
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 340-351

Average-Time Games∗

Marcin Jurdzi ński 1 and Ashutosh Trivedi 2

1 Department of Computer Science, University of Warwick, UK

mju@dcs.warwick.ac.uk

2 Computing Laboratory, University of Oxford, UK

trivedi@comlab.ox.ac.uk

ABSTRACT. An average-time game is played on the infinite graph of configurations of a finite
timed automaton. The two players, Min and Max, construct an infinite run of the automaton by
taking turns to perform a timed transition. Player Min wants to minimize the average time per
transition and player Max wants to maximize it. A solution of average-time games is presented
using a reduction to average-price game on a finite graph. A direct consequence is an elementary
proof of determinacy for average-time games. This complements our results for reachability-time
games and partially solves a problem posed by Bouyer et al., to design an algorithm for solving
average-price games on priced timed automata. The paper also establishes the exact computational
complexity of solving average-time games: the problem is EXPTIME-complete for timed automata
with at least two clocks.

1 Introduction

Real-time open systems are computational systems that interact with environment and whose

correctness depends critically on the time at which they perform some of their actions. The

problem of design and verification of such systems can be formulated as two-player zero-sum

games. A heart pacemaker is an example of a real-time open system as it interacts with the

environment (heart, body movements, and breathing) and its correctness depends critically

on the time at which it performs some of its actions (sending pace signals to the heart in

real time). Other examples of safety-critical real-time open systems include nuclear reac-

tor protective systems, industrial process controllers, aircraft-landing scheduling systems,

satellite-launching systems, etc. Designing correct real-time systems is of paramount im-

portance. Timed automata [2] are a popular and well-established formalism for modeling

real-time systems, and games on timed automata can be used to model real-time open sys-

tems. In this paper, we introduce average-time games which model the interaction between

the real-time open system and the environment; and we are interested in finding a strategy

of the system which results in minimum average-time per transition, assuming adversarial

environment.

Related Work. Games with quantitative payoffs can be studied as a model for optimal-

controller synthesis [3, 1, 6]. Among various quantitative payoffs the average-price pay-

off [9, 8] is the most well-studied in game theory, Markov decision processes, and planning

literature [8, 14], and it has numerous appealing interpretations in applications. Most al-

gorithms for solving Markov decision processes [14] or games with average-price payoff

∗This work was partially supported by the EPSRC grants EP/E022030/1 and EP/F001096/1.

c© M. Jurdziński and A. Trivedi; licensed under Creative Commons License-NC-ND

FSTTCS 2008
IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1765

M. JURDZIŃSKI AND A. TRIVEDI FSTTCS 2008 341

work for finite graphs only [15, 8]. Asarin and Maler [3] presented the first algorithm for

games on timed automata (timed games) with a quantitative payoff: reachability-time pay-

off. Their work was later generalized by Alur et al. [1] and Bouyer et al. [6] to give partial

decidability results for reachability-price games on linearly-priced timed automata. The ex-

act computational complexity of deciding the value in timed games with reachability-time

payoff was shown to be EXPTIME in [11, 7]. Bouyer et al. [5] also studied the more difficult

average-price payoffs, but only in the context of scheduling, which in game-theoretic termi-

nology corresponds to 1-player games. They left open the problem of proving decidability

of 2-player average-reward games on linearly-priced timed automata. We have recently ex-

tended the results of Bouyer et al. to solve 1-player games onmore general concavely-priced

timed automata [12]. In this paper we address the important and non-trivial special case of

average-time games (i.e., all locations have unit costs), which was also left open by Bouyer

et al.

Our Contributions. Average-time games on timed automata are introduced. This paper

gives an elementary proof of determinacy for these games. A new type of region [2] based

abstraction—boundary region graph—is defined, which generalizes the corner-point ab-

straction of Bouyer et al. [5]. Our solution allows computing the value of average-time

games for an arbitrary starting state (i.e., including non-corner states). Finally, we establish

the exact complexity of solving average-time games: the problem is EXPTIME-complete for

timed automata with at least two clocks.

Organization of the Paper. In Section 2 we discuss average-price games (also known as

mean-payoff games) on finite graphs and cite some important results for these games. In

Section 3 we introduce average-time games on timed automata. In Section 4 we introduce

some region-based abstractions of timed automata, including the closed region graph, and

its subgraphs: the boundary region graph, and the region graph. While the region graph is

semantically equivalent to the corresponding timed automaton, the boundary region graph

has the property that for every starting state, the reachable state space is finite. We introduce

average-time games on these graphs and show that if we have the solution of the average-

time game for any of these graphs, then we get the solution of the average-time game for

the corresponding timed automaton. In Section 5 we discuss the computational complexity

of solving average-time games.

Notations. We assume that, wherever appropriate, sets Z of integers, N of non-negative

integers and R of reals contain a maximum element ∞, and we write N+ for the set of

positive integers and R⊕ for the set of non-negative reals. For n ∈ N, we write LnMN for the

set {0, 1, . . . , n}, and LnMR for the set {r ∈ R : 0 ≤ r ≤ n} of non-negative reals bounded

by n. For a real number r ∈ R, we write |r| for its absolute value, we write ⌊r⌋ for its integer
part, i.e., the largest integer n ∈ N, such that n ≤ r, and we write *r+ for its fractional part,

i.e., we have *r+ = r− ⌊r⌋.

