
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 383-414

Harnessing the Multicores: Nested
Data Parallelism in Haskell

Simon Peyton Jones1, Roman Leshchinskiy2, Gabriele Keller2,
Manuel M. T. Chakravarty2

1Microsoft Research Ltd, Cambridge, England, simonpj@microsoft.com

2Programming Languages and Systems, School of Computer Science and Engineering,
University of New South Wales, {rl,keller,chak}@cse.unsw.edu.au

ABSTRACT. If you want to program a parallel computer, a purely functional language like Haskell
is a promising starting point. Since the language is pure, it is by-default safe for parallel evalua-
tion, whereas imperative languages are by-default unsafe. But that doesn’t make it easy! Indeed it
has proved quite difficult to get robust, scalable performance increases through parallel functional
programming, especially as the number of processors increases.
A particularly promising and well-studied approach to employing large numbers of processors is
data parallelism. Blelloch’s pioneering work on NESL showed that it was possible to combine a
rather flexible programming model (nested data parallelism) with a fast, scalable execution model
(flat data parallelism). In this paper we describe Data Parallel Haskell, which embodies nested
data parallelism in a modern, general-purpose language, implemented in a state-of-the-art compiler,
GHC. We focus particularly on the vectorisation transformation, which transforms nested to flat data
parallelism.

1 Introduction
Computers are no longer getting faster; instead, we will be offered computers containing
more and more CPUs, each of which is no faster than the previous generation. As the
number of CPUs increases, it becomes more and more difficult for a programmer to deal
with the interactions of large numbers of threads. Moreover, the physical limitations of bus
bandwidth will mean that memory access times will be increasingly non-uniform (even if
the address space is shared), and locality of reference will be increasingly important.

In the world of massively-parallel computing with strong locality requirements there
is already a well-established, demonstrably successful brand leader, namely data parallelism.
In a data-parallel computation one performs the same computation on a large collection of
differing data values. Well-known examples of data-parallel programming environments are
High Performance Fortran (HPF) [For97], the collective operations of the Message Passing
Interface (MPI) [GHLL+98], NVIDIA’s Compute Unified Device Architecture (CUDA) API
for graphics processors [NVI07], and Google’s map/reduce framework [DG04].

All these systems support only flat data parallelism, in which the computation that is
performed on each data element must itself be (a) sequential and (b) of a similar execution
time to the computation on the other data elements. In practice, this severely limits the
applications of data-parallel computing, especially for sparse or irregular problems [PCS99].

c© Peyton Jones, Leshchinskiy, Keller, Chakravarty; licensed under Creative Commons License-NC-ND

FSTTCS 2008 
IARCS Annual Conference on  
Foundations of Software Technology and Theoretical Computer Science 
http://drops.dagstuhl.de/opus/volltexte/2008/1769



384 HARNESSING THE MULTICORES

(!:) :: [:a:] -> Int -> a
sliceP :: [:a:] -> (Int,Int) -> [:a:]
replicateP :: Int -> a -> [:a:]
mapP :: (a->b) -> [:a:] -> [:b:]
zipP :: [:a:] -> [:b:] -> [:(a,b):]
zipWithP :: (a->b->c) -> [:a:] -> [:b:] -> [:c:]
filterP :: (a->Bool) -> [:a:] -> [:a:]

concatP :: [:[:a:]:] -> [:a:]
concatMapP :: (a -> [:b:]) -> [:a:] -> [:b:]
unconcatP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]
transposeP :: [:[:a:]:] -> [:[:a:]:]
expandP :: [:[:a:]:] -> [:b:] -> [:b:]

combineP :: [:Bool:] -> [:a:] -> [:a:] -> [:a:]
splitP :: [:Bool:] -> [:a:] -> ([:a:], [:a:])

Figure 1: Type signatures for parallel array operations

Thus motivated, Blelloch and Sabot developed the idea of nested data parallelism in the early
90’s, and embodied it in their language NESL [BS90].

NESL was a seminal breakthrough but, fifteen years later it remains largely un-exploited.
Our goal is to adopt the key insights of NESL, embody them in a modern, widely-used func-
tional programming language, namely Haskell, and implement them in a state-of-the-art
Haskell compiler (GHC). The resulting system, Data Parallel Haskell, will make nested data
parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types,
was focused entirely on nested data parallelism, and its implementation is an interpreter.
Haskell is a higher-order language with an extremely rich type system; it already includes
several other sorts of parallel execution; and its implementation is a compiler.

This paper makes two main contributions:

• We give a tutorial, programmer’s-eye view of what programming in Data Parallel
Haskell is like. Rather than a series of tiny examples, we give a serious application
that is very hard to fully parallelise in a flat data-parallel setting, namely the Barnes-
Hut algorithm for N-body simulation.

• We give a detailed tutorial overview of the key vectorisation transformation. There are
two major innovations over NESL: one is the non-parametric representation of arrays
(Section 4) and one is the treatment of first-class functional values (Section 5).

All the technical innovations in this paper have appeared, piecemeal, in our earlier
publications. Our hope, however, is that this paper draws together a somewhat-complex
set of technical strands into a comprehensible whole.



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 385

2 The programmer’s view on DPH
We begin by describing Data Parallel Haskell (DPH) purely from the point of view of the
programmer, illustrating the description with a non-trivial example, the Barnes-Hut algo-
rithm [BH86]. GHC supports other forms of concurrency besides data parallelism, but we
focus here exclusively on the latter. Singh [SJ08] gives a tutorial covering a broader scope,
including semi-implicit parallelism (par), explicit threads, transactional memory, as well as
Data Parallel Haskell.

DPH is simply Haskell with the following extra features:
• A type of parallel arrays, denoted [:e:] for arrays of type e. These arrays are indexed

by values of type Int. From a semantic point of view an array [:a:] is very similar
to a list [a] – the difference is in the execution pragmatics. An array can contain
elements of any type, including arrays and functions.

• A large number of parallel operations that operate collectively on entire arrays. As far
as possible, these operations have the same names as Haskell’s standard list functions,
but with the suffix P added—i.e., mapP, filterP, unzipP, and so forth. Figure 1 lists
the operations that we will use in this paper.

• Syntactic sugar, called parallel array comprehensions, which are similar to list compre-
hensions but operate on parallel arrays.

In addition to the parallel evaluation semantics, lists and parallel arrays also differ with
respect to strictness: more precisely, demand for any element of a parallel array results in
the evaluation of all elements.

2.1 N-Body Barnes-Hut Simulation Algorithm

We will demonstrate the use of DPH features using the Barnes-Hut n-body simulation al-
gorithm as an example. We discuss the algorithm in some detail because it is a particularly
striking example of the power of nested data parallelism, and of the utility of user-defined
data types in data-parallel programs. We will, for the sake of clarity, restrict ourselves to
two dimensions and neglect complications such as bodies that are very close to each other.

An n-body simulation computes the motion under gravitational forces of n bodies, or
particles. A naive solution is to compute the force between every pair of particles which
requires n2 calculations in each time step. The Barnes-Hut algorithm reduces the work com-
plexity to the order of n log n interactions by grouping together particles which are close
to each other and calculating the centre of gravity, or centroid of the cluster. The centroids
are then used to approximate the effect the particles have on other particles which are suffi-
ciently far away. The stricter we are in determining what exactly constitutes “sufficiently far
away”, the more precise the final result is, and the algorithm can be parametrised accord-
ingly.

The first phase of the algorithm determines the hierarchical grouping of the particles,
computes the centroids of the clusters, and stores the result in a tree structure. To be more
precise, the area is split into four subareas of equal size, the particles are grouped according
to the subarea they are located in. We repeat this step for each subarea, and terminate if an
area contains either none or only a single particle. Figure 2 illustrates the tree construction
process for particles p1 . . . p9. In the first iteration, the particles are split into four groups,



386 HARNESSING THE MULTICORES

Figure 2: Subdivision of area

Figure 3: Rosetree

depending on which quadrant they are located in. The upper right quadrant already con-
tains only a single particle, so it isn’t divided up any further. Both the upper left and the
lower right quadrant require only one more iteration, the lower left two iterations.

Figure 3 shows the resulting hierarchical tree structure: the root node contains the cen-
troid of all particles and four subtrees (since all subareas contain at least one particle). Each
of the subtrees contains the centroid of the corresponding subarea – which is the particle
itself in case of a singular particle.

The second phase of the algorithm now calculates the forces that affect each particle
p, by traversing the tree from the root downwards: for every subtree, if the particle p is
sufficiently far away from the centroid stored in the root of that subtree, the force on p is
calculated using this centroid without looking at the rest of the tree. Otherwise, we add up
the forces on p from the subtrees of the current root – and so on recursively.

