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ABSTRACT. Motivated by the quantum algorithm for testing commutativity of black-box groups
(Magniez and Nayak, 2007), we study the following problem: Given a black-box finite ring by an
additive generating set and a multilinear polynomial over that ring, also accessed as a black-box
function (we allow the indeterminates of the polynomial to be commuting or noncommuting), we
study the problem of testing if the polynomial is &entity for the given ring. We give a quantum
algorithm with query complexity sub-linear in the number of generators for the ring, when the number
of indeterminates of the input polynomial is small (ideally a constant). Towards a lower bound, we
also show a reduction from a version of the collision problem (which is well studied in quantum
computation) to a variant of this problem.

1. Introduction

For any finite ring(R, +, -) the ring R[z1,x2,- - ,x,,] IS the ring of polynomials in com-
muting variablesey, zs, - - - , z,,, and coefficients irk. The ring R{z1, 2, - , ., } is the ring of
polynomials where the indeterminatesarenoncommutingBy noncommuting variables, we mean
TiTj — T4 #0 for i #7j.

For the algorithmic problem we study in this paper, we assume that the elements of the ring
(R, +, ) are uniformly encoded by binary strings of lengttand R = (ry,rs,--- ,71) IS given by
an additive generating sty,r,--- , 7, }. Thatis,

R = {Zain | o; € Z}.

Also, the ring operations oR are performed by black-box oracles for addition and multiplication
that take as input two strings encoding ring elements and output their sum or product (as the case
may be). Additionally, we assume that the zero elemenk o encoded by a fixed string. The
black-box model for finite rings was introduced in [ADMO06]. We now define the problem which
we study in this paper.
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The Multilinear Identity Testing Problem (MIT): The input to the problem is a black-box ring
R = (ry,---,rg) given by an additive generating set, and a multilinear polynorfial, - - - , x,,)

(in the ring R[x1, - - - , 2y, Or the ring R{z1,--- ,z,,}) that is also given by a black-box access.
The problem is to test if is anidentity for the ring R. More precisely, the problem is to test if
flai,ag, -+ ,an,) =0forall a; € R.

A natural example of an instance of this problem is the bivariate polynofiial, z2) =
x129 — wox1 OVer the ringR{x1, z2}. This is an identity forR precisely whenR is a commutative
ring. Clearly, it suffices to check if the generators commute with each other, which gives a naive
algorithm that make® (k?) queries to the ring oracles.

Given a polynomialf (z1, - - - , z,,) and a black-box ring? by generators, we briefly discuss
some facts about the complexity of checkingfit= 0 is an identity forR. The problem can be
NP-hard when the number of indeterminatess unbounded, even wheh is a fixed ring. To see
this, notice that a 3-CNF formul&(x1,--- ,x,) can be expressed as(¥n) degree multilinear
polynomial f(x1,xo,--- ,x,) OverFq, by writing F' in terms of addition and multiplication over
Fs. It follows that f = 0 is an identity forlF, if and only if F' is an unsatisfiable formula. However
in this paper we focus only on the upper and lower bounds onukey complexityf the problem.

In our query model, each ring operation, which is performed by a query to one of the ring
oracles, is of unit cost. Furthermore, we consider each evaluatigiiaef- - - , a,,) to be of unit
cost for a given inputay, - - - ,a,,) € R™. This model is reasonable because we consides a
parameter that is much smaller than

The starting point of our study is a result of Magniez and Nayak in [MNO7], where the authors
study the quantum query complexity of group commutativity testing: (iéte a finite black-box
group given by a generating set, g2, - - , g and the group operation is performed by a group
oracle. The algorithmic task is to checkd is commutative. For this problem the authors in
[MNO7] give a quantum algorithm with query complexi(y(k:2/3 log k) and time complexity
O(k?*/31og? k). Furthermore, &)(k*/3) lower bound for the quantum query complexity is also
shown. The main technical tool for their upper bound result was a method of quantization of ran-
dom walks first shown by Szegedy [Sze0O4]. More recently, Magniez et al in [MNRSO7] discovered
a simpler and improved description of Szegedy’s method.

Our starting point is the observation that Magniez-Nayak result [MNO7] for group commuta-
tivity can also be easily seen as a commutativity test for arbitrary finite blackiggwith similar
guery complexity. Furthermore, as mentioned earlier, notice that the commutativity testing for a
finite ring coincides with testing if the bivariate polynomij@lxy, x2) = x129 — z2x1 is an identity
for the ring. Sincef (x4, x2) is a multilinear polynomial, a natural question is, whether this approach
would extend to testing if any multilinear polynomial is an identity for a given ring. Motivated by
this connection, we study the problem of testing multilinear identities for any finite black-box ring.