2 Average-Price Games

A (perfect-information) two-player average-price game [15, 8] Γ = (V, E,VMax,VMin, p) con-

sists of a finite directed graph (V, E), a partition V = VMax ∪ VMin of vertices, and a price

function π : E → Z. A play starts at a vertex v0 ∈ V. If v0 ∈ Vp, for p ∈ {Max,Min }, then

342 AVERAGE-TIME GAMES

player p chooses a successor of the current vertex v0, i.e., a vertex v1, such that (v0, v1) ∈ E,

and v1 becomes the new current vertex. When this happens then we say that player p has

made a move from the current vertex. Players keep making moves in this way indefinitely,

thus forming an infinite path r = (v0, v1, v2, . . .) in the game graph. The goal of player Min

is to minimize AMin(r) = lim supn→∞(1/n) · ∑
n
i=1 π(vi−1, vi) and the goal of player Max is

to maximize AMax(r) = lim infn→∞(1/n) · ∑
n
i=1 π(vi−1, vi).

Strategies for players are defined as usual [15, 8]. We write ΣMin (ΣMax) for the set

of strategies of player Min (Max) and ΠMin (ΠMax) for the set of positional strategies of

player Min (Max). For strategies µ ∈ ΣMin and χ ∈ ΣMax, and for an initial vertex v ∈
V, we write run(v, µ,χ) for the unique path formed if players start in the vertex v and

then they follow strategies µ and χ, respectively. For brevity, we write AMin(v, µ,χ) for

AMin(run(v, µ,χ)) and we write AMax(v, µ,χ) for AMax(run(v, µ,χ)).

For v ∈ V, we define the upper value val(v) = infµ∈ΣMin
supχ∈ΣMax

AMin(v, µ,χ), and
the lower value val(v) = supχ∈ΣMax

infµ∈ΣMin
AMax(v, µ,χ). Note that the inequality val(v) ≤

val(v) always holds. A game is determined if for every v ∈ V, we have val(v) = val(v). We

then write val(v) for this number and we call it the value of the average-price game at the

vertex v.

We say that the strategies µ∗ ∈ ΣMin and χ∗ ∈ ΣMax are optimal for the respective

players, if for every vertex v ∈ V, we have that supχ∈ΣMax
AMin(v, µ

∗,χ) = val(v) and

infµ∈ΣMin
AMin(v, µ

∗,χ) = val(v). Liggett and Lippman [13] show that all perfect-information

(stochastic) average-price games are positionally determined.

THEOREM 1. [13] Every average-price game is determined, and optimal positional strate-
gies exist for both players, i.e., for all v ∈ V, we have:

inf
µ∈ΠMin

sup
χ∈ΣMax

AMin(v, µ,χ) = sup
χ∈ΠMax

inf
µ∈ΣMin

AMax(v, µ,χ).

The decision problem for average-price games is in NP ∩ co-NP; no polynomial-time

algorithm is currently known for the problem.

3 Average-Time Games

3.1 Timed Automata

Before we present the syntax of the timed automata, we need to introduce some concepts.

Fix a constant k ∈ N for the rest of this paper. Let C be a finite set of clocks. Clocks in

timed automata are usually allowed to take arbitrary non-negative real values. For the sake

of simplicity and w.l.o.g [4], we restrict them to be bounded by some constant k, i.e., we

consider only bounded timed automata models. A (k-bounded) clock valuation is a function

ν : C → LkMR; we write V for the set [C → LkMR] of clock valuations. If ν ∈ V and t ∈ R⊕

then we write ν + t for the clock valuation defined by (ν + t)(c) = ν(c) + t, for all c ∈ C.

For a set C′ ⊆ C of clocks and a clock valuation ν : C → R⊕, we define reset(ν,C′)(c) = 0 if

c ∈ C′, and reset(ν,C′)(c) = ν(c) if c 6∈ C′. A corner is an integer clock valuation, i.e., α is a

corner if α(c) ∈ LkMN, for every clock c ∈ C.

M. JURDZIŃSKI AND A. TRIVEDI FSTTCS 2008 343

The set of clock constraints over the set of clocks C is the set of conjunctions of simple clock

constraints, which are constraints of the form c ⊲⊳ i or c− c′ ⊲⊳ i, where c, c′ ∈ C, i ∈ LkMN,

and ⊲⊳ ∈ {<,>,=,≤,≥}. There are finitely many simple clock constraints. For every clock

valuation ν ∈ V , let SCC(ν) be the set of simple clock constraints which hold in ν ∈ V .
A clock region is a maximal set P ⊆ V , such that for all ν, ν′ ∈ P, SCC(ν) = SCC(ν′).
In other words, every clock region is an equivalence class of the indistinguishability-by-

clock-constraints relation, and vice versa. Note that ν and ν′ are in the same clock region

iff all clocks have the same integer parts in ν and ν′, and if the partial orders of the clocks,

determined by their fractional parts in ν and ν′, are the same. For all ν ∈ V , we write [ν] for
the clock region of ν. A clock zone is a convex set of clock valuations, which is a union of a

set of clock regions. Note that a set of clock valuations is a zone iff it is definable by a clock

constraint. ForW ⊆ V , we write clos(W) for the smallest closed set in V which containsW.