2.2 Encoding Barnes-Hut in DPH

Since the only way to express parallelism in DPH is to apply collective operations to par-
allel arrays, we need to store all data that we want to process in parallel in such an ar-
ray. For instance, the function oneStep, which computes one step in the simulation, takes
a parallel array of particles as arguments, and returns an array of the same length, with
the position and velocity of each particle adjusted according to the gravitational forces:



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 387

-- Compute one step of the n-body simulation
oneStep :: [:Particle:] -> [:Particle:]
oneStep particles = moveParticles particles forces
where
tree = buildTree initialArea particles
forces = calcForces (lengthOf initialArea) tree particles

buildTree :: Area -> [:Particle:] -> Tree
calcForces :: Float -> Tree -> [:Particle:] -> [:Force:]
moveParticles :: [:Particle:] -> [:Force:] -> [:Particle:]
lengthOf :: Area -> Float

The function oneStep, as discussed before, is comprised of three data parallel phases. First,
buildTree decomposes the particles into sub-areas, returning the resulting Tree. This tree
is then used by calcForces to compute the forces on the particles, returning a new array
of forces with one element for each particle. Finally, moveParticles uses these forces to
adjust the positions and velocities the particles.

The data types involved in the computation are defined exactly as the would be in reg-
ular Haskell. For example, a Particle is a record of its mass, its location, and its velocity:
type Vector = (Float, Float)
type Area = (Vector, Vector)
type Force = Vector
type Velocity = Vector
type Location = Vector

data Particle = Particle { mass :: Float
, location :: Location
, velocity :: Velocity}

Some functions are conveniently defined using the parallel array counterparts of ordinary
list processing functions (see Figure 1). For example, we can define moveParticles like
this:
moveParticles :: [:Particle:] -> [:Force:] -> [:Particle:]
moveParticles ps fs = zipWithP moveParticle ps fs

moveParticle :: Particle -> Force -> Particle
moveParticle (Particle { mass = m

, location = loc
, velocity = vel })

force
= Particle { mass = m

, location = loc + vel * timeStep
, velocity = vel + accel * timeStep }

where
accel = force / m

Now we turn our attention to the Tree data type and its construction. When building and
traversing a Tree, we want to process its sub-trees in parallel, and so we must use a parallel
array for the children:
data Tree = Node Mass Location [:Tree:]

-- Rose tree for spatial decomposition



388 HARNESSING THE MULTICORES

This time, unlike the flat array of particles (which may be very long), the array of sub-trees
has at most four elements at any level (recall that we are working with only 2 dimensions).
To build a tree, we perform recursive descent over the area:
-- Perform spatial decomposition and build the tree
buildTree :: Area -> [:Particle:] -> Tree
buildTree area [: p :] = Node (mass p) (location p) [::]
buildTree area particles = Node m l subtrees
where
(m,l) = calcCentroid subtrees
subtrees = [: buildTree a ps

| a <- splitArea area
, let ps = [:p | p <- particles, inArea a p:]
, lengthP ps > 0 :]

inArea :: Area -> Particle -> Bool
inArea ((lx,ly),(hx,hy)) (Particle { location = (x,y) })
= lx <= x && x <= hx && ly <= y && y <= hy

splitArea :: Area -> [:Area:]
-- splitArea returns the four sub-areas in a parallel array

calcCentroid :: [:Tree:] -> (Mass, Location)

The first equation deals with the case of a single particle: we simply record its mass and
location. In the recursive case, the array comprehension for subtrees iterates in parallel
over (splitArea area), an array of exactly four elements. For each such area a, we
compute the set of particles ps that lie inside a and, if that set is non-empty, we recursively
call buildTree. The “if non-empty” test discards sub-areas which do not contain any
particles at all, so the length of subtrees can be anything between 1 and 4. We omit the
implementations of inArea and calcCentroid, since they are straightforward.

The nested comprehension in the where clause of buildTree makes sure that inArea
is called on every subarea/particle combination in a single parallel step. Another source of
nested parallelism in buildTree are the recursive calls to the parallel function buildTree,
which are performed simultaneously on however many sub-areas contain particles (from
one to four). The number of parallel steps is hence proportional to the depth of the rose tree.

Lastly, we have to write the function calcForces, which, given a Tree and an array
of particles, calculates the forces applied by the Tree on those particles. It can do so by
dividing the particles into two groups: those that are “far” from the centre of gravity of the
Tree (as determined by a function isFar), and those that are “near”. Here is the code:
calcForces :: Float -> Tree -> [:Particle:] -> [:Force:]
calcForces len (Node m l ts) ps
= let

far_forces = [: forceOn p m l | p <- ps, isFar len l p :]
near_ps = [: p | p <- ps, not (isFar len l p) :]
near_forces_s = [: calcForces (len / 2) t near_ps | t <- ts :]
near_forces = [: sumForces p_forces

| p_forces <- transposeP near_forces_s :]
in
combineP [:isFar len l p | p <- ps:] far_forces near_forces



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 389

forceOn :: Particle -> Mass -> Location -> Force
isFar :: Float -> Location -> Particle -> Bool
sumForces :: [:Force:] -> Force

The function calcForces divides the particles into two groups: those that are “near”
the centroid l of tree, and those that are not. For the far particles, we simply use forceOn
to compute the force on each such particle from the tree, giving far_forces. For particles
near to l, near_ps, we recursively use calcForces (in parallel) to compute the force on
each particle from each sub-tree giving near_forces_s, a short vector with one element
for each sub-tree. Each element is a vector with one element for each particle, giving the
force on that particle from the sub-tree. All that remains is to transpose this nested structure,
and add up the forces on each particle. Finally, we must re-combine the near and far forces,
using combineP, which interleaves two vectors as directed by a boolean mask.

2.3 Communication and locality

Here is an alternative, simpler way to write calcForces:
calcForces :: Tree -> [:Particle:] -> [:Force:]
calcForces tree ps = mapP (calc t) ps

where
calc (Node m l ts) p

| isFar l p = forceOn p m l
| otherwise = sumForces [: calc t p | t <- ts :]

For each particle (the mapP), it recurses down the tree, stopping when the centroid of the
sub-tree is far away from the particle.

Which version should we prefer? Different ways of writing the code give rise to dif-
ferent patterns of data communication. In this latter version you can see that every particle
needs a copy of (at least the top part of) the tree, so the danger here is that most of the tree
ends up being copied to most of the processors. In the earlier version, the particles migrate
(in smaller and smaller groups) to the tree, rather than the other way around.

It undoubtedly complicates the programmer’s life to have to think about these mat-
ters, but there is no silver bullet. Parallel programming is complicated, and programmers
must think about concurrency and communication, as well as correctness. However, one
of the advantages of the data-parallel style is that it gives us a much better handle on the
program’s cost model (both computation and communication) than un-structured parallel
programming [Ble96].

2.4 Summary

The algorithm we have described makes extensive use of data parallelism. For example,
buildTree is called in parallel on the four sub-areas of the area under consideration; and
for each of those sub-areas we compute the relevant subset of the particles in parallel.
Similarly calcForces is called in parallel on the four sub-trees; and the computation of
far_forces is done in parallel over all the particles. In each case, the recursive calls over
the sub-trees express nested data parallelism, because the computation that is performed



390 HARNESSING THE MULTICORES

on the sub-tree is itself a data-parallel computation. This is really quite difficult to express
using flat data parallel frameworks; indeed tree construction is often not parallelised.

The rest of this paper uses the parallel Barnes-Hut algorithm as a running example to
explain the successive steps through which the program is compiled to run efficiently on
parallel shared-memory machines.

3 Compiling DPH programs

The compiler must translate high-level nested data parallel programs, as described in the
previous section, into efficient low-level code. This translation consists of four main steps:
• Desugaring removes syntactic sugar, reducing the program to a simple lambda lan-

guage. This intermediate language, GHC’s “Core” language, is still strongly typed.
• Vectorisation transforms nested data parallelism into flat data parallelism; it is a Core-

to-Core transformation.
• Fusion optimises the Core program, by eliminating redundant synchronisation points

and intermediate arrays, thus dramatically improves locality of reference;
• Gang parallelism divides the parallel operations spatially into chunks, each chunk being

executed by a thread from a gang of threads. Typically a gang contains a thread for
each CPU. Gang parallelism is expressed by giving library implementations of the
“vector instructions”, rather than by built-in compiler support.

GHC implements these steps using a large number of Core-to-Core program transforma-
tions. Many of these transformations have been part of GHC’s optimiser for a long time,
in particular a sophisticated inliner, worker-wrapper unboxing, and constructor specialisa-
tion [Pey96, PM02, PL91, PTH01]. In the course of the Data Parallel Haskell project, we
are adding more, array-specific transformations. Due to GHC’s generic support for pro-
gram transformations — specifically, the inliner and rewrite rules [PM02, PTH01] — we
can implement most of these new transformations as library code, as opposed to extending
the compiler itself. Indeed, apart from the vectorisation pass, the rest of the optimisation
pipeline operates in ignorance of the fact that the program being optimised is a data parallel
one.

In this paper we focus mainly on vectorisation, starting at Section 3.2, after taking a
brief diversion to describe how array comprehensions are desugared (Section 3.1).

3.1 Desugaring array comprehensions

In the Barnes-Hut code we used both array comprehensions, and ordinary functions over par-
allel arrays such as zipP and mapP. However, just as in the case of list comprehensions,
the former is just a convenient syntactic sugar for the latter. More precisely, Figure 4 gives
rules for desugaring array comprehensions. They are quite standard [JW07], and practically
identical to those for lists, so we do not discuss them further. These rules are simple, but
they should be thought of as a specification rather than an implementation, because they
generate somewhat inefficient code. In GHC’s actual implementation we use slightly more
complicated rules.



