ w_{i}-\left(w_{i+1}+\cdots+w_{k}\right)-1 & \text { if } 1 \leq i \leq k-1\end{cases}
$$

Moreover define strings $S_{1}, \ldots, S_{k} \in\{0,1\}^{*}$ by the recursion

$$
\begin{equation*}
S_{k}=10^{d_{k}} 1 \quad S_{i}=S_{i+1} 0^{d_{i}} S_{i+1}(1 \leq i \leq k-1) . \tag{3}
\end{equation*}
$$

Then $S\left(w_{1}, \ldots, w_{k}\right)=S_{1}$. Note that the SLP that implements the recursion (3) can be constructed in logspace from the binary encoded sequence ( $w_{1}, \ldots, w_{k}$ ) (in [18] only the existence of an NC-construction is claimed). The only nontrivial step is the calculation of all suffix sums $w_{i+1}+\cdots+w_{k}$ for $1 \leq i \leq k-1$ in (2), see e.g. [26].

## 3 Straight-line programs versus leaf languages

In [6, 24], it was shown that the membership problem for a language $K \subseteq\{0,1\}^{*}$ is complete (w.r.t. polynomial time reductions in [6] and projection reductions in [24]) for the leaf language class $\operatorname{LEAF}_{b}^{P}(K)$, if the input string is represented by a Boolean circuit. For SLPcompressed strings, we obtain a similar result:

Proposition 2. For every language $K \subseteq\{0,1\}^{*}$, the problem $\operatorname{CMP}(K)$ is complete w.r.t. logspace reductions for the class $\operatorname{LEAF}_{a}^{L}(K)$.

The proposition can be easily shown by translating configuration graphs of logspace machines into SLPs and vice versa. We now prove a more subtle relationship between SLPcompressed strings and polynomial time leaf languages. Let $\rho:(\{0,1\} \times\{0,1\})^{*} \rightarrow\{0,1\}^{*}$ be the morphism defined by

$$
\begin{equation*}
\rho(0,0)=\rho(0,1)=\varepsilon, \quad \rho(1,0)=0, \quad \rho(1,1)=1 . \tag{4}
\end{equation*}
$$

Theorem 3. Let $M$ be a balanced polynomial time NTM. From a given input $w \in \Sigma^{*}$ for $M$ we can construct in polynomial time two SLPs $\mathbb{A}$ and $\mathbb{B}$ such that $|\operatorname{val}(\mathbb{A})|=|\operatorname{val}(\mathbb{B})|$ and $\operatorname{leaf}(M, w)=\rho(\operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B}))$.

Proof. Let $w$ be an input for $M$. Our construction consists of five steps:
Step 1. By simulating $M$ e.g. along the right-most computation path, we can compute in polynomial time the number $m$ of branching nodes along every maximal path in the computation tree $T(w)$. Thus, maximal paths in $T(w)$ can be represented by strings from $\{0,1\}^{m}$.
Step 2. Using the classical Cook-Levin construction, we compute in logspace a Boolean circuit $C_{w}\left(x_{1}, \ldots, x_{m}\right)$ from $w$ such that for all $a_{1}, \ldots, a_{m} \in\{0,1\}: C_{w}\left(a_{1}, \ldots, a_{m}\right)$ evaluates to true if and only if the machine $M$ accepts on the computation path that is specified by the bit string $a_{1} \cdots a_{m}$. The circuit $C_{w}\left(x_{1}, \ldots, x_{m}\right)$ has input gates $x_{1}, \ldots, x_{m}$ together with some additional input gates that carry fixed input bits.
Step 3. The construction from [17] (see Sec. 2) allows us to compute from $C_{w}\left(x_{1}, \ldots, x_{m}\right)$ in logspace a superdecreasing subsetsum instance $\left(t\left(x_{1}, \ldots, x_{m}\right), w_{1}, \ldots, w_{k}\right)$ with $w_{1}, \ldots, w_{k} \in$ $\mathbb{N}$ and $t\left(x_{1}, \ldots, x_{m}\right)=t_{0}+x_{1} t_{1}+\cdots+x_{m} t_{m}$ such that

- $t_{1}>t_{2}>\cdots>t_{m}$ and the sequence $\left(t_{1}, \ldots, t_{m}\right)$ is superdecreasing,
- for all $a_{1}, \ldots, a_{m} \in\{0,1\}: C_{w}\left(a_{1}, \ldots, a_{m}\right)$ evaluates to true if and only if $\exists b_{1}, \ldots, b_{k} \in$ $\{0,1\}: t_{0}+a_{1} t_{1}+\cdots+a_{m} t_{m}=b_{1} w_{1}+\cdots+b_{k} w_{k}$,
- $t_{0}+t_{1}+\cdots+t_{m} \leq w_{1}+\cdots+w_{k}$.