Observe that for every clock zoneW, the set clos(W) is also a clock zone.

Let L be a finite set of locations. A configuration is a pair (ℓ, ν), where ℓ ∈ L is a location

and ν ∈ V is a clock valuation; we write Q for the set of configurations. If s = (ℓ, ν) ∈ Q

and c ∈ C, then we write s(c) for ν(c). A region is a pair (ℓ, P), where ℓ is a location and P

is a clock region. If s = (ℓ, ν) is a configuration then we write [s] for the region (ℓ, [ν]). We

writeR for the set of regions. A set Z ⊆ Q is a zone if for every ℓ ∈ L, there is a clock zoneWℓ

(possibly empty), such that Z = {(ℓ, ν) : ℓ ∈ L and ν ∈ Wℓ}. For a region R = (ℓ, P) ∈ R,

we write clos(R) for the zone {(ℓ, ν) : ν ∈ clos(P)}.

A timed automaton T = (L,C, S, A, E, δ, ̺) consists of a finite set of locations L, a finite

set of clocks C, a set of states S ⊆ Q, a finite set of actions A, an action enabledness function

E : A → 2S, a transition function δ : L× A → L, and a clock reset function ̺ : A → 2C. We

require that S, and E(a) for all a ∈ A, are zones.

Clock zones, from which zones S, and E(a), for all a ∈ A, are built, are typically speci-

fied by clock constraints. Therefore, when we consider a timed automaton as an input of an

algorithm, its size should be understood as the sum of sizes of encodings of L, C, A, δ, and

̺, and the sizes of encodings of clock constraints defining zones S, and E(a), for all a ∈ A.

Our definition of a timed automaton may appear to differ from the usual ones [2, 4], but the

differences are superficial.

For a configuration s = (ℓ, ν) ∈ Q and t ∈ R⊕, we define s + t to be the configuration

s′ = (ℓ, ν + t) if ν + t ∈ V , and we then write s −⇀t s′. We write s −→t s′ if s −⇀t s′ and

for all t′ ∈ [0, t], we have (ℓ, ν + t′) ∈ S. For an action a ∈ A, we define succ(s, a) to be

the configuration s′ = (ℓ′, ν′), where ℓ′ = δ(ℓ, a) and ν′ = reset(ν, ̺(a)), and we then write

s
a
−⇀ s′. We write s

a
−→ s′ if s

a
−⇀ s′; s, s′ ∈ S; and s ∈ E(a). For technical convenience,

and without loss of generality, we will assume throughout that for every s ∈ S, there exists

a ∈ A, such that s
a
−→ s′. For s, s′ ∈ S, we say that s′ is in the future of s, or equivalently, that

s is in the past of s′, if there is t ∈ R⊕, such that s −→t s
′; we then write s −→∗ s′.

For R,R′ ∈ R, we say that R′ is in the future of R, or that R is in the past of R′, if for all

s ∈ R, there is s′ ∈ R′, such that s′ is in the future of s; we then write R −→∗ R′. Similarly, for

R,R′ ∈ R, we write R
a
−→ R′ if there is s ∈ R, and there is s′ ∈ R′, such that s

a
−→ s′.

A timed action is a pair τ = (t, a) ∈ R⊕ × A. For s ∈ Q, we define succ(s, τ) =

succ(s, (t, a)) to be the configuration s′ = succ(s + t, a), i.e., such that s −⇀t s
′′ a
−⇀ s′, and we

344 AVERAGE-TIME GAMES

then write s
a
−⇀t s

′. We write s
a
−→t s

′ if s −→t s
′′ a
−→ s′, and we then say that (s, (t, a), s′) is a

transition of the timed automaton. If τ = (t, a) then we write s
τ
−⇀ s′ instead of s

a
−⇀t s

′, and

s
τ
−→ s′ instead of s

a
−→t s

′.

An infinite run of a timed automaton is a sequence r = 〈s0, τ1, s1, τ2, . . .〉, such that

for all i ≥ 1, we have si−1
τi−→ si. A finite run of a timed automaton is a finite sequence

〈s0, τ1, s1, τ2, . . . , τn, sn〉 ∈ S× ((A×R⊕)× S)∗, such that for all i, 1 ≤ i ≤ n, we have si−1
τi−→

si. For a finite run r = 〈s0, τ1, s1, τ2, . . . , τn, sn〉, we define length(r) = n, and we define

last(r) = sn to be the state in which the run ends. For a finite run r = 〈s0, τ1, s1, τ2, . . . , sn〉,
we define time of the run as time(r) = ∑

n
i=1 ti. We write Runsfin for the set of finite runs.

3.2 Strategies

An average-time game Γ is a triple (T , LMin, LMax), where T = (L,C, S, A, E, δ, ̺) is a timed

automaton and (LMin, LMax) is a partition of L. We define QMin = {(ℓ, ν) ∈ Q : ℓ ∈ LMin},
QMax = Q \ QMin, SMin = S ∩ QMin, SMax = S \ SMin, RMin = {[s] : s ∈ QMin}, and
RMax = R \RMin.