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 391

Expressions e ::= . . . | [:e | q:]
Qualifiers p, q ::= x<-e | e | p,q | p|q

D[[[:e| q:]]] = mapP (λqv.e) Q[[q]]

Q[[q]] computes the parallel array of the tuples generated by q
Q[[x<-e]] = e
Q[[e]] = if e then [:():] else [::]

Q[[p,q]] = concatMapP (λpv.mapP (λqv.(pv, qv)) Q[[q]])Q[[p]]
Q[[p|q]] = zipP Q[[p]] Q[[q]]

qv is a tuple of the variables bound by q
(x<-e)v = x

(g)v = ()
(p,q)v = (pv, qv)
(p|q)v = (pv, qv)

Figure 4: Desugaring rules for array comprehensions

3.2 Informal overview of vectorisation

The purpose of vectorisation is to take a program that uses nested data parallelism, and
transform it into a program that uses only flat data parallelism. Consider this tiny example

f :: Float -> Float
f x = x*x + 1

For every such function we build its lifted version fL thus:
fL :: [:Float:] -> [:Float:]
fL x = (x *L x) +L (replicateP n 1)

where
n = lengthP x

Internally, fL uses “vector instructions” like +L to do its work, where
+L :: [:Float:] -> [:Float:] -> [:Float:]

Notice that it must also replicate the constant 1 so that argument has the type that +L expects.
So, roughly speaking (we give the true story later), to form the definition of fL we transform
the body of f in the following way:
• Replace a constant by a call to replicateP.
• Replace a function by its lifted versions (e.g. + becomes +L).
• Replace a parameter (e.g. x) by itself.

This new definition obeys the equation fL = mapP f, so it takes an array to an array. In effect,
it is a specialised variant of mapP – specialised by fixing the function argument. The idea
is that whenever we see the call (mapP f) we will replace it by fL. But there is a problem!
Suppose we have

g :: [:Float:] -> [:Float:]
g xs = mapP f xs



392 HARNESSING THE MULTICORES

First we replace (mapP f) by fL to get:
g :: [:Float:] -> [:Float:]
g xs = fL xs

But now we must lift g too, in case there are calls to (mapP g). If we try, we get this:
gL :: [:[:Float:]:] -> [:[:Float:]:]
gL xs = fLL xs

Not good: we need the doubly-lifted version of f! If the depth of nesting is not statically
bounded (and it isn’t in Barnes-Hut) then we are in trouble. Blelloch’s clever solution is to
observe that we can define fLL in terms of fL, thus:

fLL :: [:[:Float:]:] -> [:[:Float:]:]
fLL xss = unconcatP xss (fL (concatP xss))

That is: first concatenate all the rows of xss to make a single flat vector; then map f over
that vector; then chop up the result to form a vector of vectors again, guided by the original
shape of xss. (Note that the incoming vector might well be “ragged”, so that not all the sub-
vectors have the same length.) At first, this idea looks terribly inefficient, because of all the
flattening and un-flattening but, as we shall see, if we choose the right data representation,
concatP and unconcatP take constant time and involve no copying.

This is the core of the vectorisation transformation. We have left many details vague.
What about higher order functions? What about user-defined data types? We now start
to tighten our description up. We begin by discussing how to represent arrays (Section 4)
and functions (Section 5) in vectorised code. These representation choices in turn drive the
vectorisation transformation (Section 6). More details are given in previous work [KC98,
CK00, LCK06, CLP+07].

4 Representing arrays in vectorised code

Standard arrays in Haskell are parametric; i.e., the array representation is independent of
the type of array elements. This is achieved by using arrays of pointers referring to the
actual element data. Such a boxed representation is very flexible, but it is also detrimental to
performance. The indirections consume additional memory, increase memory traffic, and
decrease locality of memory access. The resulting runtime penalty can be very significant.

The parallel arrays [:a:] offered by the DPH source language are also parametric,
as can be seen from the polymorphic type signatures in Figure 1. One of the tasks of the
vectoriser is to change the array representation, by systematically transforming a function
that manipulates values of type [:(Int,Int):], say, to one that manipulates values of
type PA (Int,Int). These new PA arrays have a non-parametric representation; that is, the
representation depends on the element type [CK00]. For example, a value of type PA Int is held
as a contiguous memory area containing unboxed 32-bit integer values — not as a block of
pointers to Int-valued thunks, as is the case in vanilla Haskell.

Although PA is not visible to the user, such non-parametric data types are an inde-
penently-useful source-language feature, already implemented in GHC, which we call an
associated data type [CKPM05]. We will therefore explain PA using the notation of associated
data types.



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 393

Since the representation of an array depends on the type of its elements, there can be
no useful polymorphic functions over PA. For example, we cannot define

lengthPA :: PA a -> Int -- WRONG!

because lengthPA, being polymorphic in a, knows nothing about the representation of
PA a. This is just what type classes are for. So we declare the type PA in association with a
class PAElem that defines operations over the type, thus:
class PAElem a where
data PA a
indexPA :: PA a -> Int -> a
lengthPA :: PA a -> Int
replicatePA :: Int -> a -> PA a
...more operations...

Given a type a that is allowed to be an element of a parallel array, there is a corresponding
data type PA a, and operations indexPA, lengthPA, replicatePA, and so on. These
operations therefore have overloaded types, thus:

indexPA :: PAElem a => PA a -> Int -> a
lengthPA :: PAElem a => PA a -> Int
...etc...

All the parametric operations of Figure 1 have PA variants with the same types apart from
the additional (PAElem a) constraint. (Our concrete implementation is more complex
with more operations, but the code shown here conveys the basic idea.)

An instance declaration fills in an implementation for each of these elements. For ex-
ample, the instance declaration for integers takes the following form:

class PAElem Int where
data PA Int = AInt ByteArray
indexPA (AInt ba) i = indexIntArray ba i
lengthPA (AInt ba) = lengthIntArray ba
replicatePA n i = AInt (replicateIntArray n i)
...more operations...

We represent the array by a contiguous region of bytes (aka ByteArray) with primitives
such as indexIntArray that operate on individual 32-bit integers from a ByteArray.
(The code again simplifies the concrete implementation by omitting the use of unboxed
types.)

4.1 Arrays of structured data

The PAElem instance for Float, and other primitive types, follows the same pattern. But
what about more complex data structures, such as an array of pairs? It is quite unacceptable
to represent it by an array of pointers to (heap-allocated) records, because the indirection
costs would be too heavy. Instead, we represent it by a pair of arrays:
class (PAElem a, PAElem b) => PAElem (a, b) where

data PA (a,b) = ATup2 Int (PA a) (PA b)
indexPA (ATup2 _ arr1 arr2) i = (indexPA arr1 i, indexPA arr2 iv)
lengthPA (ATup2 n _ _) = n



394 HARNESSING THE MULTICORES

Thus, a PA (Float,Float) is represented by a pair of unboxed arrays, each storing a
vector of floating point values. Crucially, the two arrays must have the same length; and we
record that length in the Int field of the ATup2 constructor. This length field is convenient,
but usually redundant — but not always! Consider an array of () elements:

class PAElem () where
data PA () = ATup0 Int
indexPA (ATup0 _) i = ()
lengthPA (ATup0 n) = n

We need no data storage to store a vector of () values, but we must still remember its length.
Notice that the representation is compositional; that is, the representation of an array of

pairs is given by combining the representations of an array of the first and second elements
of the pair, and so on recursively.

The representation also allows us to combine two arrays element-wise into an array of
pairs in constant time, with unzipping being equally easy:

zipPA :: PAElem a => PA a -> PA b -> PA (a,b)
zipPA as bs = ATup2 (lengthPA as) as bs

unzipPA :: PA (a,b) -> (PA a, PA b)
unzipPA (ATup 2 _ as bs) = (as,bs)

This stands in contrast to lists, where zipping and unzipping take linear time.
Lastly, since records are converted into product types by the desugarer, the Particle

arrays in Barnes-Hut are represented by tuples of arrays.

4.2 Nested arrays

Even more interesting is the representation of nested arrays. A classic example is that of
sparse matrices, in which we represent a sparse matrix as a vector of rows, each row con-
sisting of a vector of (index,value) pairs, where only the non-zero values in the row are
represented. Thus

type SparseMatrix a = [:[:(Int,a):]:]
Since our ultimate goal is to eliminate nested parallelism, it is not surprising that we also
want to represent nested arrays in terms of flat ones. Indeed, a nested array PA (PA a) can
be encoded by
• a flat data array of type PA a which contains the data elements and
• a segment descriptor of type PA (Int, Int) which stores the starting position and

length of the subarrays embedded in the flat data array.
This is captured by the following instance:
class PAElem a => PAElem (PA a) where

data PA (PA a) = AArr (PA a) (PA (Int, Int))
indexPA (AArr arr segd) i = slicePA arr (indexPA segd i)
lengthPA (AArr _ seg) = lengthPA seg

where sliceP extracts a subarray from a larger array in constant time. Thus, the sparse
matrix

[:[:(0,15),(2,9),(3,20):], [::], [:(3,46):]:]



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 395

[ , , , ] [ , , , ]

[[ ],[ ],[ ],[ ]]

[[ ],[],[ , ],[],[ ],[ ],[],[ ]]

[[],[],[],[],[],[]]

Figure 5: Value of type [:Tree:] and its vectorised representation

will be represented as
AArr (ATup2 [#0,2,3,3#] [#15,9,20,46#]) -- Data

(ATup2 [#0,3,3#] [#3,0,1#]) -- Segment descriptor

where we write [#...#] for a literal ByteArray. The first ByteArray contains all the
column indexes, the second one all the Floats, and the third and fourth the start indexes
and lengths of the segments, respectively. Since all four ByteArray are unboxed, programs
which process such matrices can be compiled to highly efficient code.