The upper bound result in [MNO7] is based on a group-theoretic lemma of Pak [Pak00]. Our
(query complexity) upper bound result takes an analogous approach. The main technical contri-
bution here is a suitable generalization of Pak’s lemma to a multilinear polynomial setting. The
multilinearity condition is crucially required. The rest of the proof is a suitable adaptation of the
Magniez-Nayak result.

For the lower bound result, we show a reduction to a somewhat more general versioh of
from a problem that is closely related to the COLLISION problem studied in quantum com-
putation. Them-COLLISION problem is the following. Given a functioff : {1,2,--- .k} —
{1,2,--- ,k} as an oracle and a positive integer the task is to determine if there is some element
in the range off with exactlym pre-images.
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We define then-SPLIT COLLISIONproblem that is closely related to-COLLISION problem.
Here the domain{1,2,--- ,k} is partitioned intom equal-sized intervals (assunieis a multi-
ple of m) and the problem is to determine if there is some element in the rangewosth ex-
actly one pre-image in each of the intervals. We show a reduction from-SPLIT COLLISION
to a general version afiT. There is an easy randomized reduction fraCOLLISION prob-
lem tom-SPLIT COLLISIONproblem. The best known quantum query complexity lower bound for
m-COLLISION problem isQ(l-c%) [AS04] and thus we get the same lower bound for the general ver-
sion of MIT that we study. Improving, the current lower bound fiMCOLLISION is an important
open problem in quantum computation since last few yéars.

Our reduction for lower bound is conceptually different from the lower bound proof in [MNO7].
It uses ideas from automata theory to construct a suitable black-box ring. We recently used similar
ideas in the design of a deterministic polynomial-time algorithm for identity testing of noncommu-
tative circuits computing small degree sparse polynomials [AMS08].

2. Black-box Rings and the Quantum Query model

We briefly explain the standard quantum query model. We modify the definition of black-box
ring operations by making them unitary transformations that can be used in quantum algorithms. For
a black-box ringlz, we have two oracle®$ andO7 for addition and multiplication respectively.

For any two ring elements s, and a binary string € {0, 1}" we haveO%|r)|s) = |r)|r + s) and
OF|r)s)|t)y = |r)|s)|rs & t), where the elements d? are encoded as strings {0, 1}". Notice
that O% is a reversible function by virtue afR, 4-) being an additive group. On the other hand,
(R, -) does not have a group structure. Thus we have nijgieeversible by defining it as &place
function O : {0,1}3" — {0,1}3". Whenr or s do not encode ring elements these oracles can
compute any arbitrary string.

The query model in quantum computation is a natural extension of classical query model. The
basic difference is that a classical algorithm queries deterministically or randomly selected basis
states, whereas a quantum algorithm can query a quantum state which is a suitably prepared su-
perposition of basis states. Our query model closely follows the query model of Magniez-Nayak
[MNO7, Section 2.2]. For black-box ring operations the query operators are sifpndO¥%' (as
defined above). For an arbitrary oracle functibn: X — Y, the corresponding unitary operator
isOr : |g)|h) — |g)|h @ F(g)). Inthe query complexity model, we charge unit cost for a single
query to the oracle and all other computations are free. We will assume that the input black-box
polynomial f : R — R is given by such an unitary operatol;.

All the quantum registers used during the computation can be initialisé@).toThen ak-
query algorithm for a black-box ring is a sequencekot 1 unitary operators and ring oracle
operators:Up, @1, Ui, - - ,Uk—1,Qr, Uy WhereQ; € {O%,0%,Or} are the oracle queries and
U,’s are unitary operators. The final step of the algorithm is to measure designated qubits and
decide according to the measurement output.

3. Quantum Algorithm for Multilinear Identity Testing

In this section we describe our quantum algorithm for multilinear identity teskt@)( Our
algorithm is motivated by (and based on) the group commutativity testing algorithm of Magniez
and Nayak [MNO7]. We briefly explain the algorithm of Magniez-Nayak. Their problem is the

IAmbainis in [Amb07] show a quantum query complexity upper bour@(@™/™+*) for m-COLLISIONproblem.



90 V. ARVIND AND PARTHA MUKHOPADHYAY

following: given a black-box grougs by a set of generatorg,, g2, - - , gx, the task is to find
nontrivial upper bound on the quantum query complexity to determine whéti®ecommutative.
The group operators (corresponding to the oracle)xeandOgq-1.

Note that for this problem, there is a trivial classical algorithm (so as quantum) of query com-
plexity O(k?). In an interesting paper, Pak showed a classical randomized algorithm of query com-
plexity O(k) for the same problem [Pak00]. Pak’s algorithm is based on the following observation
([Pak00, Lemma 1.3]): Consider a subprodiict ¢7' 52 - - - g;* Wheree;’ s are picked uniformly
at random from{0, 1}. Then for any proper subgroufi of G, Progh ¢ H] > 1/2.