A strategy for Min is a function µ : Runsfin → A× R⊕, such that if last(r) = s ∈ SMin

and µ(r) = τ then s
τ
−→ s′, where s′ = succ(s, τ). Similarly, a strategy for player Max is a

function χ : Runsfin → A× R⊕, such that if last(r) = s ∈ SMax and χ(r) = τ then s
τ
−→ s′,

where s′ = succ(s, τ). We write ΣMin for the set of strategies for player Min, and we write

ΣMax for the set of strategies for player Max. If players Min and Max use strategies µ and

χ, resp., then the (µ,χ)-run from a state s is the unique run run(s, µ,χ) = 〈s0, τ1, s1, τ2, . . .〉,
such that s0 = s, and for every i ≥ 1, if si ∈ SMin, or si ∈ SMax, then µ(runi(s, µ,χ)) = τi+1,

or χ(runi(s, µ,χ)) = τi+1, resp., where runi(s, µ,χ) = 〈s0, τ1, s1, . . . , si−1, τi, si〉.
We say that a strategy µ for Min is positional if for all finite runs r, r′ ∈ Runsfin, we have

that last(r) = last(r′) implies µ(r) = µ(r′). A positional strategy for player Min can be

then represented as a function µ : SMin → A× R⊕, which uniquely determines the strategy

µ∞ ∈ ΣMin as follows: µ∞(r) = µ(last(r)), for all finite runs r ∈ Runsfin. Positional strategies

for player Max are defined and represented in the analogous way. We write ΠMin and ΠMax

for the sets of positional strategies for player Min and for player Max, respectively.

3.3 Value of Average-Time Game

If player Min uses the strategy µ ∈ ΣMin and player Max uses the strategy χ ∈ ΣMax then

playerMin loses the valueAMin(s, µ,χ) = lim supn→∞(1/n) · time(runn(s, µ,χ)), and player

Max wins the value AMax(s, µ,χ) = lim infn→∞(1/n) · time(runn(s, µ,χ)). In an average-

time game player Min is interested in minimizing the value she loses and player Max is

interested in maximizing the value he wins. For every state s ∈ S of a timed automaton,

we define its upper value by val
T
(s) = infµ∈ΣMin

supχ∈ΣMax
AMin(s, µ,χ), and its lower value

valT (s) = supχ∈ΣMax
infµ∈ΣMin

AMax(s, µ,χ).

The inequality valT (s) ≤ val
T
(s) always holds. An average-time game is determined

if for every state s ∈ S, its lower and upper values are equal to each other; then we say

that the value valT (s) exists and valT (s) = valT (s) = val
T
(s). For strategies µ ∈ ΣMin and

M. JURDZIŃSKI AND A. TRIVEDI FSTTCS 2008 345

χ ∈ ΣMax, we define valµ(s) = supχ∈ΣMin
AMin(s, µ,χ), and valχ(s) = infµ∈ΣMin

AMax(s, µ,χ).
For an ε > 0, we say that a strategy µ ∈ ΣMin or χ ∈ ΣMax is ε-optimal if for every s ∈ S we

have that valµ(s) ≤ valT (s) + ε or valχ(s) ≥ valT (s) − ε, respectively. Note that if a game is

determined then for every ε > 0, both players have ε-optimal strategies.

We say that a strategy χ ∈ ΣMax of player Max is a best response to a strategy µ ∈ ΣMin

of player Min if for all s ∈ Swe have thatAMin(s, µ,χ) = supχ′∈ΣMax
AMin(s, µ,χ

′). Similarly

we say that a strategy µ ∈ ΣMin of player Min is a best response to a strategy χ ∈ ΣMax of

player Max if for all s ∈ S we have that AMax(s, µ,χ) = infµ′∈ΣMin
AMax(s, µ

′,χ).

4 Region Abstractions

4.1 Region Graphs

The region automaton, originally proposed by Alur and Dill [2], is a useful abstraction of a

timed automaton as it preserves the validity of qualitative reachability, safety, and ω-regular

properties. The region automaton [2] RA(T) = (R,M) of a timed automaton T consists of:

• the set R of regions of T , and

• M ⊆ R× (R× A) ×R, such that for all a ∈ A, and for all R,R′,R′′ ∈ R, we have

that (R,R′′, a,R′) ∈ M iff R −→∗ R′′ a
−→ R′.

The region automaton, however, is not sufficient for solving average-time games as it

abstract away the timing information. Corner-point abstraction, introduced by Bouyer et

al. [5], is a refinement of region automaton which preserves some timing information. For-

mally, the corner-point abstraction CP(T) of a timed automaton T is a finite graph (V, E)
such that:

• V ⊆ Q×R such that (s,R) ∈ V iff s = (ℓ, ν) ∈ clos(R) and ν is a corner. Since timed

automata we consider are bounded, there are finitely many regions, and every region

has a finite number of corners. Hence the set of vertices finite.

• E ⊆ V× (R⊕ ×R× A)×V such that for (s,R), (s′,R′) ∈ V and (t,R′′, a) ∈ R⊕ ×R×

A, we have ((s,R), (t,R′′, a), (s′,R′)) ∈ E iff R −→∗ R′′ a
−→ R′ and (s + t)

a
−⇀ s′. Notice

that such a t is always a natural number.