Remarkably, we can now give constant-time implementations of the two functions
concatPA and unconcatPA, as promised in Section 3.2:

concatPA :: PA (PA a) -> PA a
concatPA (AArr cts _) = cts

unconcatPA :: PA (PA a) -> PA b -> PA (PA b)
unconcatPA (AArr _ shape) cts = AArr cts shape

4.3 Recursive types

If the array elements are recursive, the non-parametric representation of the array has to be
recursive, too. For instance, arrays of Tree from Section 2.2 are represented as follows:

instance PAElem Tree where
data PA Tree = ATree Int (PA Mass) (PA Location) (PA (PA Tree))

Since Tree is a product, the representation is similar to arrays of tuples. It stores the masses
and locations of the centroids and a nested array containing the subtrees of each node. As
described in the previous section, the latter is encoded by a flat array of trees together with
a segment descriptor. In effect, this means that an array of trees is represented by a list
with each element containing the centroids and segmentation information for one tree level.
This allows all data in one level to be processed in parallel, although the levels have to be
processed one after another. Figure 5 illustrates this representation. User-defined types are
discussed in more detail in Section 6.4.

4.4 Polymorphism

If we were only interested in monomorphic code, or if we would use a whole-program com-
piler that specialises a polymorphic to a monomorphic program, as was the case in NESL,
then life would have been much easier. We could implement the non-parametric array type



396 HARNESSING THE MULTICORES

by statically replacing PA Int by PAInt, say, where the latter is a perfectly ordinary data
type, defined as

data PAInt = AInt ByteArray

Now we do not need non-parametric types; in the vectorised code, original types [:Int:],
[:(Int,Float):], etc, are simply replaced by PAInt, PAPair PAInt PAFloat, and so
on, where all these are ordinary data types.

Alas, this does not work for polymorphic functions. For example, how could we translate
the type of this function? What would we statically replace [:a:] by?

firstRow :: [:[:a:]:] -> [:a:]

We also cannot turn polymorphic functions into families of monomorphic functions, as we
support separate compilation and polymorphic recursion. No — if we want polymorphism,
we must use something akin to type classes, as we have described in this section. A key
component of our work is the extension of the non-parametric representation idea to work in
a polymorphic setting. In particular, our Core language regards PA as a type-level function
from types to types [SCPD07].

5 Representing functions in vectorised code

Haskell is a higher order language, so we have to consider how to vectorise programs that
manipulate functions. Vectorising higher-order programs raises two distinct problems.

5.1 Functions are pairs

Consider this (contrived) definition:
ho :: (Int->Bool) -> (Bool, [:Bool:])
ho f = (f 2, mapP f [:1,2,3:])

In our overview (Section 3.2), we said that we should replace (mapP f) with a call to fL,
the lifted version of f. But since f is lambda-bound, it is not so easy to call “the lifted version
of f”. Clearly the caller must pass the lifted version of f as a parameter to ho. But there
is an ordinary, scalar call (f x) in the body of ho, so we can’t pass only the lifted version.
The obvious alternative is to pass a pair that gives both the lifted and unlifted versions. With
such a representation, mapP can just extract the lifted variant of its argument (a pair), while
the vanilla application of f extracts the unlifted variant.

5.2 Functions are closures

There is a second challenge. In Section 4 we discussed the efficient, non-parametric repre-
sentation of data-parallel arrays. A higher order language forces us to confront the question
of how to represent an array of functions. For example:

distance :: [:Float:] -> [: Float->Float :]
distance xs = mapP (λx y. sqrt (x*x + y*y)) xs

distY :: [:Float:] -> Float -> Float
distY xs y = sumP [: d y | d <- distance xs :]



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 397

There are more direct ways to write distY, of course, but arrays of functions also arise
inevitably when we think about lifting. If we start with

f :: (Int->Int) -> Int

then the lifted version of f has the type
fL :: [: Int->Int :] -> [:Int:]

How should we represent such an array of functions? A possible answer is “as an array
of pointers to function closures”. Bad answer! In data-parallel computations, all the pro-
cessors are supposed to execute the same code in parallel, but if every function closure in
the array is potentially different, they clearly cannot do that. Furthermore, a pointer-based
representation destroys locality.

Happily, there is no need for the generality of a distinct function pointer for each array
element. Consider the result of distance, for example. Every element of this array is
a function with the same code, but a different value for the function’s free variable x. This
makes the solution obvious: we must represent an array of functions by a pair of a single
code pointer and an array of environment records, which give the per-element bindings for
the free variables.

5.3 Putting it together

Putting our two solutions together, we see that in vectorised code a function must be repre-
sented by a triple:

1. The scalar version of the function
2. The lifted version of the function
3. An environment record of the free variables of the function

To be concrete, here is the data type declaration for vectorised functions:
data (a :-> b) = forall e. PAElem e =>

Clo { env :: e
, clos :: e -> a -> b
, clol :: PA e -> PA a -> PA b }

This declaration says that (:->) is an algebraic data type (written infix), with a single con-
structor Clo. The constructor Clo has an existentially-quantified type variable e, and three
fields, env, clos, and clol . The vectorisation transformation will transform every function
type τ1->τ2 to τ′1:->τ′2, where τ′1 is the transformed version of τ1 and similarly for τ2. In
effect, the vectorisation transform performs closure conversion [AJ89].

With this definition in hand, we can now explain how arrays of values of type (a :-> b)
are represented:

instance PAElem (a :-> b) where
data PA (a :-> b) = forall e. PAElem e

=> AClo { aenv :: PA e
, aclos :: e -> a -> b
, aclol :: PA e -> PA a -> PA b }

lengthPA (AClo env fs fl) = lengthPA env
indexPA (AClo env fs fl) n = Clo (indexPA env n) fs fl
replicatePA n (Clo env fs fl) = AClo (replicatePA n env) fs fl



398 HARNESSING THE MULTICORES

To represent an array of functions, we keep a single code pointer for each of the scalar and
lifted code, but have an array of environment records. Notice that Clo and AClo differ only
in the type of the environment field; their clos and clol fields are identical.

As in the case of other types, it is worth noting that this representation supports very
simple and direct implementations of indexing, replication, and so on. It does not efficiently
support literal arrays of various different functions, such as [:sin,cos:]. This is quite
deliberate: in a data-parallel computation all the processors should be performing the same
computation at the same time. Nevertheless, such arrays can be handled, essentially using
conditionals which ensure that different functions are executed one after another.

In Section 6.2, we will see how Clo and AClo are used in the transformation of the ho
example. Before we can do so, we must first specify the vectorisation transformation more
precisely.

6 Vectorisation
We are finally ready to discuss the vectorisation transformation itself. Consider a top-level
function definition f :: τ = e, where τ is the type of f . The full vectorisation transformation
produces a definition for the vectorised version of f called fV, thus:

fV :: VtJτK = V JeK

Here, f V is the fully vectorised variant of f , whose right-hand side is generated by the full
vectorisation transform V J·K. As we have already seen, vectorisation returns an expression
of a different type to the input, so the type of f V is obtained by vectorising the type τ,
thus VtJτK. In general, if e :: τ then V JeK :: VtJτK. Figure 6 gives the functions for both
type and term vectorisation. In our compiler, the transformation applies to an explicitly-
typed program, but we omit all type information in Figure 6, in order to concentrate on the
essentials.

Vectorisation is applied separately to each top level function in the program, so it is a
whole-program transformation. In real programs, only a part will be data-parallel, while
much of it is not (e.g. input/output, user interaction etc). We ignore this issue here, but in
reality our compiler performs selective vectorisation – see Section 6.5 and [CLJK08].

The type transformation VtJτK transforms a source-program type to the corresponding
type in the vectorised program. As can be seen in Figure 6, its effect is simple: it transforms
every function arrow (->) to a vectorised function arrow (:->), and every parametric
array constructor [::] to a non-parametric parallel array constructor PA. A user-defined
algebraic data type might have nested uses of (->) or [::] — for example, Tree does so
— and for these we must generate a vectorised variant (TreeV) of the data type itself. We
elaborate this point in Section 6.4.

