
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 553–564
www.stacs-conf.org

AMBIGUITY AND COMMUNICATION

JURAJ HROMKOVIČ 1 AND GEORG SCHNITGER 2

1 Department of Computer Science, ETH Zürich,
ETH Zentrum, CH-8022 Zürich, Switzerland
E-mail address: juraj.hromkovic@inf.ethz.ch

2 Institut für Informatik, Goethe Universität,
Robert Mayer-Strasse 11-15, D-6054 Frankfurt a. M., Germany
E-mail address: georg@thi.informatik.uni-frankfurt.de

Abstract. The ambiguity of a nondeterministic finite automaton (NFA) N for input size
n is the maximal number of accepting computations of N for an input of size n. For all
k, r ∈ N we construct languages Lr,k which can be recognized by NFA’s with size k·poly(r)

and ambiguity O(nk), but Lr,k has only NFA’s with exponential size, if ambiguity o(nk)
is required. In particular, a hierarchy for polynomial ambiguity is obtained, solving a long
standing open problem (Ravikumar and Ibarra, 1989, Leung, 1998).

1. Introduction

The ambiguity of an NFA N measures the degree of nondeterminism employed by N
as a function of the input size: let ambigN (x) be the number of accepting computations of
N on input x and define

ambigN (n) = max{ambigN (x) : x ∈ Σn}
to be the ambiguity of N . There are related complexity measures such as the advice and
the leaf complexity of N . To describe their definition let TN (x) be the computation tree of
N on input x. Then adviceN (x) is the maximum, over all paths in TN (x) from the root to
a leaf, of the number of nodes with at least two children and

adviceN (n) = max{adviceN (x) : x ∈ Σn}
is the advice complexity of N . The leaf complexity of N determines the maximal number
of computations for inputs of length n. Thus, if leafN (x) is the number of leaves of TN (x),
then

leafN (n) = max{leafN (x) : x ∈ Σn}.
For a minimal NFA N these measures are related as follows [2]

adviceN (n), ambigN (n) ≤ leafN (n) = O(adviceN (n) · ambigN (n))

Key words and phrases: Nondeterministic finite automata, ambiguity, communication complexity.
Supported by SNF-grant 200020-120073 and DFG-grant SCHN 503/4-1. Part of the work was done while

the second author was visiting the ETH Zürich.

c© J. Hromkovic and G. Schnitger
CC© Creative Commons Attribution-NoDerivs License

STACS 2009
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 553-564
http://drops.dagstuhl.de/opus/volltexte/2009/1805

554 J. HROMKOVIC AND G. SCHNITGER

and, since adviceN (n) is at most linear, leaf complexity and ambiguity are polynomially
related, provided both are at least linear. Since leaf complexity is either bounded by a
constant or at least linear but polynomially bounded, or otherwise exponential in the in-
put length, we obtain that ambiguity is either bounded by a constant or bounded by a
polynomial or at least exponential [2].

Advice and leaf complexity are rather coarse measures, since advice and leaf complexity
of an unambiguous NFA may be linear. Ambiguity on the other hand also influences the
tractability of algorithmic questions. For instance, for any fixed k ∈ N it can be determined
efficiently whether two NFA’s of ambiguity at most k are equivalent, resp. whether the
ambiguity of a given NFA is at most k [7].

How large is the decrease in conciseness, i.e., the increase in the number of states, if
ambiguity is restricted? To study this question, four classes of NFA’s, namely UNA (unam-
biguous nondeterministic automata), FNA (finitely ambiguous NFA), PNA (polynomially
ambiguous NFA) and ENA (exponentially ambiguous NFA) are introduced in [6]. The
classification into FNA’s, PNA’s or ENA’s can be performed efficiently [8].

Remember that the ambiguity of an NFA N is either at least exponential or at most
polynomial and hence an NFA is either a PNA or an ENA. Leung [4] shows that there are
ENA’s Nn with n states such that any equivalent PNA has at least 2n − 1 states. Hence
ENA’s can be far more succinct than PNA’s. Subsequently a similar result, applicable to a
larger class of languages, was shown in [2] by using methods of communication complexity.
In particular, the conciseness problem for PNA’s can be reduced to the following commu-
nication result for the iterated language of non-disjointness. Let Σr be the alphabet of all
subsets of {1, . . . , r32} of size r and set

Lr = {xy|x, y ∈ Σr and x ∩ y 6= ∅}.
Thus (Lr)

t consists of all strings x1y1 · · · xtyt where all pairs xiyi correspond to overlapping
subsets. We assume the standard communication model with two players, Alice and Bob,
where Alice receives x1 · · · xt and Bob receives y1 · · · yt. (Observe that (Lr)

t has small NFA’s
with poly(r + t) states.)