Step 4. By [18] (see the end of Sec. 2.2), we can construct in logspace from the two superdecreasing sequences $\left(t_{1}, \ldots, t_{m}\right),\left(w_{1}, \ldots, w_{k}\right)$ SLPs $\mathbb{A}^{\prime}$ and $\mathbb{B}$ over $\{0,1\}$ such that $\operatorname{val}\left(\mathbb{A}^{\prime}\right)=$ $S\left(t_{1}, \ldots, t_{m}\right)$ and $\operatorname{val}(\mathbb{B})=S\left(w_{1}, \ldots, w_{k}\right)($ see $(1))$. Note that $\left|\operatorname{val}\left(\mathbb{A}^{\prime}\right)\right|=t_{1}+\cdots+t_{m}+1 \leq$ $w_{1}+\cdots+w_{k}+1=|\operatorname{val}(\mathbb{B})|$.
Step 5. Now, we compute in polynomial time the right-most path of the computation tree $T(w)$. Assume that this path is represented by the bit string $r=r_{1} \cdots r_{m} \in\{0,1\}^{m}$. Let $p=r_{1} t_{1}+\cdots+r_{m} t_{m}$. Thus, if $r$ is the lexicographically $n$-th string in $\{0,1\}^{m}$, then $p+1$ is the position of the $n$-th 1 in $\operatorname{val}\left(\mathbb{A}^{\prime}\right)$. From the SLP $\mathbb{A}^{\prime}$ we can finally compute in polynomial
time an SLP $\mathbb{A}$ with $\operatorname{val}(\mathbb{A})=0^{t_{0}} S\left(t_{1}, \ldots, t_{m}\right)[1, p+1] 0^{w_{1}+\cdots+w_{k}-t_{0}-p}$. Then $|\operatorname{val}(\mathbb{A})|=$ $|\operatorname{val}(\mathbb{B})|$ and for all positions $q \in\{0, \ldots,|\operatorname{val}(\mathbb{A})|-1\}$ :
$\bullet \operatorname{val}(\mathbb{A})[q+1]=1$ if and only if $\exists a_{1}, \ldots, a_{m} \in\{0,1\}: q=t_{0}+a_{1} t_{1}+\cdots+a_{m} t_{m}$

- $\operatorname{val}(\mathbb{B})[q+1]=1$ if and only if $\exists b_{1}, \ldots, b_{k} \in\{0,1\}: q=b_{1} w_{1}+\cdots+b_{k} w_{k}$.

Due to the definition of the projection $\rho$ in (4), we finally have

$$
\rho(\operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B}))=\prod_{x \in\{0,1\}^{m}, x \preceq r} \alpha(x),
$$

where $\alpha(x) \in\{0,1\}$ and $\alpha\left(x_{1} \cdots x_{m}\right)=1$ if and only if there exist $b_{1}, \ldots, b_{k} \in\{0,1\}$ such that $t_{0}+x_{1} t_{1}+\cdots x_{m} t_{m}=b_{1} w_{1}+\cdots+b_{k} w_{k}$. Hence, $\alpha\left(x_{1} \cdots x_{m}\right)=1$ if and only if $M$ accepts on the computation path specified by $x_{1} \cdots x_{m} \preceq r$. Thus, $\operatorname{leaf}(M, w)=\rho(\operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B}))$.

Thm. 3 implies the hardness part in the following corollary. The proof of the upper bound is not difficult and left to the reader.
Corollary 4. For every language $K \subseteq\{0,1\}^{*}$, the following problem is complete for the class $\operatorname{LEAF}_{b}^{P}(K)$ w.r.t. polynomial time reductions:

INPUT: Two SLPs $\mathbb{A}$ and $\mathbb{B}$ over $\{0,1\}$
QUESTION: $\rho(\operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B})) \in K$ ?
In order to get completeness results w.r.t. logspace reductions in the next section, we need a variant of Thm. 3. We say that an NTM is fully balanced, if for every input $w, T(w)$ is a full binary tree (and not just a left initial segment of a full binary tree).
TheOrem 5. Let M be a fully balanced polynomial time NTM such that for some polynomial $p(n)$, every maximal path in a computation tree $T(w)$ has exactly $p(|w|)$ many branching nodes. From a given input $w \in \Sigma^{*}$ for $M$ we can construct in logspace two SLPs $\mathbb{A}$ and $\mathbb{B}$ such that $\operatorname{leaf}(M, w)=\rho(\operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B}))$ and $|\operatorname{val}(\mathbb{A})|=|\operatorname{val}(\mathbb{B})|$.
Proof. Only step 1 and 5 in the proof of Thm. 3 cannot be done in logspace, unless $\mathrm{L}=\mathrm{P}$. Under the additional assumptions of Thm. 5, we have to compute in step 1 only $m=p(|w|)$, which is possible in logspace, since $p(n)$ is a fixed polynomial. In step 5 , we just have to compute in logspace an SLP $\mathbb{A}$ with $\operatorname{val}(\mathbb{A})=0^{t_{0}} S\left(t_{1}, \ldots, t_{m}\right) 0^{w_{1}+\cdots+w_{k}-\left(t_{0}+\cdots+t_{m}\right)}$.

## 4 Applications

Corollary 6. There exists a fixed regular language $L \subseteq(\{0,1\} \times\{0,1\})^{*}$ such that the following problem is PSPACE-complete w.r.t. logspace reductions:

INPUT: Two SLPs $\mathbb{A}$ and $\mathbb{B}$ over $\{0,1\}$
QUESTION: $\operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B}) \in L$ ?
Proof. Membership in PSPACE is obvious. Let us prove the lower bound. By [14], there exists a regular language $K \subseteq\{0,1\}^{*}$ and a balanced polynomial time NTM $M$ such that the language $\operatorname{LEAF}(M, K)$ is PSPACE-complete. Using the padding technique from [16, Prop. 2.3], we can even assume that $M$ is fully balanced and that the number of branching nodes along every maximal path of $T(w)$ is exactly $p(|w|)$ for a polynomial $p(n)$. Let $L=$ $\rho^{-1}(K)$, which is a fixed regular language, since $\rho$ from (4) is a fixed morphism. Let $w$
be an input for $M$. By Thm. 5 , we can construct in logspace two SLPs $\mathbb{A}$ and $\mathbb{B}$ such that $\rho(\operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B}))=\operatorname{leaf}(M, w)$. Hence, the corollary follows from $w \in \operatorname{LEAF}(M, K) \Longleftrightarrow$ $\operatorname{leaf}(M, w)=\rho(\operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B})) \in K \Longleftrightarrow \operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B}) \in L$.

From Thm. 5 it follows that that even the set of all SLP-pairs $\langle\mathbb{A}, \mathbb{B}\rangle$ with $\operatorname{val}(\mathbb{A}) \otimes$ $\operatorname{val}(\mathbb{B}) \in L$ and $|\operatorname{val}(\mathbb{A})|=|\operatorname{val}(\mathbb{B})|(\operatorname{or}|\operatorname{val}(\mathbb{A})| \leq|\operatorname{val}(\mathbb{B})|)$ is PSPACE-complete w.r.t. logspace reductions. We need this detail in the proof of the next theorem.

In [19] we constructed a linear deterministic context-free language with a PSPACEcomplete compressed membership problem. As noted in the introduction, this result follows also from PSPACE $=\operatorname{LEAF}_{a}^{L}(K)$ for a linear deterministic context-free language $K$ [8] together with Prop. 2. We now sharpen this result to linear visibly pushdown languages.

Let $\Sigma_{c}$ and $\Sigma_{r}$ be two disjoint finite alphabets (call symbols and return symbols) and let $\Sigma=\Sigma_{c} \cup \Sigma_{r}$. A visibly pushdown automaton (VPA) [1] over $\left(\Sigma_{c}, \Sigma_{r}\right)$ is a tuple $V=$ $\left(Q, q_{0}, \Gamma, \perp, \Delta, F\right)$, where $Q$ is a finite set of states, $q_{0} \in Q$ is the initial state, $F \subseteq Q$ is the set of final states, $\Gamma$ is the finite set of stack symbols, $\perp \in \Gamma$ is the initial stack symbol, and

$$
\Delta \subseteq\left(Q \times \Sigma_{c} \times Q \times(\Gamma \backslash\{\perp\})\right) \cup\left(Q \times \Sigma_{r} \times \Gamma \times Q\right)
$$

is the set of transitions. In [1], the input alphabet may also contain internal symbols, on which the automaton does not touch the stack at all. For our lower bound, we will not need internal symbols. A configuration of $V$ is a triple from $Q \times \Sigma^{*} \times \Gamma^{*}$. For two configurations $(p, a u, v)$ and $(q, u, w)$ (with $\left.a \in \Sigma, u \in \Sigma^{*}\right)$ we write $(p, a u, v) \Rightarrow_{V}(q, u, w)$ if