This type transformation forces the vectorised program to differ quite radically from
the original. In particular, since a “function” is now a triple constructed with Clo, we need
an infix application operator $: to extract the scalar copy:

($:) :: (a :-> b) -> a -> b
($:) (Clo env fs fl) = fs env

and a lifted version



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 399

VtJτK :: Type→ Type is the vectorisation transformation on types

VtJτ1->τ2K = VtJτ1K :-> VtJτ2K Functions
VtJ[:τ:]K = LtJτK Parallel arrays
VtJIntK = Int Primitive scalar types

VtJFloatK = Float
VtJT τ1 . . . τnK = TV VtJτ1K . . . VtJτnK Algebraic data types (e.g. lists)

LtJτK = PA VtJτK

V JeK :: Term→ Term is the full vectorisation transformation on terms
Invariant: if xi : σi ` e : τ then xi : VtJσiK ` V JeK : VtJτK

V JkK = k k is a literal
V J f K = fV f is bound at top level
V JxK = x x is locally bound (lambda, let, etc)

V Je1 e2K = V Je1K $: V Je2K
V Jλx.eK = Clo {env = (y1, . . . , yk)

,clos = λe x.case eof (y1, . . . , yk)→ V JeK
,clol = λe x.case eof ATupk n y1 . . . yk → L JeK n}

where{y1, . . . , yk} = free variables of λx.e

V

u

v
if e1
then e2

else e3

}

~ = ifV Je1K thenV Je2K elseV Je3K

L JeK n :: Term→ Term→ Term is the lifting transformation on terms
Invariant: if xi : σi ` e : τ then xi : LtJσiK ` L JeK n : LtJτK

where n is the length of the result array

L JkK n = replicatePA n k k is a literal
L J f K n = replicatePA n fV f is bound at top level
L JxK n = x x is locally bound (lambda, let, etc)

L Je1 e2K n = L Je1K n $:L L Je2K n
L Jλx.eK n = AClo {aenv = ATupk n y1 . . . yk,

,aclos = λe x.case eof (y1, . . . , yk)→ V JeK
,aclol = λe x.case eof ATupk n′ y1 . . . yk → L JeK n′}

where{y1, . . . , yk} = free variables of λx.e

L

u

v
if e1
then e2

else e3

}

~ n = combinePA e′1 e′2 e′3
where e′1 = L Je1K n

e′2 = case ys2 of ATupk n2 y1 . . . yk → L′ Je2K n2

e′3 = case ys3 of ATupk n3 y1 . . . yk → L′ Je3K n3

(ys2, ys3) = splitPA e′1 (ATupk n y1 . . . yk)
{y1, . . . , yk} = free variables of e2, e3

L′ JeK n = if n==0 then emptyPA else L JeK n

Figure 6: The vectorisation transformation



400 HARNESSING THE MULTICORES

($:L) :: PA (a:->b) -> PA a -> PA b
($:L) (AClo env fs fl) = fl env

The transformation rules in Figure 6 are given with their type invariants, which make
the rules much more comprehensible. For example, consider the rule for V Je1 e2K. Since
e1 : τ1->τ2, we know that V Je1K : VtJτ1K:->VtJτ2K; that is why we need the application
function ($:) to transform the application to an expression of type VtJτ2K.

Similarly, the rule for V Jλx.eK must produce a value of type VtJτ1K:->VtJτ2K, and that
in turn must be built with a Clo constructor. We build an environment tuple (y1, . . . , yk),
of the free variables of (λx.e). Now the type of the arguments of Clo tell us what functions
we must build. The scalar function simply requires a recursive use of V JeK, while the lifted
function requires us to generate a lifted version of the code for e, L JeK n.

The rules for L JeK n can be read in the same way. The main new complication is with
conditionals. First we compute in parallel e′1, the vector of booleans (of length n) for the
discriminant of the conditional. Then we use that vector to split the a vector of environment
tuples into two parts, ys2 (for which corresponding elements of e′1 is true), and ys3 (for which
e′1 is false). The lengths n2, n3 of these vectors will sum to n. Then we compute each of e′2
and e′3 in parallel, and finally interleave them together with combinePA.

Why do we need to pack and split the free variables in the conditional rule? Each free
variable yi is bound to an n-vector; but in the then branch we need a (shorter) n2-vector
(namely ys2) of the elements of yi for which e is True; and dually for the else branch. We
must also test for n2 or n3 being zero (done by L′ JeK n), otherwise when transforming a re-
cursive function we would generate a program that recurses infinitely deep. The operational
behaviour of the translated function will compute e′1, e′2 and e′3 in sequence; as in any data-
parallel machine, the “then” and “else” branches of a conditional are computed separately.

Figure 6 is the core of this paper. Our real system handles let expressions, case ex-
pressions, and constructors, and hence is a bit more complicated. But Figure 6 describes all
the essential ideas.

Since V invokes both V and L (as does L) you might worry about a code explosion.
But notice that the clos field in V is identical to the aclos field in L, and both are closed
functions that can be named, and bound at top level; and similarly for the clol and aclol
fields. Hence, as we will see in the examples that follow, we can avoid the code explosion
simply by naming and sharing these functions.

6.1 A simple example

Here is the simplest possible example:
inc :: Float -> Float
inc = λx. x + 1

The full vectorisation transformation in Figure 6 gives us this:
incV :: Float :-> Float
incV = Clo () incS incL

incS :: () -> Float -> Float
incS = λe x. case e of () -> (+)V $: x $: 1



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 401

incL :: PA () -> PA Float -> PA Float
incL = λe x. case e of ATup0 n -> (+)V $:L x $:L (replicatePA n 1)

To aid explanation we have named incS and incL, but otherwise we have simply applied
Figure 6 blindly. Notice the way we have systematically transformed inc’s type, replacing
(->) by (:->). Notice too that this transformation neatly embodies the idea that we need
two versions of every top-level function inc, a scalar version incS and a lifted version incL.
These two versions paired together to form the fully vectorised version incV.

The vectorised code makes use of vectorised addition (+), which is part of a fixed,
hand-written library of vectorised primitives:

(+)V :: Float :-> Float :-> Float
(+)V = Clo () (+)S (+)L

(+)S :: () -> Float -> Float :-> Float
(+)S = λe x. Clo x addFloatS addFloatL

(+)L :: PA () -> PA Float -> PA (Float:->Float)
(+)L = λe xs. AClo xs addFloatS addFloatL

-- Implemented in the back end
addFloatS :: Float -> Float -> Float
addFloatL :: PA Float -> PA Float -> PA Float

The intermediate functions (+)S and (+)L deal with partial applications of (+). Finally we
reach ground truth: invocations of addFloatS and addFloatL, which are implemented
by the back end. The former is the ordinary floating point addition instruction; the latter
is a “vector instruction”, which will be implemented differently on different targets. On a
sequential machine it will be implemented as a loop; on a GPU it will be implemented using
vector hardware; on a cluster it will be implemented using a loop on each CPU with barrier
synchronisation at the end. Section 7 elaborates.

These functions look grotesquely inefficient, especially considering how trivial the orig-
inal function inc was. Fortunately, most of the clutter is introduced to account for the possi-
bility of higher order programming, and can be removed by straightforward optimisations.

For example, consider the sub-term (+)V $: x $: 1 in the definition of incS. We can
simplify it in the following way:

(+)V $: x $: 1)
=⇒ Inline (+)V

(Clo () (+)S (+)L) $: x $: 1
=⇒ Definition of $:
(+)S () x $: 1

=⇒ Inline (+)S

(Clo x addFloatS addFloatL) $: 1
=⇒ Definition of $:
addFloatS x 1



402 HARNESSING THE MULTICORES

All the intermediate closure data structures are removed. (To save generating huge interme-
diates during compilation, we are exploring whether the vectorisation transformation could
have special cases to avoid introducing them in the first place.)

6.2 The higher order example again

It is instructive to see a case where the use of higher order functions prevents complete
removal of intermediate closures. Let us return to the ho example of Section 5.1:

ho :: (Int->Bool) -> (Bool, [:Bool:])
ho f = (f 2, mapP f [:1,2,3:])

Again applying the vectorisation transformation blindly we get this:
hoV :: (Int :-> Bool) :-> (Bool, PA Bool)
hoV = Clo () hoS hoL

hoS :: () -> (Int :-> Bool) -> (Bool, PA Bool)
hoS () f = (f $: 2, mapPV $: f $: [:1,2,3:])

hoL :: PA () -> PA (Int :-> Bool) -> PA (Bool, PA Bool)
hoL (ATup_0 n) fs
= (,)L (fs $:L replicatePA n 2)

(replicatePA n mapPV $:L fs $:L replicatePA n [:1,2,3:])
We have taken a short-cut here by using optimised transformation rules for pairs:

V J(e1, e2)K = (V Je1K ,V Je2K)
L J(e1, e2)K n = (, )L n (L Je1K n) (L Je2K n)

The reader may verify the correctness of this optimised rule by seeing what happens instead
if we use the normal translation (,)V $: V Je1K $: V Je1K, and the definition of (,)V, which
in turn is very like that for (+). Because of our array representation, the lifted pairing
function (,)L is a constant-time operation:
(,)L :: Int -> PA a -> PA b -> PA (a,b)
(,)L n xs ys = ATup2 n xs ys

6.3 How flattening happens

In our informal overview (Section 3.2) we said that we “replace a call (mapP f) by fL”.
Higher order flattening takes that static decision and makes it dynamic, by representing f by
a pair of functions, thereby allowing mapP to select at runtime. (With the usual compile-time
optimisations when f is known, of course.) The code for mapP itself is therefore the heart of
the way in which nested data parallelism is transformed to flat data parallelism. Here it is:

mapPV :: (a :-> b) :-> PA a :-> PA b
mapPV = Clo () mapP1 mapP2

mapP1 :: () -> (a :-> b) -> PA a :-> PA b
mapP1 _ f = Clo f mapPS mapPL



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 403

mapP2 :: PA () -> PA (a :-> b) -> PA (PA a :-> PA b)
mapP2 _ fs = AClo fs mapPS mapPL

mapPS :: (a :-> b) -> PA a -> PA b
mapPS (Clo env fs fl) xss
= fl (replicatePA (lengthPA xss) env) xss

mapPL :: PA (a :-> b) -> PA (PA a) -> PA (PA b)
mapPL (AClo env _ fl) xss

= unconcatPA xss (fl (expandPA xss env) (concatPA xss))
-- xss :: PA (PA a)
-- env :: PA e
-- fl :: PA e -> PA a -> PA b

In mapPS we exploit the key observation from Section 3.2, namely that we can define the
doubly-lifted function using the singly-lifted one fl, using constant-time reshaping opera-
tions on the data. Unfortunately, to account for free variables, we face a small complication:
the environment env contains one element for each subarray of xss. Thus, before apply-
ing fl we must expand env, i.e., repeat each element as many times as the corresponding
subarray of xss has elements. For top-level functions, the environment will be empty and
expandPA performs no work.