Fact 1.1. ([3], pages 51-53). Let r, t ∈ N be arbitrary. If a deterministic protocol D accepts
only strings from (Lr)

t and if at most 2α·r·t messages are exchanged, then D accepts at most
|(Lr)

t|/2α·t strings from (Lr)
t. (α is a sufficiently small constant).

Of particular interest are FNA’s, for instance since their equivalence problem is effi-
ciently solvable. However a separation of FNA’s and PNA’s has remained open for almost
twenty years [4, 6]. We are able to show such a separation and even prove a hierarchy result
for polynomial ambiguity. To describe our result we introduce the languages used in the
separation. For a language L of strings of identical length define

∃k(L) = {w1w2 · · ·wm | m ∈ N and wi ∈ L for at least k different positions}.
Thus the input is partitioned into blocks of identical length and an input is accepted iff at
least k blocks belong to the finite set L. Now assume that L can be recognized by a small
NFA N . Since L is a finite set, we can recognize ∃k(L) by an NFA with ambiguity O(nk),
if we increase the size of N by at most the factor k.

How should the languages L look like? In a first attempt set L = {uv | u, v ∈ {0, 1}r , u 6=
v} as the language of inequality between r-bit strings. Then L is recognizable by an NFA
with poly(r) states and (bounded) ambiguity r. But ∃1(L) is also recognizable with poly(r)

AMBIGUITY AND COMMUNICATION 555

states and ambiguity r: guess a position i ∈ {1, . . . , r} and accept u1v1 · · · umvm if uj
i 6= vj

i
for some 1 ≤ j ≤ r.

What went wrong? Few advice bits suffice and these advice bits can be remembered.
In our second (and successful) attempt we therefore set L = (Lr)

t, where we work with the
iterated language of non-disjointness from Fact 1.1. This construction has two advantages.
Firstly, L has a small NFA. Secondly, at least intuitively, the number of guesses required
for L increases exponentially with t and hence a small NFA’s for ∃1(Lr) cannot remember
sequences of t guesses. Our main result verifies this intuition.

Theorem 1.2. Let r ∈ N be arbitrary. Set t = r1/3 and L = (Lr)
t. Any NFA for ∃k(L)

with ambiguity o(nk) has at least 2Ω((r/k2)1/3) states. However, ∃k(L) can be recognized by
an NFA with ambiguity O(nk) and size k · poly(r).

Observe that we have obtained the claimed separation of FNA’s and PNA’s for k = 1,
but Theorem 1.2 also establishes a hierarchy of polynomial ambiguity.

2. A Proof Sketch

We start by proving Theorem 1.2 for k = 1. Let L = (Lr)
t and assume that the NFA

N recognizes ∃1(L) with sublinear ambiguity. Observe that all strings in L have length 2t
and hence strings in ∃1(L) have blocks of identical length 2t. We set K = Σ2t

r , where Σr is
the alphabet of Lr. Finally set

∃=0(L) = {w1w2 · · ·wm : m ∈ N and wi ∈ K \ L for all i }.
Thus, as in the definition of ∃1(L), the input is partitioned into blocks and an input is
accepted iff no block belongs to the finite set L. The computationally hardest task for the
NFA N is to separate ∃=0(L) from ∃1(L).

The critical part of the argument is to exploit the limitation of sublinear ambiguity.
Let Q be the set of states of N . In Section 3 we construct states p0, p1 ∈ Q such that at
least |L|/|Q|2 strings in L have a computation starting in p0 and ending in p1. Moreover
we show in Lemma 3.3 that for any string z′ ∈ K \ L there is a string u ∈ ∃=0(L) such
that strings S(z′) with period z′u can be “stored” in a “launching cycle” before reaching

p0 and in a “storage cycle” after leaving p1. The launching cycle has the form r
(z′u)a

→ r

and allows to reach p0 via a computation r
(z′u)a1→ p0; analogously the storage cycle is built

from computations p1
(uz′)a2→ s and s

(uz′)a

→ s. So far the launching cycle is harmless, since
it delivers strings in ∃=0(L) to state p0, but these strings cannot use computations from p0

to p1 which may be reserved for strings in L. However, if a single occurrence of z′ within
S(z′) is replaced by an impostor string z ∈ L and if the launching cycle does not detect the
replacement, then N is forced into linear ambiguity, provided the impostor z can also hide
at a matching position within the storage cycle (see Lemma 3.4).