One important step of the algorithm in [MNO7] is a generalization of Pak’s lemma)Leé

the set of all distinct elemerittuples of elements frorfil, 2, - -- , k}. Foru = (uq,--- ,uy), define
_ (=) +(k—0)(k—E—1)
Gu = Gui " Gua """ Guy- Letp = k(1) -

Lemma 3.1. [MNO7] For any proper subgroug( of G, Prob,cy,[g., & K] > %.

As a simple corollary of this lemma, Magniez and Nayak show in [MNOQ7] tha; i§ non
abelian then for randomly picked andv from V), the elementg, andg, will not commute with

probability at Ieas%p)g. Thus, for non abelia there will be at Ieas¥1_4—p)2 fraction of noncom-
muting pairs(u, v). Call such pairs amarked pairs Next, their idea is to do a random walk in the
space of all pairs and to decide whether there exists a marked pair. They achieved this by defining
a random walk and quantizing it using [Sze04]. We briefly recall the setting from [MNQ7, Section
2.3], and the main theorem from [Sze04], which is the central to the analysis of Magniez-Nayak
result.

3.0.1. Quantum WalksLet P be an irreducible and aperiodic Markov chain on a graps (V, E)

with n vertices. A walk following such a Markov chain is always ergodic and has unique stationary
distribution. LetP(u,v) denote the transition probability from — v, and M be a set of marked

nodes ofl/. The goal is to make a walk on the vertices(éfollowing the transition matrix? and

decide whethef is nonempty Assume that every nodec V' is associated with a databaBgv)

from which we can determine whethere M. This search procedure is modelled by a quantum
walk. To analyze the performance of the search procedure, we need to consider the cost of the
following operations:

Set up Cost (S)The cost to set u(v) forv € V.

Update Cost (U)The cost to updat®(v), i.e. to update fromD(v) to D(v"), where the move
v — v’ is according to the transition matrik.

Checking Cost (C)To check whethev € M using D(v).

The costs are specific to the application for e.g. it can be query complexity or time complexity.
The problem that we consider or the group commutativity problem of Magniez-Nayak, concern
about query complexity. The following theorem due to Szegedy gives a precise analysis of the total
cost involved in the quantum walk.

Theorem 3.2. [Sze0O4]Let P be the transition matrix of an ergodic, symmetric Markov Chain on
agraphG = (V, E) andé be the spectral gap aP. Also, letM be the set of all marked vertices
inV and|M|/|V| > e > 0, wheneverM is nonempty. Then there is a quantum algorithm which
determines whethe¥/ is nonempty with constant success probability and §as ((U+C) /v/de).

S is the set up cost of the quantum procd$ss the update cost for one step of the walk @nib

the checking cost.

Later, Magniez-Nayak-Ronald-Santha [MNRSO7] improve the total cost of the quantum walk.
We state their main result.
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Theorem 3.3. [MNRSO7]Let P be the transition matrix of a reversible, ergodic Markov Chain on
agraphG = (V, E) and$ be the spectral gap aP. Also letM be the set of all marked vertices
inV and|M|/|V| > e > 0, wheneverM is nonempty. Then there is a quantum algorithm which
determines whethel/ is nonempty and in that case finds an elementoiwith constant success
probability and cost of ordef + \%(%U + C). S'is the set up cost of the quantum procésss

the update cost for one step of the walk &ndk the checking cost.

The analysis of Magniez-Nayak [MNO7] is based on Theorem 3.2. For our problem also, we
follow similar approach.

3.1. Query Complexity Upper Bound

Now we describe our quantum algorithm #afT. Our main technical contribution is a suitable
generalization of Pak’s lemma. For ahg [m], consider the seR; C R defined as follows:

Ri = {U S R ‘ V(bl, 7bi—17b’i+17"' 7bm) S Rm_laf(bl7”' 7bi—l7u7bi+l7”' 7bm) = O}

Clearly, if f is not a zero function fronR™ — R, then|R;| < |R|. In the following lemma,
we prove that iff is not a zero function thefR;| < |R|/2.

Lemma 3.4. Let R be any finite ring andf (x1, z2, - - - , z,,) be a multilinear polynomial oveR
such thatf = 0 is not an identity forR. For i € [m/] define

R’L - {U €ER | v(bla e 7bi—17 bi+17 e 7bm) S Rm_la f(b17 e 7bi—l7u7 bi+l7 T 7bm) - 0}
ThenR; is an additive coset of a proper additive subgroupioéind henceR;| < |R|/2.