- $a \in \Sigma_{c}$ and $w=\gamma v$ for some $\gamma \in \Gamma$ with $(p, a, q, \gamma) \in \Delta$, or
- $a \in \Sigma_{r}$ and $v=\gamma w$ for some $\gamma \in \Gamma$ with $(p, a, \gamma, q) \in \Delta$, or
- $a \in \Sigma_{r}, u=v=\perp$, and $(p, a, \perp, q) \in \Delta$.

The language $L(V)$ is defined as $L(V)=\left\{w \in \Sigma^{*} \mid \exists f \in F, u \in \Gamma^{*}:\left(q_{0}, w, \perp\right) \Rightarrow_{V}^{*}(f, \varepsilon, u)\right\}$. The VPA $V$ is deterministic if for every $p \in Q$ and $a \in \Sigma$ the following hold:

- If $a \in \Sigma_{c}$, then there is at most one pair $(q, \gamma) \in Q \times \Gamma$ with $(p, a, q, \gamma) \in \Delta$.
- If $a \in \Sigma_{r}$, then for every $\gamma \in \Gamma$ there is at most one $q \in Q$ with $(p, a, \gamma, q) \in \Delta$.

For every VPA $V$ there exists a deterministic VPA $V^{\prime}$ with $L(V)=L\left(V^{\prime}\right)$ [1]. A 1-turn VPA is a VPA $V$ with $L(V) \subseteq \Sigma_{c}^{*} \Sigma_{r}^{*}$. In this case $L(V)$ is called a linear visibly pushdown language.

By a classical result from [11], there exists a context-free language with a LOGCFLcomplete membership problem. For visibly pushdown languages the complexity of the membership problem decreases to the circuit complexity class $\mathrm{NC}^{1}[9]$ and is therefore of the same complexity as for regular languages [2]. In contrast to this, by the following theorem, compressed membership is in general PSPACE-complete even for linear visibly pushdown languages, whereas it is P -complete for regular languages (Thm. 1):
Theorem 7. There exists a linear visibly pushdown language $K$ such that $\operatorname{CMP}(K)$ is PSPACE-complete w.r.t. logspace reductions.

Proof. Membership in PSPACE holds even for an arbitrary context-free language $K$ [23]. For the lower bound, we reduce the problem from Cor. 6 to $\operatorname{CMP}(K)$ for some linear visibly pushdown language $K$. Let $L \subseteq(\{0,1\} \times\{0,1\})^{*}$ be the regular language from Cor. 6 and let $A=\left(Q,\{0,1\} \times\{0,1\}, \delta, q_{0}, F\right)$ be a deterministic finite automaton with $L(A)=L$. W.l.o.g. assume that the initial state $q_{0}$ has no incoming transitions.

From two given SLPs $\mathbb{A}$ and $\mathbb{B}$ over $\{0,1\}$ we can easily construct in logspace an SLP $\mathbb{C}$ over $\Sigma=\{0,1, \overline{0}, \overline{1}\}$ with $\operatorname{val}(\mathbb{C})=\overline{\operatorname{val}(\mathbb{B})} \operatorname{val}(\mathbb{A})$. Let $V=\left(Q, q_{0},\{\perp, 0,1\}, \perp, \Delta, F\right)$ be the 1-turn VPA over $(\{\overline{0}, \overline{1}\},\{0,1\})$ with the following transitions:

$$
\Delta=\left\{\left(q_{0}, \bar{x}, q_{0}, x\right) \mid x \in\{0,1\}\right\} \cup\{(q, x, y, p) \mid x, y \in\{0,1\}, \delta(q,(x, y))=p\}
$$