Thus the NFA N has to solve the “detection problem”, namely it has to detect whether
an impostor z ∈ L has replaced an occurrence of z′ ∈ K \ L in both cycles. The detection
problem is set up in such a way that

- at least |L|/|Q|2 strings from L are accepted, namely those strings z ∈ L with a

computation p0
z→ p1, and

556 J. HROMKOVIC AND G. SCHNITGER

- all strings z which for some z′ ∈ K \ L survive in matching positions within both
cycles are rejected. In particular, all strings in K \ L are rejected, since a string
z ∈ K \ L is its own impostor.

Observe that no string z is simultaneously accepted as well as rejected, since all impostors
have to be detected. N may try to solve the detection problem unconventionally for instance
by allowing a potential impostor z to survive undetected within the launching and storage
cycle, but not allowing z to survive in matching positions within both cycles. Also N does
not have to solve the detection problem completely, since it can tolerate an impostor z

without a computation p0
z→ p1.

We then simulate N in Section 4 by a nondeterministic communication protocol which
rejects all strings in K \L, accepts at least |L|/|Q|2 strings in L and does not simultaneously
accept and reject a string in K \ L (see Lemma 4.1). Thus we have reduced the problem
of avoiding linear ambiguity for NFA’s recognizing ∃1(L) to a communication problem in
which a rather small minority of strings in L has to be separated from all of K \ L. We
show in Lemma 5.1 how to transform such a nondeterministic protocol into a deterministic
protocol by increasing the number of messages only subexponentially. We are left with a
deterministic protocol which rejects all strings in K \L and accepts at least |L|/|Q|2 strings
in L. Finally the argument concludes with an application of Fact 1.1. Thus, as in the case of
exponential ambiguity, we again have reduced the conciseness problem to an investigation of
deterministic protocols which recognize a “small, but significant chunk” of a given product
language.

The general case of ambiguity O(nk) is tackled in Section 6. Showing the existence
of launching and storage cycles has now become a more complex problem. Previously it
was sufficient that the periodic string S(z) was “living” in the one launching and the one
storage cycle. Now we have to work with a vector p0, p1, . . . , p2k−2, p2k−1 of states and have
to move S(z) to p0 and all the way from p2i+1 to p2(i+1) for all i = 0, . . . k − 2 and finally
from p2k−1 to an accepting state.

3. From Automata to Communication

We begin by utilizing the special structure of the languages ∃1(L).

Definition 3.1. Let N be an NFA for ∃1(L) with initial state q0. Let p be an arbitrary
state of N .

(a) We say that a string v ∈ ∃=0(L) reaches state p iff there is a string u ∈ ∃=0(L) and
a computation for u · v which starts in q0 and ends in p. Moreover state p accepts

v ∈ ∃=0(L) iff there is a string w ∈ ∃=0(L) and an accepting computation for v · w
starting in p.

(b) A pair (p0, p1) of states of N is critical for the pair (ξ0, ξ1) ∈ ∃=0(L) × ∃=0(L) iff
all strings in ∃=0(L) · ξ0 reach p0 and all strings in ξ1 · ∃=0(L) are accepted by p1.

Our next goal is to construct a pair (ξ0, ξ1) ∈ ∃=0(L)×∃=0(L) such that for all strings
uξ0zξ1w ∈ ∃=0(L) ·(ξ0 ·L ·ξ1) ·∃=0(L) acceptance is “decided” by critical pairs. In particular

we construct (ξ0, ξ1) such that there are accepting computations of the form q0
uξ0→ p0

z→
p1

ξ1w→ qf for a final state qf and a critical pair (p0, p1) for (ξ0, ξ1). The crucial advantage of
a critical pair is that all strings in ∃0(L) ·ξ0 reach p0 and all strings in ξ1 ·∃0(L) are accepted

AMBIGUITY AND COMMUNICATION 557

by p1; in particular, there is no transition p0
z→ p1 for a string z ∈ ∃0(L) and acceptance is

indeed decided by (p0, p1).

Lemma 3.2. Let N be an NFA for ∃1(L). Then there are strings ξ0, ξ1 ∈ ∃=0(L) such that
⋃

(p0,p1) is critical for (ξ0,ξ1)

{z ∈ L | p0
z→ p1} = L.

Proof. We process the states of N in two phases. In the first phase we construct a string
ξ0 ∈ ∃=0(L) such that each state p is either alive for ξ0 (i.e., all strings in ∃=0(L) · ξ0 reach
p) or dead for ξ0 (i.e., no string in ∃=0(L) · ξ0 reaches p). The construction process proceeds
iteratively by processing all states p of N in an arbitrary order. We begin by setting ξ0 = ǫ.
When processing state p we differentiate two cases.

Case 1: All strings in ∃=0(L) · ξ0 reach p. We do not modify ξ0. Observe that p is
alive for ξ0 and stays alive for any string in ∃=0(L) with suffix ξ0.