Of course, mapP is not the only function that the library must implement. All of (the
PA versions of) the functions in Figure 1 must be provided in vectorised form. For example,
here is the lifted version of zipP (the definition of zipPA is given in Section 4.1):
zipPL :: PA (PA a) -> PA (PA b) -> PA (PA a,b)
zipPL (AArr segd xs) (AArr ys) = AArr segd (zipPA xs ys)

These library functions are the heart of flattening: they make nested data parallelism “go”.
Everything is organised to make their implementation, especially their lifted variants, work
efficiently.

6.4 User-defined data types

One of Haskell’s strengths is the ease with which programmers can declare new algebraic
data types, and process them using pattern matching. DPH allows all of this expressiveness
in fully-vectorised code as well. There are two main complications: occurrences of (->)
and [::] in user-defined data types; and representing arrays of values drawn from such
types. We discuss each in turn.

Vectorising user-defined data types

In Figure 6, the type transform VtJτK replaces a user-defined data type T by its vectorised
counterpart TV. But what exactly is TV? Consider

data Fun = MkFun (Int -> Int)



404 HARNESSING THE MULTICORES

Remember that in the vectorised program, each function arrow (->) must be replaced by
a function closure (:->) — and of course that must also happen inside data types. So we
must generate a vectorised version of Fun, thus:
data FunV = MkFunV (Int :-> Int)

This must be done recursively: if a constructor of data type T mentions Fun, then T too must
have a vectorised version. So the vectorised variant of each data type obtained by simply
applying the VtJK transform to every type in the data type declaration. The Tree type of
Section 2.2 is another good example, because we must replace [::] by PA:

data TreeV = NodeV Mass Location (PA Tree)

While we can generate a vectorised version of every data type, it is unnecessary to do
so for data types that do not mention functions or parallel arrays. Happily, almost all data
types fall into this category; for example Bool, Maybe, lists, tuples, and so on. We quietly
took advantage of this in the Tree example, by not transforming Mass to MassV (and simi-
larly Location) because Mass = MassV. In Section 6.5 we will see a second reason to avoid
vectorising a data type unless it is absolutely necessary to do so.

Arrays of user-defined data types

The ideas of Section 4.1 can readily be extended to work for arbitrary user-defined algebraic
data types. We have already seen how this works for Tree in Section 4.3. Here is another
example, a sum type:

data Maybe a = Nothing | Just a

How can we represent an array of Maybe Float values? The natural dense representation
is as a pair of (a) an array of booleans (True for Nothing, and False for Just), and (b) an
array of Float containing only the Just values:

instance PAElem a => PAElem (Maybe a) where
data PA Maybe a = AMaybe (PA Bool) (PA a)
indexPA (AMaybe bs vs) i

| indexPA bs i = Nothing
| otherwise = indexPA vs (indexPA just indices i)
where

just indices = scanPA (+) 0 (mapPA boolToInt bs)
lengthPA (AMaybe bs _) = lengthPA bs

In practice, to avoid computing just_indices on each indexing operation we precompute
the index vector, and cache it in an extra field of the AMaybe constructor.

In our real implementation, we avoid generating a big instance declaration for every
such user-defined data type, by instead generating code to convert it to a simple sum-of-
products representation, and then using a set of fixed instances for PAElem at those repre-
sentation types.

6.5 What we have swept under the carpet

Vectorisation is a complicated transformation, and to keep it comprehensible we have sim-
plified several aspects. In this section we briefly mention some of them.



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 405

Types and dictionaries

The alert and Haskell-savvy reader will have noticed the following discontinuity in our
presentation. We described PA type in association with a type class, PAElem. However, type
classes are dealt with by the type inference system, right at the front end of the compiler,
and are completely translated out in the passage to the Core intermediate language. In this
desugaring, a function with an overloaded type, such as nub :: Eq a => [a] -> [a]
is given a second parameter which is a record, or “dictionary”, of the functions that imple-
ment the operations of the Eq class.

In the desugared program, nub has type EqD a -> [a] -> [a], where EqD is an
ordinary data type, thus:

data EqD a = EqD { (==) :: a -> a -> Bool
, (/=) :: a -> a -> Bool }

Correspondingly, the desugarer injects an extra argument at every call to nub, namely the
correct method suite for that particular call site.

The vectoriser generates many calls to replicatePA, splitPA, etc, which have type-
class-constrained types, yet the vectoriser runs after typechecking and desugaring are complete. So
the vectoriser cannot take advantage of the implicit injection of extra arguments; instead it
must insert them itself. In the real implementation of Figure 6, the vectoriser therefore adds
appropriate dictionary abstractions and applications. (In fact, since GHC’s Core language
is an explicitly-typed variant of System F, we also inject type abstractions and applications.)
All this is tiresome but routine; showing the implicit abstractions and applications in Fig-
ure 6 would have dramatically obfuscated an already-dense figure.

Selective vectorisation

As mentioned earlier, we do not really vectorise the whole program; rather, we selectively
vectorise parts of it. We must also generate marshaling code to allow us to “cross the bor-
der” between vectorised and unvectorised code. For example, in Barnes-Hut, we presum-
ably want to vectorise the oneStep function, which will give us

oneStepV :: PA Particle :-> PA Particle

If we want to be able to call oneStep from ordinary scalar code, we must generate the
following marshalling code:

oneStep :: [:Particle:] -> [:Particle:]
oneStep ps = fromPA (oneStepV $: (toPA ps))

toPA :: PAElem a => [:a:] -> PA a
fromPA :: PAElem a => PA a -> [:a:]

Marshaling may also be necessary for user-defined data types.. For example, suppose we
vectorise a function f :: Int -> Fun, so that fV :: Int :-> FunV (cf. Section 6.4 for
the definition of Fun). If we want to call f from normal scalar code, we must generate:

f :: Int -> Fun
f n = case fV n of

MkFunV tf -> MkFun (($:) tf)



406 HARNESSING THE MULTICORES

Of course, it gets worse if the data type is recursive, because the marshaling code has to
traverse the whole structure. On the other hand, no marshaling is needed for types that
have have no functions or arrays inside them, which is a strong reason for exploiting that
special case (Section 6.4).

Marshaling has a run-time cost. In particular, the calls to toPA and fromPA change
the data representation for parallel arrays, and so are potentially very expensive. In fact, it
is possible to choose a representation for [:a:] that mitigates these costs somewhat but in
general, marshaling data across the border should be avoided.

The question of just which parts of the program to vectorise is therefore an interesting
one. We want to vectorise code that can run in parallel; we want to reduce marshaling to
a minimum; and we do not want to vectorise code where there is little or no benefit. We
suggest automatic approaches in [CLJK08], but it may also be reasonable to seek help from
the programmer (e.g. “vectorise module X but not module Y”).

Laziness

Consider this function:
f :: Int -> Int
f x = h x (1/x)

Although x might be zero, let us assume that h only evaluates its second argument if its
first argument is non-zero. Haskell’s lazy evaluation therefore ensures that no divide-by-
zero exception is raised.

The lifted version will look something like this:
fL :: PA Int -> PA Int -> PA Int
fL xs = hL xs (replicatePA (lengthPA xs) 1 /L xs)

The trouble is that a demand for any element of hL’s second argument will force all the
elements to be evaluated, including the divisions by zero. Something very similar arises in
a more local context when we have let expressions:

f x = let y = 1/x in
if x==0 then 0 else y+1

Although this is something of a corner case, we do not yet have a very satisfying solution.
We currently simply ignore the problem, and accept the slight change in semantics. A better
solution might be to reify the exception into an exceptional value (like a IEEE NaN); but
that carries an efficiency cost. Lastly, we might treat the argument as a nullary function,
accepting the loss of sharing that would result.

7 Multicore execution model

The vectorisation transformation turns all nested data parallelism into parallel operations
on flat arrays, as used by the instances of the PAElem class. The transformation is crucial to
express parallel algorithms on a high-level of abstraction and in a modular fashion. How-
ever, purely functional array operations, even if restricted to flat arrays, are still a far cry
from the hardware model of multicore CPUs.