Thus, $V$ can only read words of the form $\bar{v} u$ with $u, v \in\{0,1\}^{*}$ and $|v| \geq|u|$ (recall that $q_{0}$ has no incoming transitions). When reading such a word $\bar{v} u, V$ first pushes the word $v$ (reversed) on the stack and then simulates the automaton $A$ on the string $u \otimes v$ and thereby pops from the stack. From the construction of $V$, we obtain

$$
\operatorname{val}(\mathbb{C})=\overline{\operatorname{val}(\mathbb{B})} \operatorname{val}(\mathbb{A}) \in L(V) \quad \Longleftrightarrow \quad \operatorname{val}(\mathbb{A}) \otimes \operatorname{val}(\mathbb{B}) \in L(A) \wedge|\operatorname{val}(\mathbb{A})| \leq|\operatorname{val}(\mathbb{B})|
$$

By Cor. 6 (and the remark after the proof), this concludes the proof.
Prop. 2 and Thm. 7 imply:
Corollary 8. PSPACE $=\operatorname{LEAF}_{a}^{L}(K)$ for some linear visibly pushdown language $K$.
In [21], a suitable variant of nondeterministic finite automata were used as leaf string generating devices. A finite leaf automaton (FLA) is a tuple $A=\left(Q, \Sigma, \Gamma, \delta, \rho, q_{0}\right)$, where $Q$ is a finite set of states, $\Sigma$ and $\Gamma$ are finite alphabets, $\delta: Q \times \Sigma \rightarrow Q^{+}$is the transition mapping, $\rho: Q \rightarrow \Gamma$ is the output mapping, and $q_{0} \in Q$ is the initial state. For every state $q \in Q$ and every input word $w \in \Sigma^{*}$, we define by induction the string $\widehat{\delta}(q, w)$ as follows: $\widehat{\delta}(q, \varepsilon)=q$ and $\widehat{\delta}(q, a u)=\widehat{\delta}\left(q_{1}, u\right) \cdots \widehat{\delta}\left(q_{n}, u\right)$ if $a \in \Sigma$ and $\delta(q, a)=q_{1} \cdots q_{n}$. Let $\operatorname{leaf}(A, w)=\rho\left(\widehat{\delta}\left(q_{0}, w\right)\right)$, where $\rho: Q \rightarrow \Gamma$ is extended to a morphism on $Q^{*}$. For $K \subseteq \Gamma^{*}$ let $\operatorname{LEAF}(A, K)=\left\{w \in \Sigma^{*} \mid \operatorname{leaf}(A, w) \in K\right\}$ and $\operatorname{LEAF}(K)=\{\operatorname{LEAF}(A, K) \mid A$ is an FLA $\}$.

Theorem 9. There exists a fixed linear visibly pushdown language $K$ and an FLA A such that $\operatorname{LEAF}(A, K)$ is PSPACE-complete w.r.t. logspace reductions.

Proof. We use the linear visibly pushdown language $K$ from the proof of Thm. 7. Notice that the question whether $\operatorname{val}(\mathbb{C}) \in K$ is already PSPACE-complete for a quite restricted class of SLPs. By tracing the construction of the SLP C (starting from the proof of Thm. 5), we see that it is already PSPACE-complete to check for a number $t_{0}$ and two superdecreasing sequences $\left(t_{1}, \ldots, t_{m}\right),\left(w_{1}, \ldots, w_{k}\right)$ (all numbers are encoded binary) whether

$$
\begin{equation*}
\overline{S\left(w_{1}, \ldots, w_{k}\right)} 0^{t_{0}} S\left(t_{1}, \ldots, t_{m}\right) 0^{w_{1}+\cdots+w_{k}-\left(t_{0}+\cdots+t_{m}\right)} \in K . \tag{5}
\end{equation*}
$$

Here we use again the encoding of superdecreasing sequences from (1). So, it remains to find an FLA $A$ with the following property: from given input data $t_{0},\left(t_{1}, \ldots, t_{m}\right),\left(w_{1}, \ldots, w_{k}\right)$ as above we can construct in logspace a string $w$ such that leaf $(A, w)$ is exactly the string in (5). We only present an FLA $A$ and a logspace construction of a string $w$ from a superdecreasing sequence $\left(w_{1}, \ldots, w_{k}\right)$ such that leaf $(A, w)=S\left(w_{1}, \ldots, w_{k}\right)$. From this FLA, an FLA for producing the leaf string (5) can be easily derived. We use the following logspace-computable exponent-encoding of a natural number $d=2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{m}}\left(e_{1}<e_{2}<\cdots<e_{m}\right)$ :

$$
e(d)=a^{e_{1}} \$ a^{e_{2}} \$ \cdots a^{e_{m-1}} \$ a^{e_{m}} \widetilde{\$} \in\{a, \$\}^{*} \widetilde{\$} .
$$