Case 2: There is a string ξ ∈ ∃=0(L) such that ξ · ξ0 does not reach p. The string
ξ · ξ0 does not reach p and hence no string in ∃=0(L) · ξ · ξ0 has a computation beginning in
the starting state q0 and ending in p. We replace ξ0 by ξ · ξ0 and p is dead for ξ0, but also
dead for any string in ∃=0(L) with suffix ξ0. Also observe that any already processed state
q stays alive, resp. remains dead.

In the second phase we proceed completely analogously, but now construct a string
ξ1 ∈ ∃=0(L) such that each state p is either alive for ξ1 (i.e., p accepts all strings in
ξ1 · ∃=0(L)) or dead for ξ1 (i.e., p does not accept any string in ξ1 · ∃=0(L)).

Now consider any string s = ξ0zξ1 in M = ξ0 · L · ξ1. Observe that M is a subset of
∃1(L). However ξ0 cannot reach a dead state for ξ0 and ξ1 cannot be accepted by a dead

state for ξ1. Thus any accepting computation for s has to utilize a transition p0
z→ p1

between alive states p0 for ξ0 and p1 for ξ1. But any pair (p0, p1) of alive states is a critical
pair and we are done.

From now on we fix a pair (ξ0, ξ1) ∈ ∃=0(L) × ∃=0(L) for which Lemma 3.2 holds. Let
(p0, p1) be an arbitrary critical pair for (ξ0, ξ1). We now utilize that all strings in ∃=0(L) ·ξ0

reach p0 and all strings in ξ1 · ∃=0(L) are accepted by p1.

Lemma 3.3. For all strings z ∈ K \ L there are states r, s, integers a ≥ 1, a1, a2 (with
a1 + a2 ≤ a) and a string u ∈ ∃=0(L) as well as computations

r
(zu)a

→ r
(zu)a1→ p0 and (3.1)

p1
(uz)a2→ s

(uz)a

→ s. (3.2)

Proof. We consider all strings of the form

α(z) = (zξ1ξ0)
|Q| and β(z) = (ξ1ξ0z)|Q|.

The string α(z) has suffix ξ0 and hence α(z) reaches p0. As a consequence there is ξ ∈ ∃=0(L)
and a computation C for ξ · α(z) which begins in the initial state q0 and reaches p0. After
reading ξ, computation C processes α(z) and produces a sequence of |Q| + 1 states, where
we list all states before reading a copy of zξ1ξ0, resp. after reading the last copy. A state

r of N appears twice in this sequence and we obtain a transition of the form r
(zξ1ξ0)a

→ r for
a ≥ 1. Finally C, starting in r, reaches p0 after reading the remaining a1 copies.

To establish (3.1), we set u = ξ1ξ0 and obtain transitions r
(zu)a

→ r and r
(zu)a1→ p0. Thus

(3.1) follows. Part (3.2) is established by a similar argument, but now applied to β(z). This

558 J. HROMKOVIC AND G. SCHNITGER

time we get transitions p1
(uz)a2→ s and s

(uz)b

→ s. But then r
(zu)ma

→ r as well as s
(uz)m′b

→ s are
transitions for any multiples m,m′ ≥ 1 and the claim follows, if we replace both a and b by
ab(a1 + a2) ≥ a1 + a2.

Let (p0, p1) be a critical pair for (ξ0, ξ1). We now introduce the detection problem
for (p0, p1) in which strings in L have to be “weakly” separates from strings in K \ L. It
turns out that any NFA N for ∃1(L) solves the detection problems for all critical pairs,
provided N has ambiguity o(n). Since we show later that N can be efficiently simulated by
a communication protocol –with communication resources related to the number of states–
and that the detection problem is hard for communication complexity, N must have many
states. The detection problem of (p0, p1) has the following form:

(a) Accept a string z ∈ K iff there is a computation p0
z→ p1 of N . Remember that for

no z ∈ K \ L there is a computation

q0
ξξ0→ p0

z→ p1
ξ1ξ′→ qf

with the initial state q0, a final state qf and strings ξ, ξ′, ξ0, ξ1 ∈ ∃=0(L). Hence no
string z ∈ K \ L is accepted.

(b) Reject a string z ∈ K iff there are states r, r′, r′′, s, s′, s′′, integers a ≥ 1, a1, a2 (with
a1 + a2 ≤ a) and strings u ∈ ∃=0(L), z′ ∈ K \ L with computations

r
(z′u)a1→ r′

zu→ r′′
(z′u)a−a1−1

→ r
(z′u)a1→ p0 and (3.3)

p1
(uz′)a2→ s

(uz′)a−a2−1

→ s′
uz→ s′′

(uz′)a2→ s. (3.4)

(The computations (3.3) and (3.4) will be used later to define a launching and
storage cycle respectively. It turns out that z is placed within matching positions
of the z′u- and uz′-cycle and hence z plays the role of an impostor of z′.)