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 407

In particular, the vectorised code uses many superfluous intermediate arrays, which
increase the overhead of memory management and whose creation involves extra synchro-
nisation between parallel CPUs. Even worse, the repeated traversal of large structures com-
promises locality of reference, and so, has a very negative effect on execution performance.
Finally, we need to map the data parallel array operations onto the multi-threaded execu-
tion model of multicore CPUs by way of the Single Program Multiple Data (SPMD) model
[Dar01].

In contrast to the vectorisation transformation, we can implement the mapping from
flat data-parallel code to SPMD code using existing transformation and optimisation phases
of GHC; in particular, we make heavy use of GHC’s inliner and rewrite rules [PM02, PTH01],
which enable library-specific optimisations as part of library source code, in the form of
compiler pragmas. Consequently, we can implement these transformations without alter-
ing GHC’s source code, which greatly simplifies experimentation with different transforma-
tions.

In the reminder of this section, we illustrate the transformation of flat data-parallel code
into SPMD code by way of an example. Further details are in [KC99, CK03, CSL07, CLS07,
CLP+07].

7.1 Running example

As an example, we consider the computation of the value far_forces, in the function
calcForces of Section 2.2, by way of the array comprehension,

[: forceOn p m l | p <- ps, isFar len l p :]

After vectorisation and simplification to remove intermediate closure data structures, we
have

forceOn’L (filterPS (isFar len l) ps) m l

The code performs two collective operations on the input array ps in sequence. Firstly, the
application of filterPS to remove all particles that are not far, and secondly, a computation
that corresponds to lifting forceOn only on its first argument (here called, forceOn’L):

forceOn’L :: PA Particle -> Mass -> Location -> PA Force

Such pipelines of collective operations are typical for data-parallel code.

7.2 The SPMD execution model

The implementation of collective array operations, such as mapP and filterP, needs to
distribute the workload evenly across the the available processing elements (PEs), such as
multiple cores and CPUs. In the data-parallel model, the workload of a PE is dependent
on the number of array elements residing on that PE. Hence, we balance work by suitably
distributing the array elements. By default, we choose an even distribution; i.e., given p PEs
and an array of length n, each PE gets about n/p array elements.

In the SPMD model, the individual PEs process local array elements until they arrive at
a point in the computation where they require non-local data, and need to cooperate with
other PEs. In our example, the result of filterPS is such a point. Even if the input to
filterPS is an array that is evenly spread across the PEs, the output of filterPS might



408 HARNESSING THE MULTICORES

be wildly unbalanced, depending on which elements of the array are selected by the pred-
icate. If so, any further processing of that array would have an equally unbalanced work
distribution.

To avoid a work imbalance, arrays need to be re-distributed when their size changes.
Redistribution is a cooperative process in which all PEs need to coordinate. However, re-
distribution is not the only such operation in an SPMD implementation of data parallelism.
Other prominent cooperative operations are reductions (such as foldP), pre-scans (such as
scanlP), and permutation operations. Overall, a parallel program executing in SPMD-style
alternates between processing phases, where the PEs operate independently on local data, and
communication phases, where the processing elements interact and exchange data.

Communication phases are typically expensive because they include data exchange
and blocking to allow any slower PEs to catch up. Hence, compiler optimisations that
remove communication phases in favour of longer-running processing phases are often
worthwhile. In particular, the redistribution of arrays after operations that change the array
length, such as filterPS, does not necessarily improve overall runtime. An inexpensive,
purely local operation may be faster, even if work is not ideally balanced, than an expensive
redistribution followed by the same local operation with a perfectly balanced workload.

7.3 Gang parallelism

Our implementation of the SPMD model for data parallelism is based on the coordinated ex-
ecution of a gang of threads, with one thread per PE. GHC includes a Haskell library for con-
current programming with explicit thread forking and thread communication primitives. It
forms the lowest level of abstraction in our data-parallel array framework and enables us to
implement the entire library in Haskell without any special compiler support or the need to
resort to C code.

We need to make the distributed nature of computations in the SPMD model explicit to
further compile the code resulting from vectorisation, such as

forceOn’L (filterPS (isFar len l) ps) m l

In this context, distribution does not imply that the data is necessarily located on physically
distinct memory banks, but that different threads are responsible for the processing of dif-
ferent portions of parallel arrays. By being explicit about distribution, we are automatically
also explicit about the distinction of processing phases versus communication phases.

Our main vehicle for distinguishing between these two phases and making distribu-
tion explicit is the type Dist a of distributed values. For instance, Dist Int, pronounced
“distributed Int”, denotes a collection of local integers, such that there is one local integer
value per gang thread. Arrays can be distributed, too: Dist [:Float:] is a collection of
local array chunks, again one per gang member, which together make up the array. Arrays
are distributed across gang members and joined back together by the following functions:

splitD :: PA a -> Dist (PA a)
joinD :: Dist (PA a) -> PA a

Distributed values support a number of operations, most importantly mapping:
mapD :: (a -> b) -> Dist a -> Dist b



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 409

While splitD and joinD denotes communication, mapD is the main means of implement-
ing parallel processing phases: the gang members concurrently apply the (purely sequen-
tial) function to their respective local values.

7.4 Inlining of gang code

Given a sequential filter function operating on a single chunk of a parallel array
filterS :: (a -> Bool) -> PA a -> PA b

we can define filterPS as a distributed gang computation as follows:
filterPS p arr = joinD (mapD (filterS p) (splitD arr))

Given a global parallel array, which is not distributed, splitD distributes the array across
the gang, mapD (filterS p) applies the sequential filter function in parallel to all chunks
of the distributed array, and finally, joinD combines the various chunks, which may now
be of varying length, into one global array.

Similarly, forceOn’L internally consists of mapDs that compute the force for each par-
ticle. The force computations for the individual particles are entirely independent, so we
can assume forceOn’L to have the following structure:

forceOn’L ps m l
= joinD (mapD (mapS (λp. forceOn p m l)) (splitD ps))

where forceOn is the original, sequential function from the source of our Barnes-Hut im-
plementation and mapS is a purely sequential array mapping function.

GHC’s inliner will inline the definition of both filterPS and forceOn’L; i.e., it will
perform the following rewriting:

forceOn’L (filterPS (isFar len l) ps) m l
=⇒Inlining
joinD (mapD (mapS (λp. forceOn p m l)) (
splitD (joinD (mapD (filterS (isFar len l)) (splitD ps)))))

Of special interest here is the function splitD which is applied to the immediate result
of joinD (in the second line of the resulting expression). This turns a distributed array into
a global array and distributes it again. In contrast to the original array, the newly distributed
one is guaranteed to be distributed evenly; hence, a splitD/joinD combination performs
load balancing.

However, as we remarked earlier, it is often an advantage to accept some load imbal-
ance in favour of avoiding communication phases in an SPMD computation. In GHC, we
easily achieve that by specifying the following rewrite rule:

"splitD/joinD" forall xs. splitD (joinD xs) = xs
GHC has support for specifying such rewrite rules directly in the library source code as
compiler pragmas [PTH01]. Applications of the splitD/joinD rule frequently produce
two adjacent applications of mapD, which signal two adjacent purely sequential and thread-
local computations. We can combine them, and hence eliminate a synchronisation point,
using the well known map fusion law:

"mapD/mapD" forall f g xs.
mapD f (mapD g xs) = mapD (f . g) xs



410 HARNESSING THE MULTICORES

Applying both rules to our example, we get
joinD (mapD (mapS (λp. forceOn p m l)) (
splitD (joinD (mapD (filterS (isFar len l)) (splitD ps)))))

=⇒Apply splitD/joinD
joinD (mapD (mapS (λp. forceOn p m l)) (
mapD (filterS (isFar len l)) (splitD ps)))

=⇒Apply mapD/mapD
joinD (mapD (mapS (λp. forceOn p m l) . filterS (isFar len l))

(splitD ps)))

At this point, the question arises whether we can combine adjacent sequential array com-
binators, such as mapS and filterS, to reduce the number of array traversals and inter-
mediate data structures. Indeed, we aggressively remove such inefficiencies using a fusion
framework known as stream fusion [CSL07, CLS07, CLP+07], but we will refrain from dis-
cussing this in detail.

This concludes our brief overview of the post-vectorisation aspects of Data Parallel
Haskell. A somewhat more detailed discussion can be found in [CLP+07].

8 Related work

We discussed prior work on the implementation of language support for nested data par-
allelism in detail in [CLP+07]. In this paper, we will only give a brief overview of existing
work, and how they compare to our approach.

The starting point for our work was the nested data parallel programming model of
NESL [Ble90, BCH+94], which we extended and implemented in the context of a general-
purpose language and GHC, a state-of-the-art compiler. Consequently, we have to deal
with a multitude of issues not previously addressed, as for example the combination of
user-defined and parallel data structures, selective vectorisation, higher-order functions,
separate compilation, and aggressive cross-function optimisation.

Prins et al. worked on various aspects of the vectorisation of nested data parallel pro-
grams; see, e.g., [PP93, PPW95]. Most of their work was also in the context of a functional
language, but one that like NESL lacks many of Haskell’s features. Their work is largely
orthogonal to ours.