Bouyer et al. [5] showed that the corner-point abstraction is sufficient for deciding one-

player average-price problem if the initial state is a corner-state, i.e., a state whose clock

valuation is a corner. It follows from our results that the corner-point abstraction can be

used to solve average-time games on timed automata if the initial state is a corner state.

We introduce the boundary region graph, which is a generalization of the corner-point

abstraction. We prove that the value of the average-time game on a timed automaton is

equal to the value of the average-time game on the corresponding boundary region graph,

for all starting states, not just for corner states. In the process, we introduce two other re-

finements of the region automaton, which we call the closed region graph and the region graph.

The analysis of average-time games on those objects allows us to establish equivalence of

average-time games on the original timed automaton and the boundary region graph.

Closed Region Graph. A closed region graph T = (Q, E) of a timed automaton T is a re-

finement of its region automaton, where Q =
{
(s,R) : s ∈ clos(R) and R ∈ R

}
and

E ⊆ Q× (R⊕×R× A)×Q, such that for all (s,R), (s′,R′) ∈ Q and (t,R′′, a) ∈ R⊕×R× A,

346 AVERAGE-TIME GAMES

we have ((s,R), (t,R′′, a), (s′,R′)) ∈ E iff s′ = succ(s, t, a), (R,R′′, a,R′) ∈ M, and s + t ∈
clos(R′′). For a region R ∈ R we define the set Q(R) ⊆ Q to be {(s,R) : (s,R) ∈ Q}.
Boundary Region Graph. For a timed automaton T , its boundary region graph T̂ = (Q̂, Ê)
is a sub-graph of its closed region graph T = (Q, E) with Q̂ = Q and Ê ⊆ E, such that for

all (s,R), (s′,R′) ∈ Q̂ and (t,R′′, a) ∈ R⊕ ×R× A, we have ((s,R), (t,R′′, a), (s′,R′)) ∈ Ê if:

either R ∈ RMin and t = inf{t : s + t ∈ clos(R′′)}, or R ∈ RMax and t = sup{t : s + t ∈
clos(R′′)}. Boundary region graphs have the following property.

PROPOSITION 2. For every configuration in a boundary region graph the set of reachable
configurations is finite.

We say that a configuration q = (s = (ℓ, ν),R) is corner configuration if ν is a corner.

PROPOSITION 3. The reachable sub-graph of the a boundary region graph T̂ from a corner
configuration is same as the corner-point abstraction CP(T).

Region Graph. The region graph T̃ = (Q̃, Ẽ) of a timed automaton T is a sub-graph of its

closed region graph T = (Q, E)with Q̃ = Q and Ẽ ⊆ E, such that ((s,R), (t,R′′, a), (s′,R′)) ∈
Ẽ if s + t ∈ R′′. The timed automaton T and the corresponding region graph T̃ are equiva-

lent in the following sense.

PROPOSITION 4. Let T be a timed automaton and T̃ = (Q̃, Ẽ) be its region graph. For every

s, s′ ∈ S and (t, a) ∈ R⊕ × A, we have s
a
−→t s

′ if and only if ((s, [s]), (t, [s + t], a), (s′, [s′])) ∈
Ẽ.

Runs of Region Graphs. An infinite run of the closed region graph T is an infinite sequence

〈q0, τ1, q1, τ1, . . .〉, such that for all i ≥ 1, we have (qi−1, τi, qi) ∈ E. A finite run of the closed

region graph T is a finite sequence 〈q0, τ1, q1, τ1, . . . , qn〉 ∈ Q× ((R⊕ ×R× A) ×Q)∗, such
that for all 1 ≤ i ≤ n, we have (qi−1, τi, qi) ∈ E. Runs of the boundary region graph and the

region graph are defined analogously. For a graph G ∈ {T , T̂ , T̃ }, we write RunsGfin for the

set of its finite runs and RunsGfin(q) for the set of its finite runs from a configuration q ∈ Q.

Notice that for all q ∈ Q we have that RunsT̂ (q) ⊆ RunsT (q) and RunsT̃ (q) ⊆ RunsT (q).
For a finite run r = 〈q0, (t1,R1, a1), q1, (t2,R2, a2), . . . , qn〉 we define time(r) = ∑

n
i=1 ti, and

we denote the last configuration of the run by last(r) = qn.

Run Types of Region Graphs. Type of a finite run 〈(s0,R0), (t1,R
′
1, a1), (s1,R1), . . . , (sn,Rn)〉

is the finite sequence 〈R0, (R′
1, a1),R1, (R

′
2, a2), . . . ,Rn〉. The type of an infinite run is defined

analogously. For a (finite or infinite) run r, we write JrKR for its type. We write Typesfin and

Types for the set of types of finite runs and the set of types of infinite runs, respectively.

4.2 Simple Functions and Boundary Timed Actions

A function F : Q → R is simple [3, 11] if either: there is e ∈ Z, such that for every (s,R) ∈ Q,

we have F(s,R) = e; or there are e ∈ Z and c ∈ C, such that for every (s,R) ∈ Q we

have F(s,R) = e− s(c). We say that a function F : Q → R is regionally simple or regionally

constant, respectively, if for every region R ∈ R the function F, over domain Q(R), is simple

or constant, respectively.