Proof. Write f = A(.’El, e L1, Ly L1, ,.’Em) + B(Jl‘l, L1, L1, ,.’L‘m) where A

is the sum of all the monomials gfcontainingz; andB is the sum of the rest of the monomials. Let

vy, vy be any two distinct elements iR;. Then for any fixedj = (y1,- -+ ,%i—1,Yi+1, " ,Ym) €

R™ 1, consider the evaluation of and B over the pointS(y1,- -+ ,¥i—1,v1,%it1, " ,Ym) and

(Y1, ,¥i-1,V2,Yi+1," - ,Ym) respectively. For convenience, we abuse the notation and write,
A(Ubg) + B(g) = A(UQa g) + B(g) = 07

whereg is an assignment toq,xs, - , 2,1, %11, , T andwvy, vo are the assignments tg

respectively. Note that, ag is a multilinear polynomial, the above relation in turns implies that
A(Ul — V2, y) = 0. N )

Consider the seR;, defined as follows: Fix anyY € R;,

R,‘ = {w — u(’) | w e Rz}

We claim thatR; is an (additive) subgroup ak. We only need to show thak; is closed under
the addition (ofR). Consider(w; — u®), (wy — u)) € R;. Then(w; — u®) + (wy — u®) =
(w1 +wy —u®) —u, Itis now enough to show that for agye R™!, f(w; +wy —u®,5) = 0
(note thatw; + w, + u'? is an assignment to;). Again using the fact thaf is multilinear, we can
easily see the following:

Flwi +wy —uD,g) = A(wr, §) + A(ws, §) — A(u®, ) + B(7)

and,
A(wi, §) + A(ws, §) — AW, ) + B(§) = A(ws, §) — A(u™, 7) = 0.
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Note that the last equali'fy follows becausgandu are inR;. Hence we have proved th&t
is a subgroup oRR. SoR; = R; + u( i.e. R; is a coset ofR; inside R. Also |R;| < |R| (f is not
identically zero overR). Thus, finally we getR;| = |R;| < |R|/2. [

Our quantum algorithm is based on the algorithm of [MNO7].Ha test of the paper we denote
by S, the set of alll sizesubsetof {1,2,--- ,k}. We follow a quantization of a random walk on
Spx -+ x Sp = 8" Foru = {uy,us,- - ,up}, definer, = ry, +--- +r,,. Now, we suitably
adapt Lemma 1 of [MNO7] in our context.

Let R be a finite ring given by a additive generating set= {ry,--- ,r}. W.l.0o.g. assume
thatr, is the zero element oR. Let R be a proper additive subgroup 6R, +). Let j be the least
integer in[k] such that-; ¢ R. SinceR is a proper subgroup d&, such aj always exists.

Lemma3.5. Let R < R be a proper additive subgroup & and 7" be an additive coset dt in R.

ThenProncsru # 71 > 132, wherep — A=)

Proof. Let j be the least integer ifk] such that-; ¢ R. Fix a setu of size/ such thatl € « and
j ¢ u. Denote byv the set obtained from by deletingl and insertingj. This defines a one to
one correspondence (matching) between all such pait,af). Moreoverr, = r, + r; (notice that
r1 = 0). Then at least one of the elementor r,, is not in7". For otherwisgr, —r,,) € R implying
r; € R, which is a contradiction.

Therefore,

Prob,es,[ru € T | j € uxorl € u] <

DN =

For any two indices, j,
-1+ (k—-0k—-0-1)

Probycgs,[i,j € uori,j & u] = = 1) =p.
Thus,
Prob,es,[ry €T) < (1 —p)/2+p < (1+Dp)/2.
This completes the proof. [

LetT = R; in Lemma 3.5, wher&; is as defined in Lemma 3.4.

Supposef = 0 is not an identity for the ring?. Then, using Lemma 3.5, it is easy to see
that, foruy, us, - - - ,u,, picked uniformly at random frond,, f(ry,,--- ,74,,) IS non zero with
non-negligible probability. This is analogous to [MNO7, Lemma 2]. We include a proof for the sake
of completeness.

Lemma 3.6. Let f(z1,--- ,z,,) be a multilinear polynomial (in commuting or noncommuting in-
determinates) oveR such thatf = 0 is not an identity for the ring?. Then,

Pl‘Obﬂ,“- JUumESy [f(?‘uw - 7Tum) 7& 0] > <1%p> '

Proof. Fori € [m], let R; be the additive coset defined in Lemma 3.4. The proof is by simple
induction onm. The proof for the base case of the induction (i.e/for= 1) follows easily from

the definition of R; and Lemma 3.5. By induction hypothesis assume that the result holds for all
t-variate multilinear polynomialg such thaly = 0 is not an identity forR with ¢t < m — 1.