Next, we derive in logspace from the superdecreasing sequence $\left(w_{1}, \ldots, w_{k}\right)$ the sequence ( $d_{1}, \ldots, d_{k}$ ) of differences as defined in (2) and encode it by the string

$$
e\left(d_{1}, \ldots, d_{k}\right)=\left(\prod_{i=1}^{k-1} \# e\left(d_{i}\right)\right) \widetilde{\#} e\left(d_{k}\right) \in\{a, \$, \widetilde{\$}, \#, \widetilde{\#}\}^{*}
$$

Our fixed FLA is $A=\left(\left\{q_{0}, p_{r}, p_{\ell}, r_{0}, r_{1}\right\},\{a, \$, \widetilde{\$}, \#, \widetilde{\#}\},\{0,1\}, \delta, \rho, q_{0}\right)$, where the transition function $\delta$ is defined as follows:

$$
\begin{array}{lll}
\delta\left(q_{0}, \#\right)=q_{0} p_{r} q_{0} & \delta\left(p_{r}, a\right)=p_{\ell} p_{r} & \delta\left(p_{\ell}, a\right)=p_{\ell} p_{\ell} \\
\delta\left(q_{0}, x\right)=q_{0} \text { for } x \in\{a, \$, \widetilde{\$}\} & \delta\left(p_{r}, \$\right)=r_{0} p_{r} & \delta\left(p_{\ell}, x\right)=r_{0} \text { for } x \in\{\$, \widetilde{\$}\} \\
\delta\left(q_{0}, \widetilde{\#}\right)=r_{1} p_{r} r_{1} & \delta\left(p_{r}, \widetilde{\$}\right)=r_{0} & \delta\left(r_{i}, x\right)=r_{i} \text { for } x \in \Sigma, i \in\{0,1\}
\end{array}
$$

The $\delta$-values that are not explicitly defined can be set arbitrarily. Finally, let $\rho\left(r_{0}\right)=0$ and $\rho\left(r_{1}\right)=1$; all other $\rho$-values can be defined arbitrarily. We claim that leaf $\left(A, e\left(d_{1}, \ldots, d_{k}\right)\right)=$ $S\left(w_{1}, \ldots, w_{k}\right)$. First note that $\widehat{\delta}\left(p_{r}, a^{e} \$\right)=r_{0}^{2^{e}} p_{r}$ and $\widehat{\delta}\left(p_{r}, a^{e} \widetilde{\$}\right)=r_{0}^{2^{e}}$. Since $\delta\left(r_{0}, x\right)=r_{0}$ for all input symbols $x$, we have $\widehat{\delta}\left(p_{r}, e(d)\right)=r_{0}^{d}$ for every number $d$ and therefore:

$$
\begin{aligned}
& \widehat{\delta}\left(q_{0}, \# e(d)\right)=\widehat{\delta}\left(q_{0}, e(d)\right) \widehat{\delta}\left(p_{r}, e(d)\right) \widehat{\delta}\left(q_{0}, e(d)\right)=q_{0} r_{0}^{d} q_{0} \\
& \widehat{\delta}\left(q_{0}, \# e(d)\right)=\widehat{\delta}\left(r_{1}, e(d)\right) \widehat{\delta}\left(p_{r}, e(d)\right) \widehat{\delta}\left(r_{1}, e(d)\right)=r_{1} r_{0}^{d} r_{1}
\end{aligned}
$$

Hence, the FLA $A$ realizes the recurrence (3) when reading the input $e\left(d_{1}, \ldots, d_{k}\right)$.