The Proteus system [MNPR94] promised a combination of data and control parallelism,
but Proteus had a particular focus on manual refinement of algorithms, where data paral-
lel components were automatically vectorised, this again was a complete whole-program
transformation. Moreover, the system was never fully implemented.

Manticore [FFR+07] supports a range of forms of parallelism including nested data
parallelism. Manticore employs some of the same techniques that we use, but does not
implement flattening yet [FRRS08]. According to the project web page, a preliminary im-
plementation of the Manticore system should be available around the time when this paper
is published.

So et al. [SGW06] developed a parallel library of immutable arrays for C/C++ support-
ing what they call sub-primitive fusion. Their choice of immutable arrays, despite working
with imperative languages, is to enable aggressive program transformations, much like in



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 411

our approach. However, where we apply transformations statically during compile time,
their library builds a representation of the to be executed computation at runtime. Conse-
quently, they require less compiler support and do not have to worry about inlining and
similar optimisations. However, they incur a runtime penalty by performing optimisations
at runtime and need to amortise that penalty by further optimisations. Like us, they also
strive for a seamless integration of data parallelism and explicit concurrency within a single
program.

9 Conclusion
We are excited about Data Parallel Haskell because it gives us some chance of writing par-
allel programs that can in principle efficiently exploit very large parallel machines working
on large data sets.

In this paper we have outlined solutions to the challenges of polymorphism, higher
order functions, and user-defined data types. There is much to do, however, before we
can declare victory. The very generality of Data Parallel Haskell makes it an ambitious
undertaking. Many components have to work together smoothly to generate efficient code
— and that is before we start to consider matters such as using SSE vector instructions or
GPUs, or mapping to a distributed memory architecture. Nevertheless, we regard nested
data parallelism general, and Data Parallel Haskell in particular, as a very promising and
exciting approach to harnessing the multicores.

Acknowledgements
We gratefully acknowledge the help of Max Bolingbroke, Ryan Ingram and John Reppy,
whose comments led to real improvements in the paper. Thank you.

References
[AJ89] A. W. Appel and T. Jim. Continuation-passing, closure-passing style. In POPL

’89: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 293–302, New York, NY, USA, 1989. ACM Press.

[BCH+94] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein,
and Marco Zagha. Implementation of a portable nested data-parallel language.
Journal of Parallel and Distributed Computing, 21(1):4–14, April 1994.

[BH86] J. Barnes and P. Hut. A hierarchical O(n log n) force calculation algorithm. Na-
ture, 324, December 1986.

[Ble90] Guy E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press, 1990.
[Ble96] Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM,

39(3):85–97, 1996.
[BS90] Guy E. Blelloch and Gary W. Sabot. Compiling collection-oriented languages

onto massively parallel computers. Journal of Parallel and Distributed Computing,
8:119–134, 1990.

[CK00] Manuel M. T. Chakravarty and Gabriele Keller. More types for nested data
parallel programming. In Philip Wadler, editor, Proceedings of the Fifth ACM



412 HARNESSING THE MULTICORES

SIGPLAN International Conference on Functional Programming (ICFP’00), pages
94–105. ACM Press, 2000.

[CK03] Manuel M. T. Chakravarty and Gabriele Keller. An approach to fast arrays in
haskell. In Johan Jeuring and Simon Peyton Jones, editors, Lecture notes for The
Summer School and Workshop on Advanced Functional Programming 2002, number
2638 in Lecture Notes in Computer Science, 2003.

[CKPM05] Manuel Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow.
Associated types with class. In ACM Symposium on Principles of Programming
Languages (POPL’05). ACM Press, 2005.

[CLJK08] Manuel MT Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and
Gabriele Keller. Partial vectorisation of Haskell programs. In Proc ACM Work-
shop on Declarative Aspects of Multicore Programming, San Francisco, January
2008. ACM Press.

[CLP+07] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. Data Parallel Haskell: a status report. In DAMP
2007: Workshop on Declarative Aspects of Multicore Programming. ACM Press,
2007.

[CLS07] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From
lists to streams to nothing at all. In Proceedings of the ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2007, April 2007.

[CSL07] Duncan Coutts, Don Stewart, and Roman Leshchinskiy. Rewriting haskell
strings. In Practical Aspects of Declarative Languages 8th International Symposium,
PADL 2007, pages 50–64. Springer-Verlag, January 2007.

[Dar01] Frederica Darema. The spmd model: Past, present and future. In Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, volume 2131 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing
on large clusters. In Sixth Symposium on Operating System Design and Implemen-
tation (OSDI’04), San Francisco, December 2004.

[FFR+07] M. Fluet, N. Ford, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Status report: The
manticore project. In 2007 ACM SIGPLAN Workshop on ML. ACM Press, 2007.

[For97] High Performance Fortran Forum. High performance fortran language speci-
fication version 2.0. Technical report, Rice University, 1997.

[FRRS08] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly-threaded parallelism in
manticore. In Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming (ICFP’08). ACM Press, 2008.

[GHLL+98] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI: The Complete Reference (Vol. 2).
The MIT Press, 1998.

[JW07] Simon Peyton Jones and Philip Wadler. Comprehensive comprehensions: com-
prehensions with order by and group by. In Haskell Workshop 2007, pages 61–72,
Frieburg, Germany, September 2007.

[KC98] Gabriele Keller and Manuel M. T. Chakravarty. Flattening trees. In David
Pritchard and Jeff Reeve, editors, Euro-Par’98, Parallel Processing, number 1470



PEYTON JONES, LESHCHINSKIY, KELLER, CHAKRAVARTY FSTTCS 2008 413

in Lecture Notes in Computer Science, pages 709–719, Berlin, 1998. Springer-
Verlag.

[KC99] Gabriele Keller and Manuel M. T. Chakravarty. On the distributed implemen-
tation of aggregate data structures by program transformation. In José Rolim
et al., editors, Parallel and Distributed Processing, Fourth International Workshop on
High-Level Parallel Programming Models and Supportive Environments (HIPS’99),
number 1586 in LNCS, pages 108–122, Berlin, Germany, 1999. Springer-Verlag.

[LCK06] Roman Leshchinskiy, Manuel M. T. Chakravarty, and Gabriele Keller. Higher
order flattening. In Third International Workshop on Practical Aspects of High-
level Parallel Programming (PAPP 2006), number 3992 in LNCS. Springer-Verlag,
2006.

[MNPR94] P. Mills, L. Nyland, J. Prins, and J. Reif. Software issues in high-performance
computing and a framework for the development of hpc applications. In Com-
puter Science Agendas for High Perfromance Computing. ACM Press, 1994.

[NVI07] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture, Programming
Guide, Version 1.1, 2007. http://developer.download.nvidia.com/
compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf.

[PCS99] Jan F. Prins, S. Chatterjee, and M. Simons. Irregular computations in Fortran —
expression and implementation strategies. Scientific Programming, 7:313–326,
1999.

[Pey96] SL Peyton Jones. Compilation by transformation: a report from the trenches.
In European Symposium on Programming, volume 1058 of LNCS, pages 18–44.
Springer Verlag, 1996.

[PL91] SL Peyton Jones and J Launchbury. Unboxed values as first class citizens. In
RJM Hughes, editor, ACM Conference on Functional Programming and Computer
Architecture (FPCA’91), volume 523 of Lecture Notes in Computer Science, pages
636–666, Boston, 1991. Springer.

[PM02] SL Peyton Jones and S Marlow. Secrets of the Glasgow Haskell Compiler in-
liner. Journal of Functional Programming, 12:393–434, 2002. First published at
Workshop on Implementing Declarative Languages, Paris, Sept 1999.

[PP93] Jan Prins and Daniel Palmer. Transforming high-level data-parallel programs
into vector operations. In Proceedings of the Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 119–128, San Diego, CA.,
May 19-22, 1993. ACM Press.

[PPW95] Daniel Palmer, Jan Prins, and Stephan Westfold. Work-efficient nested data-
parallelism. In Proceedings of the Fifth Symposium on the Frontiers of Massively
Parallel Processing (Frontiers 95). IEEE Press, 1995.

[PTH01] Simon L. Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the
rules: rewriting as a practical optimisation technique in GHC. In Ralf Hinze,
editor, 2001 Haskell Workshop. ACM SIGPLAN, September 2001.

[SCPD07] Martin Sulzmann, Manuel Chakravarty, Simon Peyton Jones, and Kevin Don-
nelly. System F with type equality coercions. In ACM SIGPLAN International
Workshop on Types in Language Design and Implementation (TLDI’07). ACM, 2007.

[SGW06] Byoungro So, Anwar Ghuloum, and Youfeng Wu. Optimizing data parallel



414 HARNESSING THE MULTICORES

operations on many-core platforms. In First Workshop on Software Tools for Multi-
Core Systems (STMCS), 2006. http://www.isi.edu/˜kintali/stmcs06/
prog.html.

[SJ08] Satnam Singh and Simon Peyton Jones. A Tutorial on Parallel and Concurrent
Programming in Haskell. Lecture Notes in Computer Science. Springer Verlag,
Nijmegen, Holland, May 2008.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.