Define the finite set of boundary timed actions A = LkMN ×C× A×R. For q = (s,R) ∈ Q

and α = (b, c, a,R′′) ∈ A, we define t(s, α) = b − s(c). If s + t(s, α) ∈ clos(R′′) then the

M. JURDZIŃSKI AND A. TRIVEDI FSTTCS 2008 347

function succ(q, α) is defined and we have q′ = (succ(s, τ(α)),R′), where τ(α) = (t(s, α), a)

and R′′ a
−→ R′. We sometimes write q

α
−→ q′ if q′ = succ(q, α).

4.3 Strategies

Let Γ = (T , LMin, LMax) be an average-time game. The partition (LMin, LMax) naturally gives

rise to average-time games on the closed region graph Γ = (T ,QMin,QMax), the boundary

region graph Γ̂ = (T̂ , Q̂Min, Q̂Max), and the region graph Γ̃ = (T̃ , Q̃Min, Q̃Max).

In a closed region graph, a strategy of player Min µ is a (partial) function µ : RunsTfin →

R⊕ ×R× A, such that for a run r ∈ RunsTfin, if last(r) = (s,R) ∈ QMin then µ(r) = (t,R′, a)
is defined, and it is such that (s + t) ∈ clos(R′) and (R, (R′, a),R′′) ∈ M, for some R′′ ∈ R.

Strategies of player Max is defined analogously. We write ΣMin and ΣMax for the set of

strategies of player Min and player Max, respectively. We say that a strategy σ is positional

if for all runs r1, r2 ∈ RunsTfin, last(r1) = last(r2) implies µ(r1) = µ(r2). We define the

run starting from configuration q ∈ Q and following strategies µ and χ, of player Max and

playerMin, respectively, in a straightfowardmanner andwewrite run(q, µ,χ) to denote this

run. For every n ≥ 1, we write runn(q, µ,χ) for the prefix of the run run(q, µ,χ) of length n.

We say that a strategy σ is an admissible strategy if for all finite runs r ∈ RunsTfin, we

have σ(r) = (t,R′, a) such that s + t ∈ R′, where (s,R) = last(r). Note that both players

have only admissible strategies on the region graph. We write Σ̃Min and Σ̃Max for the set of

admissible strategies of player Min and player Max, respectively.

We say that a strategy µ of player Min is a boundary strategy if for all finite runs r ∈

RunsTfin, we have µ(r) = (t,R′, a), such that t = inf{t : s + t ∈ clos(R′)}, where (s,R) =
last(r). We say that a strategy χ of player Max is a boundary strategy if for all finite runs

r ∈ RunsTfin, we have χ(r) = (t,R′, a), such that t = sup{t : s + t ∈ clos(R′)}, where

(s,R) = last(r). Both players have only boundary strategies in the boundary region graph.

We write Σ̂Min and Σ̂Max for the set of boundary strategies of player Min and player Max,

respectively.

PROPOSITION 5. For every boundary strategy σ and for every run r, if σ(r) = (t,R′, a)
then there exists a boundary timed action α = (b, c, a,R′) ∈ A such that t(s, α) = t, where
(s,R) = last(r).

By Proposition 5 a run of the closed region graph in which both players use boundary

strategies, can be represented as a sequence 〈q0, α1, q1, α2, . . .〉. Such a run is called a boundary

run. For a boundary strategy σ, we define the function σ̂ : RunsTfin → A as follows: if for

a run r we have σ(r) = (t,R′, a), then σ̂(r) = (b, c, a,R′), such that b − s(c) = t, where

(s,R) = last(r).
Type-Preserving Boundary Strategies. We say that a boundary strategy σ is type-preserving,

if for all finite runs r1, r2 ∈ RunsTfin such that Jr1KR = Jr2KR, we have that σ̂(r1) = σ̂(r2).
We write ΞMin and ΞMax for the sets of type-preserving boundary strategies of players Min

and Max, respectively. Notice that for type-preserving boundary strategies µ ∈ ΞMin and

χ ∈ ΞMax, for every region R ∈ R and for all configurations q, q′ ∈ Q(R), we have that

Jrun(q, µ,χ)KR = Jrun(q′, µ,χ)KR.

348 AVERAGE-TIME GAMES

Note that the following inclusions hold.

ΞMin ⊆ Σ̂Min ⊆ ΣMin and Σ̃Min ⊆ ΣMin, and

ΞMax ⊆ Σ̂Max ⊆ ΣMax and Σ̃Max ⊆ ΣMax

PROPOSITION 6. For every n ≥ 1, and for all type-preserving boundary strategies µ ∈ ΞMin

and χ ∈ ΞMax, the function time(runn(·, µ,χ)) is regionally simple.

Given a type-preserving boundary strategy σ and ε > 0, we define an admissible strat-

egy σε as follows: for a finite run r ∈ RunsTfin, if σ̂(r) = (b, c, a,R′) then σε(r) = (t,R′, a) such
that b− s(c) − ε ≤ t ≤ b− s(c) + ε, where (s,R) = last(r).

Given a boundary strategy σ and a configuration q ∈ Q, we define the type-preserving

boundary strategy σ[q], which agrees with the strategy σ on all the runs starting from the

configuration q. Formally, for a given σ the type-preserving boundary strategy σ[q] is such

that for all runs r ∈ Runsfin(q), we have σ̂[q](r) = σ̂(r).