(c) z ∈ K is left undecided iff z is neither accepted nor rejected.

To explain the purpose of these transitions consider the string

S1 = [zu · (z′u)a−1] · [zu · (z′u)a−1].

If we process the first half zu ·(z′u)a−1 of S1 starting in state r′, then there is a computation
C0 of the form

r′
zu→ r′′

(z′u)a−a1−1

→ r
(z′u)a1→ r′

as well as a computation C1 from r′ to p0 according to (3.3). When reading the second half
of S1, computation C0 splits into a computation C00 which goes full circle reaching state r′

again and a computation C01 which reaches p0 after completely reading S1. Now assume

that there is a transition p0
z→ p1. Computation C1 has reached p0 after reading the first

half of S1 and now reads the second half zu · (z′u)a−1 = z · (uz′)a−1 ·u of S1. It travels from
p0 to p1 and subsequently reaches state s′′, if additionally the string z is read. We have
been successful

(1) in “storing” a mother computation via computation C00 in state r′,
(2) preparing for a new “launch” in state p0 via computation C01 and
(3) ”storing” offspring computations in state s′′ via computation C1.

We utilize properties (1)-(3) by defining a sequence (Sm | m ≥ 1) with many computations,
namely we set

Sm+1 = Sm · [zu · (z′u)a−1] = Sm · [z · (uz′)a−1 · u].

AMBIGUITY AND COMMUNICATION 559

Assume inductively that there are computations for Sm which have reached the states r′ and
p0 respectively and a computation for Sm · z which has reached s′′. After reading the suffix
zu · (z′u)a−1 of Sm+1, the computation starting in r′ has split into a computation reaching
r′ again and a computation reaching p0, whereas the freshly launched computation reaches
s′′ from p0 after reading Sm+1 · z. Observe that all previously launched computations go
full circle after reading (uz′)a−1 · uz and again have reached state s′′. As a consequence,
there are m distinct computations for Smz all reaching state s′′ at the same time.

We say that N has no redundant states, if each state is part of some accepting compu-
tation of N . Which strings are rejected and which strings are accepted?

Lemma 3.4. Let N be an NFA recognizing ∃1(L) without redundant states. Also assume
that N has ambiguity o(n).

(a) Consider the detection problem of an arbitrary critical pair (p0, p1). Then all strings
in K \ L are rejected and no string in K is simultaneously accepted and rejected.

(b) Each string in L is accepted in the detection problem of some critical pair.

Proof. (a) We observe first that every string z ∈ K \ L is rejected. Why? We may choose
z′ = z and the transitions required in (3.3) and (3.4) exist as a consequence of Lemma 3.3:
the states r′, r′′ and s′, s′′ belong to the r-cycle and the s-cycle respectively.

Now assume that there is a string z ∈ K which is accepted and rejected. Since z is

accepted, there is a computation p0
z→ p1. Also, since z is rejected, there are computations

of the form (3.3) and (3.4). Thus we may construct the strings Smz for every m and obtain
m distinct computations which, starting from state r′, reach state s′′ at the same time. But
N does not have redundant states and each state, and in particular state r′, is reachable
from the initial state. Also each state, and in particular state s′′, can reach an accepting
state. Thus there are strings ξ0, ξ1 such that ξ0 · Smz · ξ1 has m accepting computations.
But Smz is a string with length linear in m and hence N has at least linear ambiguity.

(b) follows from part (a), if we apply Lemma 3.2.

4. The Communication Problem

We show that the detection problem has an efficient communication protocol, provided
a small NFA N with ambiguity o(n) recognizes ∃1(L). Remember that L = (Lr)

t and
K = Σ2t

r . We work with the conventional two-party communication model consisting of two
players Alice and Bob. If x1y1 · · · xtyt is the input of N , then Alice receives x1 · · · xt and Bob
receives y1 · · · yt as their respective inputs. Alice and Bob communicate nondeterministically
with computations either being accepting, rejecting or undecided. We say that an input is
accepted if at least one computation is accepting, rejecting if at least one computation is
rejecting and undecided if all computations are undecided. (Thus undecided computations
play the role of rejecting computations for conventional nondeterminism.) Observe that we
allow to simultaneously accept and reject an input.