## 5 Compressed membership in XML languages

In this section, we consider a subclass of the visibly pushdown languages, which is motivated in connection with XML. Let $B$ be a finite set of opening brackets and let $\bar{B}$ be the set of corresponding closing brackets. An XML-grammar [4] is a tuple $G=\left(B,\left(R_{b}\right)_{b \in B}, a\right)$ where $a \in B$ (the axiom) and $R_{b}$ is a regular language over the alphabet $\left\{X_{c} \mid c \in B\right\}$. We identify $G$ with the context-free grammar, where (i) $\left\{X_{b} \mid b \in B\right\}$ is the set of variables, (ii) $B \cup \bar{B}$ is the set of terminals, (iii) $X_{a}$ is the start variable, and (iv) the (infinite) set of productions is $\left\{X_{b} \rightarrow b w \bar{b} \mid b \in B, w \in R_{b}\right\}$. Since $R_{b}$ is regular, this set is equivalent to a finite set of productions. One can show that $L(G)$ is a visibly pushdown language [1]. XML-grammars capture the syntactic features of XML document type definitions (DTDs), see [4] for details.
Theorem 10. For every XML-grammar $G, \operatorname{CMP}(L(G))$ belongs to coNP. Moreover, there is an XML-grammar $G$ such that $\operatorname{CMP}(L(G))$ is coNP-complete w.r.t. logspace reductions.

For the proof of the upper bound in Thm. 10 we need a few definitions. Let us fix an XML-grammar $G=\left(B,\left(R_{b}\right)_{b \in B}, a\right)$ for the further considerations. The set $D_{B} \subseteq(B \cup \bar{B})^{+}$ of all Dyck primes over $B$ is the set of all well-formed strings over $B \cup \bar{B}$ that do not have a non-empty proper prefix, which is well-formed as well. Formally, $D_{B}$ is the smallest set such that $w_{1}, \ldots, w_{n} \in D_{B}(n \geq 0)$ implies $b w_{1} \cdots w_{n} \bar{b} \in D_{B}$. For $b \in B$ let $D_{b}=D_{B} \cap b(B \cup \bar{B})^{*} \bar{b}$. The set of all Dyck words over $B \cup \bar{B}$ is $D_{B}^{*}$. Note that $L(G) \subseteq D_{a}$.

Let $w \in D_{B}^{*}$, and let $1 \leq i \leq|w|$ be a position with $w[i] \in B$, i.e. the $i$-th symbol in $w$ is an opening bracket. Since $w \in D_{B}^{*}$, there exists a unique position $\gamma(w, i)>i$ with $w[i, \gamma(w, i)] \in$
$D_{B}$. The string $w[i+1, \gamma(w, i)-1]$ belongs to $D_{B}^{*}$. Since $D_{B}$ is a code, there exists a unique factorization $w[i+1, \gamma(w, i)-1]=w_{1} \cdots w_{n}$ with $n \geq 0$ and $w_{1}, \ldots, w_{n} \in D_{B}$. Moreover, for every $1 \leq i \leq n$ let $b_{i}$ be the unique opening bracket such that $w_{i} \in D_{b_{i}}$. Finally, define surface $(w, i)=X_{b_{1}} X_{b_{2}} \cdots X_{b_{n}}$. The term "surface" is motivated by the surface of $b \in B$ from [4]. A straightforward induction shows:
Lemma 11. Let $w \in(B \cup \bar{B})^{*}$. Then $w \in L(G)$ if and only if (i) $w \in D_{a}$ and (ii) surface $(w, j) \in$ $R_{b}$ for every position $1 \leq j \leq|w|$ such that $w[j]=b \in B$.

The next lemma was shown in [19, Lemma 5.6]:
LEMMA 12. $\operatorname{CMP}\left(D_{B}^{*}\right)$ can be solved in polynomial time. Moreover, for a given SLP $\mathbb{A}$ such that $w:=\operatorname{val}(\mathbb{A}) \in D_{B}^{*}$ and a given (binary coded) position $1 \leq i \leq|w|$ with $w[i] \in B$ one can compute the position $\gamma(w, i)$ in polynomial time.

Lemma 12 and the fact $w \in D_{B} \Longleftrightarrow\left(w \in D_{B}^{*}\right.$ and $\left.\gamma(w, 1)=|w|\right)$ implies:
Proposition 13. $\operatorname{CMP}\left(D_{B}\right)$ can be solved in polynomial time.
For the proof of Thm. 10 we need one more technical lemma, whose proof has to be omitted in this short version:

Lemma 14. For a given SLP $\mathbb{A}$ such that $w:=\operatorname{val}(\mathbb{A}) \in D_{B}^{*}$ and a given (binary coded) position $1 \leq i \leq|w|$ with $w[i] \in B$ one can compute an SLP for the string surface $(w, i)$ in polynomial time.