4.4 Value of Average-Time Game

For the strategies µ ∈ ΣMin and χ ∈ ΣMax of respective players and a configuration q ∈
Q we define AMin(q, µ,χ) = lim supn→∞(1/n) · time(runn(q, µ,χ)) and AMax(q, µ,χ) =

lim infn→∞(1/n) · time(runn(q, µ,χ)). For average-time games on a graph G ∈ {T , T̂ , T̃ }

we define the lower-value valG(q), the upper-value val
G
(q) and the value valG(q) of a con-

figuration q ∈ Q in a straightfoward manner.

4.5 Determinacy of Average-Time Games on the Boundary Region Graph

Positional determinacy of average-time games on the boundary region graph is immediate

from Proposition 2 and Theorem 1.

THEOREM 7. The average-time game on T̂ is determined, and there are optimal positional
strategies in T̂ , i.e., for every q ∈ Q, we have:

valT̂ (q) = inf
µ∈Π̂Min

sup
χ∈Σ̂Max

AMin(q, µ,χ) = sup
χ∈Π̂Max

inf
µ∈Σ̂Min

AMax(q, µ,χ).

PROPOSITION 8. For all µ ∈ ΞMin and χ ∈ ΞMax, the functionsAMin(·, µ,χ) andAMax(·, µ,χ)
are regionally constant.

LEMMA 9. In T̂ , if µ ∈ Σ̂Min and χ ∈ Σ̂Max are mutual best responses from q ∈ Q, then
µ[q] ∈ ΞMin and χ[q] ∈ ΞMax are mutual best responses from every q′ ∈ Q([q]).

PROOF. We argue that χ[q] is a best response to µ[q] from q′ ∈ Q([q]) in T̂ ; the other case

is analogous. For all χ′ ∈ Σ̂Max, we have the following:

AMin(q
′, µ[q],χ[q]) = AMin(q, µ[q],χ[q]) ≥ AMin(q, µ[q],χ′[q′]) =

AMin(q
′, µ[q],χ′[q′]) = AMin(q

′, µ[q],χ′).

M. JURDZIŃSKI AND A. TRIVEDI FSTTCS 2008 349

The first equality follows from Proposition 8; the inequality follows because χ is a best

response to µ from q; the second equality follows from Proposition 8 again; and the last

equality is straightforward.

THEOREM 10. There are optimal type-preserving boundary strategies in T̂ , i.e., for every
q ∈ Q, we have:

valT̂ (q) = inf
µ∈ΞMin

sup
χ∈Σ̂Max

AMin(q, µ,χ) = sup
χ∈ΞMax

inf
µ∈Σ̂Min

AMax(q, µ,χ).

PROOF. Let µ∗ ∈ ΞMin and χ∗ ∈ ΞMax be mutual best responses in T̂ ; existence of such

strategies follows from Lemma 9. Moreover, we can assume that the strategies µ∗ and χ∗

have finite memory; this can be achieved by taking positional strategies µ ∈ Σ̂Min and χ ∈
Σ̂Max in Lemma 9. We then have the following:

inf
µ∈ΞMin

sup
χ∈Σ̂Max

AMin(q, µ,χ) ≤ sup
χ∈Σ̂Max

AMin(q, µ
∗,χ) = AMin(q, µ

∗,χ∗) =

AMax(q, µ
∗,χ∗) = inf

µ∈Σ̂Min

AMax(q, µ,χ
∗) ≤ sup

χ∈ΞMax

inf
µ∈Σ̂Min

AMax(q, µ,χ).

The first and last inequalities are straightforward because µ∗ ∈ ΞMin and χ∗ ∈ ΞMax. The

first equality holds because χ∗ is a best response to µ∗ in T̂ , and the third equality holds

because µ∗ is a best response to χ∗ in T̂ . Finally, the second equality holds because strate-

gies µ∗ and χ∗ have finite memory.

4.6 Determinacy of Average-Time Games on the Closed Region Graph

LEMMA 11. In T , for every strategy in ΞMin there is a best response in ΞMax, and for every
strategy in ΞMax there is a best response in ΞMin.

THEOREM 12. The average-time game on T is determined, and there are optimal type-
preserving boundary strategies in T , i.e., for every q ∈ Q, we have:

valT (q) = inf
µ∈ΞMin

sup
χ∈ΣMax

AMin(q, µ,χ) = sup
χ∈ΞMax

inf
µ∈ΣMin

AMax(q, µ,χ) = valT̂ (q).

PROOF. We have the following:

inf
µ∈ΞMin

sup
χ∈ΣMax

AMin(q, µ,χ) = inf
µ∈ΞMin

sup
χ∈ΞMax

AMin(q, µ,χ) =

sup
χ∈ΞMax

inf
µ∈ΞMin

AMax(q, µ,χ) = sup
χ∈ΞMax

inf
µ∈ΣMin

AMax(q, µ,χ),

where the first and last equalities follow from Lemma 11, and the second equality follows

from Theorem 10. Now it is routine to show that valT (q) ≥ valT̂ (q) and val
T
(q) ≤ val

T̂
(q).

It concludes the proof that the average-time game on T is determined, and there are optimal

type-preserving boundary strategies in T .