Notice that in [MNO7], the author consider the set of @tuples instead of subsets. This is important for them as
they work in non abelian structure in general (where order matters). But we will be interested only over additive abelian
structure of a ring and thus order does not matter for us.
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Consider the given multilinear polynomigl(z1, zo,--- ,z,,). Then, by Lemma 3.4R,, is
a coset of an additive subgroup,, inside R. Picku,, € S, uniformly at random. Iff = 0 is
not an identity onR then by Lemma 3.5 we get,,, ¢ R,, with probability at Ieastl;zp. Let
glz1, 29, xm_1) = f(Z1,++ ,Tm_1,Tu,, ). Sincer,, & R,, with probability at least=2, it
follows thatg = 0 is not an identity onk with probability at Ieastl%p. Given thatg is not an
identity for R, by induction hypothesis we have thatph,, ... ., ,es,[9(Tu,, s Tu,,_y) # 0] >

m—

1 m
(12;7") . Hence we getProby, ... u,.cs,[f (Turs- - sTun) 7 0] > (12;7") , which proves the
lemma. [

We observe two simple consequences of Lemma 3.6. Notice gfat= ﬁgi:?)

¢ =1we getl;Qp = 1/k, and Lemma 3.6 implies that if = 0 is not an identity forR then
flay, -+ ,anm,) # 0 for one of thek™ choices for the:; from the generating s€ty, - - , 7 }.

Letting ¢ = k/2 in Lemma 3.6, we ge%;—p > 1/4. Hence we obtain the following randomized
test which maked™mk queries.

Letting

Corollary 3.7. There is a randomized™mk query algorithm foMIT with constant success prob-
ability, where f is m-variate andR is given by an additive generating set of sizeThis can be
seen as a generalization of Pak’¥ k) query randomized test for group commutativity.

We use Lemma 3.6 to design our quantum algorithm. Technically, our quantum algorithm is
similar to the one described in [MNO7]. The Lemma 3.6 is used to guarantee that there will at least

m
(12;7") fraction ofmarked pointsn the spaceS;” i.e. the points wher¢g evaluates to non-zero.

The underlying graph in our random walk is a Johnson Graph and our analysis require some simple
modification of the analysis described in [MNO7].

3.1.1. Random walk or5,. Our random walk can be described as a random walk over a graph
G = (V, E) defined as follows: The vertices 6f are all possiblé subsets ofk]. Two vertices are
connected by an edge whenever the corresponding sets differ by exactly one element. Natice that
is a connected(k — ¢)-regular Johnson graph, with parameter?, ¢ — 1) [BCN89]. Let P be the
normalized adjacency matrix @ with rows and columns are indexed by the subsetipfThen
Pxy =1/l(k —¢)if | X NY|={¢—1and0 otherwise. Itis well known that the spectral gapf
P (6 = 1— X, where)\ is the second largest eigenvaluerfis 2(1/¢) for £ < k/2 [BCN89]. Now
we describe the random walk @n

Let the current vertex is = {uy,u, -+ ,us} andr,, = ry, +ry, +- - - +ry,. With probability
1/2 stay atu and with probabilityl /2 do the following: randomly picke; € wandj € [k]\ u. Then
move to vertexv such thatv is obtained fromu by removingu; and insertingj. Computer, by
simply subtracting-,,, from r,, and adding; to it. That will only cost2 oracle access. Staying in any
vertex with probabilityl /2 ensures that the random walk is ergodic. So the stationary distribution
of the random walk is always uniform. It is easy to see that the transition matrix of the random walk
is A = (I + P)/2 wherel is the identity matrix of suitable dimension. So the spectral gap of the
transition matrixA is § = (1 — \)/2 = §/2.

The query complexity analysis is similar to the analysis of Magniez-Nayak. But to fit it with
our requirement, we need some careful parameter setting. We include a brief self-contained proof.

Theorem 3.8. Let R be a finite black-box ring given as an oracle afige,,--- ,z,,) be a mul-
tilinear polynomial overR given as a black-box. Moreover I¢ty,--- 7} be a given additive
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generating set fork. Then the quantum query complexity of testing whethisran identity forR,
is O(m(1 4 o)™/ 2km+1), assuming: > (1 + 1/a)™ 1,

Proof. Setup cost(S): For the quantum walk step we need to start with an uniform distribution on
Sy*. With eachu € S, we maintain a quantum registgf,) that computes-,,. So we need to
prepare the following statel):
1
|\Il> = ™ Z \ul,Tm)®|u2,ru2>®~--®\um,rum>.
VIST

o 7um€Sg”

It is easy to see that to compute any, we need! — 1 oracle access to the ring oracle. Since in
each ofm independent walk, quantum queries over all choices will be made in parallel (using
quantum superposition), the total query cost for setup(i6— 1).

Update cost(U): It is clear from the random walk described in the section 3.1.1, that the update
cost overSy is only 2 oracle access. Thus for the random walk gh\ghich is justm independent
random walks, one on each copy of #e need a total update casi.

Checking cost(C): To check whethey is zero on a point during the walk, we simply query the
oracle forf once.