Now assume that the NFA N recognizes ∃1(L). Let q, q∗ be two states of N and let
z ∈ K be an input string. Our first goal is to determine whether N has a computation for
z starting in q and ending in q∗. Set q0 = q. Beginning with i = 1, Alice simulates N for
input xi by starting in state qi−1 and sends state q′i, if q′i is reached. Bob simulates N for
input yi by starting in state q′i and sends state qi, if qi is reached. In the last round Bob
accepts if additionally qs = q∗ holds and otherwise outputs “undecided”. Obviously the

560 J. HROMKOVIC AND G. SCHNITGER

simulating protocol exchanges at most |Q|2t messages. It has an accepting computation iff

N has a computation q
z→ q∗ and otherwise leaves the input undecided.

We say that a protocol solves the detection problem of (p0, p1) if the protocol labels
each input as accepted, rejected or undecided as prescribed by the detection problem.

Lemma 4.1. Assume that N recognizes ∃1(L) and that N has ambiguity o(n). Let (p0, p1)
be a critical pair for (ξ0, ξ1). Then there is a nondeterministic protocol P which solves the

detection problem of (p0, p1) with |Q|O(t) messages.

Proof. We begin by describing the protocol P . In its first attempt P tries to accept its
input z ∈ K by simulating the automaton N when reading z starting in state p0. P accepts
z iff state p1 is reached and otherwise leaves z undecided.

In its second attempt P tries to reject z. Alice guesses states r, r′, r′′, s, s′, s′′ as well as
strings z′ ∈ K \ L, u ∈ ∃=0(L) and integers a1, a2, a (with a1 + a2 ≤ a). Then Alice verifies
the following transitions without communication, namely

- r
(z′u)a1→ r′ as well as r′′

(z′u)a−a1−1

→ r
(z′u)a1→ p0 and

- p1
(uz′)a2→ s

(uz′)a−a2−1

→ s′ as well as s′′
(uz′)a2→ s.

In order to check the remaining transition r′
zu→ r′′ and s′

uz→ s′′, Alice guesses additional

states ρ, σ and verifies the transitions ρ
u→ r′′ and s′

u→ σ by herself. Subsequently Alice
communicates the states r′, ρ as well as σ, s′′ and both Alice and Bob simulate the automaton

N on input z for starting states r′ and σ. Bob rejects iff the transitions r′
z→ ρ and σ

z→ s′′

have been verified and otherwise labels z as undecided. Observe that P exchanges at most
|Q|O(t) messages, since P uses messages only when simulating N on the string z ∈ K.

5. From Nondeterminism to Determinism

In Lemma 4.1 we have solved the detection problem of a critical pair by a nondeter-
ministic protocol P with only |Q|O(t) messages. However the detection problem separates
L from its complement K \ L only weakly, since the majority of strings from L are either
rejected or left undecided. We begin our analysis by transforming the nondeterministic
protocol P into a deterministic protocol D. We avoid an exponential blowup in the number
of messages by observing the structural limitations of P . In particular, P accepts a subset
Lyes of L and rejects a superset Lno of K \ L, where Lyes and Lno are disjoint.

Lemma 5.1. There is a deterministic protocol D which accepts at least |L|/|Q|2 strings
from L and rejects all strings from K \ L. No string is left undecided and no string is

accepted as well as rejected. Moreover, at most |Q|O(t2·log2 |Q|) messages are exchanged.

Proof. We begin by fixing a critical pair (p0, p1) such that at least |L|/|Q|2 strings are
accepted in the detection problem of (p0, p1). Observe that such a critical pair exists as a
consequence of Lemma 3.4 (b), since each string in L is accepted in the detection problem
of at least one critical pair and there are at most |Q|2 critical pairs.

Let Lyes be the subset of L which is accepted in the detection problem of (p0, p1) and
let Lno be the superset of K \ L of rejected strings. According to Lemma 4.1 there is a
nondeterministic protocol P which solves the detection problem of (p0, p1) with at most

|Q|O(t) messages. Thus there are conventional nondeterministic protocols Pyes for Lyes and

Pno for Lno which exchange at most |Q|O(t) messages each.

AMBIGUITY AND COMMUNICATION 561

To obtain a deterministic protocol D from Pyes and Pno we utilize that deterministic

protocols with MO(log2 M) messages can be built from nondeterministic protocols, provided
the protocols recognize a language and its complement by exchanging at most M messages
[1]. Our situation however is more complicated, since Lyes is only a subset of the complement
of Lno. We employ the construction in [5] with the following modifications. Define the
communication matrix C of (Pyes, Pno) by setting

C[x1 · · · xt, y1 · · · yt] =







1 x1y1 · · · xtyt ∈ Lyes,
0 x1y1 · · · xtyt ∈ Lno

undecided otherwise.