350 AVERAGE-TIME GAMES

4.7 Determinacy of Average-Time Games on the Region Graph

LEMMA 13. If the strategies µ∗ ∈ ΞMin and χ∗ ∈ ΞMax are optimal for respective players in
T then for every ε > 0, we have that

sup
χ∈ΣMax

AMin(q, µ
∗
ε ,χ) ≤ valT (q) + ε and inf

µ∈ΣMin

AMax(q, µ,χ
∗
ε) ≥ valT (q) − ε.

THEOREM 14. The average-time game on T̃ is determined, and for every q ∈ Q, we have

valT̃ (q) = valT (q).

PROOF. Let µ∗ ∈ ΞMin be an optimal strategy of player Min in T . Let us fix an ε > 0.

val
T̃
(q) = inf

µ∈Σ̃Min

sup
χ∈Σ̃Max

AMin(q, µ,χ) ≤ sup
χ∈Σ̃Max

AMin(q, µ
∗
ε ,χ) ≤

sup
χ∈ΣMax

AMin(q, µ
∗
ε ,χ) ≤ valT (q) + ε.

The second inequality follows because µ∗
ε ∈ Σ̃Min and the third inequality follows because

Σ̃Max ⊆ ΣMax. The last inequality follows from Lemma 13 because µ∗ ∈ ΞMin is an optimal

strategy in T . Similarly we show that for every ε > 0 we have that valT̃ (q) ≥ valT (q) − ε.

Hence it follows that valT̃ (q) exists and its value is equal to valT (q).

4.8 Determinacy of Average-Time Games on Timed Automata

THEOREM 15. The average-time game on T is determined, and for every s ∈ S, we have:

valT (s) = valT̃ (s, [s]) = valT (s, [s]) = valT̂ (s, [s]).

5 Complexity

The main decision problem for average-time game is as follows: given an average-time

game Γ = (T , LMin, LMax), a state s ∈ S, and a number B ∈ R⊕, decide whether val(s) ≤ B.

From Theorem 15 we know that in order to solve an average-time game starting from

an initial state of a timed automaton, it is sufficient to solve the average-time game on the set

of states of the boundary region graph of the automaton that are reachable from the initial

state. Observe that every region, and hence also every configuration of the game, can be

represented in space polynomial in the size of the encoding of the timed automaton and

of the encoding of the initial state, and that every move of the game can be simulated in

polynomial time. Therefore, the value of the game can be computed by a straightforward

alternating PSPACE algorithm, and hence the problem is in EXPTIME because APSPACE =
EXPTIME.

One can prove EXPTIME-hardness of average-time games on timed automata with at

least two clocks by a reduction from countdown games [10], similar to the reduction from

countdown games to reachability-time games on timed automata [11].

M. JURDZIŃSKI AND A. TRIVEDI FSTTCS 2008 351

THEOREM 16. Average-time games are EXPTIME-complete on timed automata with at least
two clocks.

References

[1] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed

games. In International Colloquium on Automata, Languages and Programming, ICALP

2004, volume 3142 of LNCS, pages 122–133. Springer, 2004.

[2] R. Alur andD. Dill. A theory of timed automata. In Theoretical Computer Science, volume

126, pages 183–235, 1994.

[3] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata.

In F.W. Vaandrager and J. H. van Schuppen, editors,HSCC 1999, volume 1569 of LNCS,

pages 19–30. Springer, 1999.

[4] P. Bouyer, T. Brihaye, V. Bruyère, and J. Raskin. On the optimal reachability problem

on weighted timed automata. Formal Methods in System Design, 31(2):135–175, 2007.

[5] P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as cheaply as possible. In

Hybrid Systems: Computation and Control, HSCC 2004, volume 2993 of LNCS, pages 203–

218. Springer, 2004.

[6] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced timed

game automata. In FSTTCS’04, volume 3328 of LNCS, pages 148–160. Springer, 2004.

[7] T. Brihaye, T. A. Henzinger, V. S. Prabhu, and J. Raskin. Minimum-time reachability in

timed games. In ICALP 2007, volume 4596 of LNCS, pages 825–837. Springer, 2007.

[8] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.

[9] D. Gillette. Stochastic games with zero stop probabilities. In Contributions to the Theory

of Games, volume 39 of Annals of Mathematics Studies, pages 179–187. Princeton Univer-

sity Press, 1957.

[10] M. Jurdziński, J. Sproston, and F. Laroussinie. Model checking probabilistic timed au-

tomata with one or two clocks. Logical Methods in Computer Science, 4(3):12, 2008.

[11] M. Jurdziński and A. Trivedi. Reachability-time games on timed automata. In ICALP

2007, volume 4596 of LNCS, pages 838–849. Springer, 2007.

[12] M. Jurdziński and A. Trivedi. Concavely-priced timed automata. In FORMATS 2008,

volume 5215 of LNCS, pages 48–62. Springer, 2008.

[13] T. Liggett and S. Lipman. Stochastic games with perfect information and time average

payoff. SIAM Review, 11:604–607, 1969.

[14] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 1994.

[15] U. Zwick andM. Paterson. The complexity of mean payoff games on graphs. Theoretical

Computer Science, 158:343–359, 1996.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

	Introduction
	Average-Price Games
	Average-Time Games
	Region Abstractions
	Complexity