Recall from Szegedy'’s result [Sze04] (as stated in Theorem 3.2), the total cost for query com-

plexity isQ = S + ——=(U + C) wheree = (%)m is the proportion of the marked elements

Ve

and § is the spectral gap of the transition matrik described in section 3.1.1. Combining to-

gether we get < m [(6 -1)+ \/35_} From the random walk described in the section 3.1.1,
< _t
we know thatd > 4. Hence,Q < m [(E— 1)+ (13_%] Notice that, ;2 = £ <1_%>
2

Substituting for 152 we get, @ < m |({—1) +3ﬁkm/2W]. We will choose
-2 k_:1
k1

a suitably smalle > 0 so that7;=; < 1 + a. Then we can upper boun@ as follows.

Q<m [(6 —1)+3vV2-(1+ a)m/ka/Qﬂ%]. Now our goal is to minimizeQ with respect
-z

to ¢ anda. For that we choosé = k! where we will fixt appropriately in the analysis. Substituting
(= k'wegetQ <m [(kt )43V (1t a)m/2t1/2/-c’”“’£“l”]. Choosingt = (m/(m +1)),
we can easily see that the query complexity of the algorithi®(ig.(1 + a)™/2km+1). Finally,
recall that we need choose an> 0 so that% < 1+ a. Clearly, it suffices to choose so that
(1+ a)l < ak. Letting? = k™/™+1 we get the constraintl + 1/a)™*! < k which is satisfied if

em+/a < k. We can choose = 7L, )

Remark 3.9. The choice ofx in the above theorem shows some trade-offs in the query complexity
between the parameteksandm. For constantn notice that this gives us aﬁ(k:m/ m+1) query
complexity upper bound for the quantum algorithm, which is similar to the best known query upper
bound form-COLLISION[AmbO7], when the problem instance is a functipn [k] — [k].

Generalized Multilinear Identity Testing (GMIT): We now consider a variant of thIT problem,
which we callGMIT (for generalizedvIT).

3In [MNO7] the underlying group operation is not necessarily commutative (it is being tested for commutativity). Thus
the update cost is more.
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Let f : R™ — R be a black-box multilinear polynomial. Consider aagditive subgroupA of
the black-box ringR, given by a set of generators, s, - - - , 7%, S0 thatd = {>", Bir; | 5; € Z}.
TheGMIT(R, A, f) problem is the following: test whether a black-box multilinear polynonyfiied
an identity forA. In other words, we need to testfifa;,--- ,a,,) = 0forall a; € A.

It is easy to observe that the quantum algorithm actually sag and the correctness proof
and analysis given in Theorem 3.8 also hold@&IT problem. We summarize this observation in
the following theorem.

Theorem 3.10. Let R be a black-box finite ring given by ring oracles add= (rq,ry,--- , %)

be anadditive subgroumf R given by generators; € R. Let f(z1,z2,-- ,x,,) be a black-box
multilinear polynomialf : R™ — R. Then there is a quantum algorithm with query complexity
O(m(1 4 )™ 2741 ) for theGMIT(R, A, f) problem (assuming > (1 + 1/a)™t1).

4. Query Complexity Lower Bound

In this section we show th@&MIT problem of multilinear identity testing for additive subgroups
of a black-box ring (described in Section 3.1.1), is at least as hamdtSBLIT COLLISION (again,
m-SPLIT COLLISIONproblem is defined in Section 1). Also, the well-knomrCOLLISION prob-
lem can be easily reduced to-SPLIT COLLISIONproblem using a simple randomized reduction.
In the following lemma, we briefly state the reduction.

Lemma 4.1. There is a randomized reduction fromrCOLLISION to m-SPLIT COLLISION with
success probability close to™.

Proof. Let f : [k] — [k] be a ‘yes’ instance ofn-COLLISION, and supposef~'(i) =
{i1,42,- - ,im}. ToO reduce this instance t@-SPLIT COLLISIONwe pick a randomm-partition
I, I, -, I, of the domaink] with each|I;| = k/m. Itis easy to see that, with probability close
toe "™, the set{iy, i, - - , i, } Will be a split collision for the functiory. [

Consequently, showing a quantum lower boun(t“) for m-COLLISIONwill imply a quan-
tum lower bound of2(k*/e™) for m-SPLIT COLLISION It will also show similar lower bound for
GMIT because of our reduction.

If f:[k] — [k]is an instance oi-SPLIT COLLISIONproblem, then the classical randomized
query complexity lower bound i§)(k). This is observed in [MNO7] forn = 2. Due to our
reduction, we get similar randomized query complexity lower boundMarT.