Each message m corresponds to a submatrix M of C defined by the collection of rows for
which the message is sent and the collection of columns for which it is accepted. Now let
M be a submatrix of the communication matrix C. We define ∆yes(M) to be the maximal
size of a submatrix T of M , where T , after a suitable permutation of rows and columns of
M , is a lower triangular matrix with ones on the diagonal and zeroes above the diagonal.
(Observe that T may contain undecided entries, but these entries have to appear below the
diagonal.) Since Lyes is accepted by the nondeterministic protocol Pyes and since no two
diagonal entries can be accepted by the same message, we obtain that ∆yes(C) is bounded

by the number of messages of Pyes and hence ∆yes(C) ≤ |Q|O(t) follows.
We first try to reject the given input by deterministically selecting a sequence mi of

messages from the protocol Pno. As for the conventional transformation to deterministic
protocols, the triangular message complexity will be halved in each step and in particular
∆yes(M1∩· · ·∩Mi) ≤ ∆yes(C)/2i follows. We proceed as in the conventional transformation
and stop the communication prematurely, if the output “no” can be excluded and output
“yes”. Otherwise, after at most log2 ∆yes(C) rounds, we obtain ∆yes(M1 ∩ · · · ∩ Mi) ≤ 1.
As a consequence, the submatrix M1 ∩ · · · ∩ Mi has no triangular submatrix of size two or
larger. In particular, the submatrix M of M1 · · ·Mi spanned by all rows and columns of
M∗

i with a one, contains all ones of M1 · · ·Mi, no zeroes and possibly undecided entries. If
the joint input belongs to M , then we stop and accept, resp. stop and reject otherwise. In
each round only messages of Pno and hence at most |Q|O(t) messages are exchanged. Thus

overall at most
[

|Q|O(t)
]log2 ∆yes(C)

= |Q|O(t2·log2 |Q|) messages are generated.

Remember that L = (Lr)
t, where Lr is the language of non-disjointness for r-element

subsets of {1, . . . , r32}. Let D be a deterministic protocol which accepts only strings in L.
Also let α be a sufficiently small positive constant. We apply Fact 1.1 and obtain that D
accepts at most |L|/2α·t strings from L, provided at most 2α·r·t messages are exchanged.

Now, if an NFA N with sublinear ambiguity recognizes ∃1(L), then we apply Lemma 5.1

to obtain a deterministic protocol which exchanges at most |Q|O(t2·log2 |Q|) messages, accepts

at least |Lr|/|Q|2 strings and accepts only strings from L. Thus, if |Q|O(t2·log2 |Q|) ≤ 2α·r·t for
a sufficiently small positive constant α, then at most |L|/2α·t inputs from L are accepted.
But the nondeterministic protocol accepts at least |L|/|Q|2 strings from L and hence

|Q| = 2Ω(t) (5.1)

follows. We set t = r1/3. Let β be a sufficiently small positive constant. Now either

|Q| ≥ 2β·
√

r/t and we are done, since then |Q| = 2Ω(r1/3) or |Q| < 2β·
√

r/t holds. In the
latter case

|Q|t2·log2 |Q| < 2(β·
√

r/t)·t2·(β·
√

r/t) = 2β2·t·r

562 J. HROMKOVIC AND G. SCHNITGER

and the upper bound on the number of messages in Fact 1.1 is met, provided β is sufficiently
small. But then |Q| = 2Ω(t) follows from (5.1) and hence |Q| ≥ 2γ·t holds for some positive

constant γ. We obtain 2γ·t ≤ |Q| < 2β·
√

r/t and hence 2γ·t < 2β·
√

r/t = 2β·t, since t = r1/3.
We get a contradiction if β is chosen sufficiently small and we have shown

Lemma 5.2. Let N be an NFA with sublinear ambiguity recognizing ∃1(L). Then N has

at least 2Ω(r1/3) states.

6. A Hierarchy for Polynomial Ambiguity

Let k ≥ 1 be arbitrary and let N be an NFA for ∃k(L). We again follow the strategy for
k = 1, however the transition from NFA’s to communication protocols is now more involved.
For k > 1 we have to work with vectors (p0, p1, . . . , p2(k−1), p2(k−1)+1) of states and besides
reachabilty for p0 and acceptance by p2(k−1)+1 we also have to guarantee that computation
paths exist between p2i and p2i+1. This last requirement requires some further work.

Definition 6.1. Let (ξ0, ξ1) ∈ ∃=0(L) × ∃=0(L) be arbitrary. We say that the vector
(p0, p1, . . . , p2(k−1), p2(k−1)+1) is critical for (ξ0, ξ1) iff

(1) all strings in ∃=0(L) · ξ0 reach p0 and all strings in ξ1 · ∃=0(L) are accepted by
p2(k−1)+1

(2) and for all strings u ∈ ∃=0(L) and for all i (0 ≤ i < k − 1) there is a string v such
that a computation for ξ1uv starts in p2i+1 and ends in p2(i+1).