Now we can prove Thm. 10: For the coNP upper bound, let $G=\left(B,\left(R_{b}\right)_{b \in B}, a\right)$ be an XML grammar and let $\mathbb{A}$ be an SLP over the terminal alphabet $B \cup \bar{B}$ with $w=\operatorname{val}(\mathbb{A})$. By Lemma 11 we have to check that (i) $w \in D_{a}=D_{B} \cap a(B \cup \bar{B})^{*} \bar{a}$ and (ii) surface $(w, j) \in R_{b}$ for all $1 \leq j \leq|w|$ with $w[j]=b \in B$. Condition (i) can be checked in deterministic polynomial time by Prop. 13; condition (ii) belongs to coNP by Lemma 14 and Thm. 1. The proof of the coNP lower bound is similar to the proof of [19, Thm. 5.2] and therefore omitted.

## References

[1] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. STOC 2004, 202211. ACM Press, 2004.
[2] D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC ${ }^{1}$. J. Comput. System Sci., 38:150-164, 1989.
[3] M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to circuit evaluation. SIAM J. Comput., 26(1):138-152, 1997.
[4] J. Berstel and L. Boasson. Formal properties of XML grammars and languages. Acta Inform., 38(9):649-671, 2002.
[5] A. Bertoni, C. Choffrut, and R. Radicioni. Literal shuffle of compressed words. In Proc. IFIP TCS 2008, 87-100. Springer, 2008.
[6] B. Borchert and A. Lozano. Succinct circuit representations and leaf language classes are basically the same concept. Inform. Process. Lett., 59(4):211-215, 1996.
[7] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes. Theoret. Comput. Sci., 104(2):263-283, 1992.
[8] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC ${ }^{1}$ computation. J. Comput. System Sci., 57(2):200-212, 1998.
[9] P. W. Dymond. Input-driven languages are in $\log n$ depth. Inform. Process. Lett., 26(5):247-250, 1988.
[10] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for Lempel-Ziv encoding. In Proc. SWAT 1996, LNCS 1097, 392-403. Springer, 1996.
[11] S. Greibach. The hardest context-free language. SIAM J. Comput., 2(4):304-310, 1973.
[12] C. Hagenah. Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD thesis, University of Stuttgart, Institut für Informatik, 2000.
[13] U. Hertrampf. The shapes of trees. In Proc. COCOON 1997, LNCS 1276, 412-421. Springer, 1997.
[14] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power of polynomial time bit-reductions. In Proc. Eighth Annual Structure in Complexity Theory Conference, 200-207. IEEE Computer Society Press, 1993.
[15] M. Holzer and K.-J. Lange. On the complexities of linear LL(1) and LR(1) grammars. In Proc. FCT 1993, LNCS 710, 299-308. Springer, 1993.
[16] B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime leaf languages. Inform. and Comput., 129(1):21-33, 1996.
[17] H. J. Karloff and W. L. Ruzzo. The iterated mod problem. Inform. and Comput., 80(3):193-204, 1989.
[18] Y. Lifshits and M. Lohrey. Querying and embedding compressed texts. In Proc. MFCS 2006, LNCS 4162, 681-692. Springer, 2006.
[19] M. Lohrey. Word problems and membership problems on compressed words. SIAM J. Comput., 35(5):1210-1240, 2006.
[20] N. Markey and P. Schnoebelen. A PTIME-complete matching problem for SLPcompressed words. Inform. Process. Lett., 90(1):3-6, 2004.
[21] T. Peichl and H. Vollmer. Finite automata with generalized acceptance criteria. Discrete Math. Theor. Comput. Sci., 4(2):179-192 (electronic), 2001.
[22] W. Plandowski. Testing equivalence of morphisms on context-free languages. In Proc. ESA'94, LNCS 855, 460-470. Springer, 1994.
[23] W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed words. In J. Karhumäki, H. A. Maurer, G. Paun, and G. Rozenberg, editors, Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, 262-272. Springer, 1999.
[24] H. Veith. Succinct representation, leaf languages, and projection reductions. Inform. and Comput., 142(2):207-236, 1998.
[25] N. K. Vereshchagin. Relativizable and nonrelativizable theorems in the polynomial theory of algorithms. Izv. Ross. Akad. Nauk Ser. Mat., 57(2):51-90, 1993.
[26] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.
[27] B. von Braunmühl and R. Verbeek. Input-driven languages are recognized in $\log n$ space. In Proc. FCT 1983, LNCS 158, 40-51. Springer, 1983.