Currently the best known quantum query complexity lower boundnfaLOLLISION prob-
lem is Q(k%/3) (in the casem = 2) [AS04]. Thus we obtain the same explicit lower
bound for m-SPLIT COLLISION problem due to the random reduction from-COLLISION to
m-SPLIT COLLISION It also implies quantum query complexity lower bound &MIT.

Our reduction fromm-SPLIT COLLISIONto GMIT problem is based on some new automata
theoretic ideas. We first describe necessary automata theoretic ideas those are useful for our reduc-
tion.

4.1. Automatatheory background

We recall some standard automata theory notations (see, for example, [HU78]). Fix a finite
automatond = (Q, X, 9, qo, gf) Which takes as input strings i8*. @ is the set of states ofl,
¥ is the alphabety : Q x ¥ — @ is the transition function, angy and g, are the initial and
final states respectively (throughout, we only consider automata with unique accepting states). For
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each letterb € 3, let 0, : @ — @ be the function defined byi,(¢) = d(¢q,b). These functions
generate a submonoid of the monoid of all functions fr@rto Q. This is the transition monoid of

the automatom and is well-studied in automata theory: for example, see [Str94, page 55]. We now
define thed-1 matrix M, € FIQI*IQl as follows: M, (q,¢') = 1if 6,(¢) = ¢/, and0 otherwise.

The matrixM, is simply the adjacency matrix of the graph of the functdgnAs the entries of
M, are only zeros and ones, we can consitigrto be a matrix over any field.

Furthermore, foranyw = wiws - - - wi € ¥, we define the matrix/,, to be the matrix product
My, My, - -+ My, If w is the empty string, defind/,, to be the identity matrix of dimension
|Q| x |Q|. For a stringw, let §,, denote the natural extension of the transition functiomwdf w
is the empty stringd,, is simply the identity function. It is easy to check thatt,(¢,q") = 1 if
dw(q) = ¢’ and0 otherwise. Thus),, is also a matrix of zeros and ones for any string Also,
M (qo0,qf) = 1ifand only if w is accepted by the automateh We now describe the reduction.

Theorem 4.2. Them-SPLIT COLLISIONproblem reduces tGMIT problem for additive subgroups
of black-box rings.

Proof. Aninstance of-SPLIT COLLISIONis a functionf : [k] — [k] given as an oracle, where we
assume w.l.o.g. thdt = nm. Divide {1,2,--- ,k} intom intervalsly, I, - - - , I,;,, each containing
n consecutive points dk]. Recall from Sectionl thaff is said to have am-split collision if for
somej € [k] we have|f~1(j)| = m and|f~1(j) N I;| = 1 for each interval;.

Consider the alphabét = {b,c,b1,b,--- , by }. Let A = (Q, %, 6, qo, g5) be a deterministic
finite state automaton that accepts all strings >* such that each;,1 < j < m occurs at least
once inw. It is easy to see that such an automaton with a single final gtatan be designed with
total number of state®)| = 2°(™) = t. W.l.0.g. let the set of state3 be renamed a§l, 2, - - - ,t},
wherel is the initial state and is the final state.

For each letter € X, let M, denote the x ¢ transition matrix for,, (as defined in Section 4.1).
Since eachl/, is at x t 0-1 matrix, eachl, is in the ring M, (F2) of ¢ x t matrices with entries from
the fieldF,. Let R denote thek-fold product ring(M,(F2))*. Clearly, R is a finite ring (which is
going to play the role of the black-box ring in our reduction). We now define an additive subgroup
T of R, where we describe the generating sefaising them-SPLIT COLLISIONinstancef.

For each index € [k], define ark-tupleT; € R as follows. Ifi # f(i), then defind;[i] = M,
T;[f(i)] = My, (wherei € I;) and and for each index ¢ {7, f(i)} defineT;[s] = M.. For
i = f(i), defineT[i] = My, (i € I;) and the rest of the entries a¢.. The additive subgroup o
that we consider i§" = (T, T», - -- ,T) generated by thé&;, 1 < i < k.

Furthermore, define two x ¢t matricesA and B in M,(FFy) as follows. LetA[l,1] = 1 and
Alu, €] = 0for (u,?) # (1,1). For the matrixB, let B[t, 1] = 1 andB[u, ¢] = 0 for (u,¢) # (¢,1).

Claim 1. Letw = wjws - --ws € ¥* be any string. Then the automatghdefined above accepts
w if and only if the matrixAM,,, My, - - - M,,, B is nonzero.

Proof of ClaimBy definition of the matriced/,, the(1,¢)"" entry of the product\fy,, My, - - - My,
is 1 if and only if w is accepted by4. By definition of the matrices! and B the claim follows
immediately.

Now, consider the polynomiaP(z1, o, - ,z,,) with coefficients from the matrix ring?
defined as follows:

P(ﬂ?l,ﬂ??,"‘ 7$m) = Al’]_.fUQ"'.fUmB,
whereA = (A, A,...,A) € RandB = (B,B,---,B) € R arek-tuples of A’s and B’s re-
spectively. We claim that the multilinear polynomi&(x1, xo,--- ,x,,) = 0 is an identity for the

additive subgroug” if and only if f has nom-split collision.
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Claim 2. P(x1,--- ,x,) = 0is an identity for the additive subgroap= (T3, - - - , T) if and only
if f has nom-split collision. In other wordsGMIT(R, T, P) is an ‘yes’ instance if and only if
has nom-split collision.

Proof of ClaimSupposef has amm-split collision. Specifically, let; < I; (1 < 7 < m and
i1 < iy < --- < 1ip,) be indices such thaf(i;) = --- = f(i,,) = ¢. In the polynomialP, we
substitute the indeterminatg by 7; .

ThenP(T;,,T;,, -+ ,T;,) = AMB,whereM =T;, ---T; . M is ak-tuple oft x ¢t matrices
such that the"" component of\/ is ]}, M, wherei; € I;. Sinceb;, b;, - - - b;,, € ¥* is a length
m-string containing all thé;’s it will be accepted by the automatofi Consequently, thgy, qf)th
entry of the matrix)/, which is the(1,¢)"" entry, is1 (as explained in Section 4.1). It follows that
the (1, 1) entry of the matrixAM B is 1. HenceP = 0 is not an identity over the additive subgroup
T.

For the other direction, assume thjahas nom-split collision. We need to show th&t = 0 is
an identity for the rindl’. For anym elementsSy, Ss, - -+, S,, € T considerP(Sy, S, -+ ,Sp) =
AS1S; -+ SiB. Since Eacls; is anFs-linear combination of the generatdfs, - - - , T, it follows
by distributivity in the ringR that P(S1, S, - -+ ,.Sy,) is anFs-linear combination of terms of the
form P(Ty,, Tx,, - , Tk, ) for somem indicesk,,--- ,k,, € [k]. Thus, it suffices to show that
P(Ty,, Ty, Ty, ) = 0.

Let T = Ty Tk, - Tk, Then, for eachy ¢ [k] we haveT[j] = Ty, [§] Tk, [j] - - - Tho [4]-
Sincef has nom-split collision, for eacly € [N] the set of matrice§ My, , My, ,--- , My, } is not
contained in the setT:[j], T [j], - - - , Tk[j]}. Thus,T[j] = Tk, [j]Tk, 5] - - - Tk, [i] is @ product of
matricesM,,, M., - - - M,,,, forawordw = wyws - - - wy, that is not accepted hyt. It follows from
the previous claim that'T[j] B = 0. HenceP(T},, Tk,, - - - , Tk,,) = 0 which completes the proof.

u

In Section 3.1, we have already shown a quantum algorithm erfquomplexityO(kmlH) for
MIT (m is a constant). This bound holds as well@&wIT. We conclude this section by showing that
any algorithm of query complexity(k, m) (g is any function) forGMIT will give an algorithm of
similar query complexity fom-COLLISION problem. In particular an algorithm f@MIT of query
complexity k°(™/™+1) will improve the best known algorithm fan-COLLISION problem due to
Ambainis [AmbO07]. The following corollary is an easy consequence of Theorem 4.2.

Corollary 4.3. Let f : [k] — [k] be an instance ofm-SPLIT COLLISION problem and
GMIT(R, T, P) be an instance oEMIT problem, where the multilinear polynomi& : R™ — R
and T is an additive subgroup off given byk generators. Then, if we have a quantum al-
gorithm of query complexity(k,m) for GMIT problem, we will have a quantum algorithm for
m-SPLIT COLLISIONwith query complexity)(q(k, m)).

Proof. Let.4 be an algorithm foGMIT with quantum query complexity(k, m). Given an instance
of m-SPLIT COLLISION the generators for the additive subgrdiligs indexed byl,2,--- |k (as
defined in the proof of Theorem 4.2). Also, define the polynoriigt;, zo, - - - , x,,) So the inputs
of our GMIT problem arel, 2, --- , k and P. Using the algorithmA, we define another algorithm
A" which does the following. When € [k] is invoked by.A for the ring operation, the algorithm
A’ constructs the generat@; by making only one query to the oracle fér One more query to
the f-oracle is required to erase the output. Moreoverd ifvants to check whether the output of
the ring operation is a valid generator (SByfor somej), then alsaA’ uses just two queries to the
oracle off. Thus we have an algorithtd’ for m-SPLIT COLLISIONwith query complexitylg(k).m
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Recall that the best known lower bound f@rSPLIT COLLISION problem isQ(k2/3). Then,
combining Theorem 4.2 and Corollary 4.3, we g}ﬂlﬁ/i”) quantum query lower bound f@MIT
problem.
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