We construct ξ0 as in Lemma 3.2 and hence for any state p of the NFA N either all
strings in ∃=0(L) · ξ0 reach p or no such string reaches p. To construct ξ1 we first run the
procedure of Lemma 3.2 and property (1) is satisfied. Then we process all pairs (p, q) of
states of N in some arbitrary order. If for all strings u ∈ ∃=0(L) there is a string v ∈ ∃=0(L)
such that ξ1uv has a computation beginning in p and ending in q, then we say that the pair
(p, q) is “alive” and ξ1 is left unchanged. Otherwise there is a string u ∈ ∃=0(L) such that
no computation for a string in ξ1 · u · ∃=0(L) has a computation beginning in p and ending
in q. We replace ξ1 by ξ1u. The pair (p, q) is now “dead”, since no string in ξ1 · ∃=0(L)
has a computation beginning in p and ending in q. Also observe that processed pairs do
not change their status, i.e., remain dead, resp. stay alive after updating ξ1. We have
generalized Lemma 3.2.

Lemma 6.2. Let N be an NFA for ∃k(L). Then there are strings ξ0, ξ1 ∈ ∃=0(L) such that
⋃

(p0,...,p2k−1) is critical for (ξ0,ξ1)

{z ∈ L | p2i+1
z→ p2(i+1) for all 0 ≤ i < k − 1} = L.

Proof. The argument is analogous to the proof of Lemma 3.2. This time we have to observe
that accepting computations for strings in ξ0 · (L · ξ1)

k have to traverse critical vectors.

For k = 1 Lemma 3.3 establishes that a string S(z) “lives” in a launching cycle for p0

and a storage cycle for p1. Its generalization requires more work. Let ~p = (p0, . . . , p2k−1) be
a critical vector and let z ∈ K \L be an arbitrary string. We construct a string u ∈ ∃=0(L)
for z so that some string with period uz can be launched by p0, stored and launched in
between p2i+1 and p2(i+1) and finally stored by p2(k−1)+1. In particular, we say that a string
u ∈ ∃=0(L) is appropriate for z if the following properties are satisfied:

AMBIGUITY AND COMMUNICATION 563

(1) (zu)|Q| reaches p0.

(2) For every i, 0 ≤ i < k − 1, there is a string si and computations p2i+1
si→ p2(i+1).

Moreover, si starts with a suffix of uz containing ξ1 as prefix, followed by (uz)|Q|

and completed by a prefix of u.
(3) State p2(k−1)+1 accepts any string sk−1 which consists of a suffix of uz containing

ξ1 as prefix, followed by (uz)|Q|.

(4) The string s = (zu)|Q|zs0z · · · zsk−2zsk−1 has periods zu and uz respectively.

Now assume that u is appropriate for z. We show that the string S(z) = s “lives” in
appropriate cycles for each pi. First observe that S(z) has period zu and hence also period

uz. The proof of Lemma 3.3 shows that a launching cycle r
(zu)a

→ r
(zu)a1→ p0 is established,

once (zu)|Q| reaches p0. Also, intermediate cycles in between p2i+1 and p2(i+1) exist, since

si has substring (uz)|Q|, and a final storage cycle following p2(k−1)+1 exists, since p2(k−1)+1

accepts a string with suffix (uz)|Q|.

Lemma 6.3. For every string z ∈ K \ L there is an appropriate string u ∈ ∃=0(L) for z.

Proof. Let ql be some arbitrary ordering of the states of N . Each pair (p2i+1, p2(i+1))
influences the construction of u. Assume for the moment that strings ξi,l are already defined.
We set

ui,j = ξ1 · Πl≤j,(ql,p2(i+1)) is alive zξ1ξi,l

for all j (1 ≤ j ≤ |Q|). Observe that ui,j = ui,j−1 · (zξ1ξi,j), if (qj, p2(i+1)) is alive, and that
ξ1 is a prefix of ui,j. Choose the strings ξi,l ∈ ∃=0(L) so that there is a computation for ui,j

from qj to p2(i+1). Such strings ξi,l exist with property (2) of a critical vector, since ξ1 is a
prefix of ui,j and (qj , p2(i+1)) is alive. Finally set

ui = ui,|Q| · zξ1 and u = u0 · · · uk−2 · ξ0.

We show that u is appropriate for z by first verifying property (1). The string u has suffix

ξ0 and hence, by property (1) of a critical vector, (zu)|Q| reaches p0, the first component of
the critical vector ~p.

Observe that each ui,j has prefix ξ1 and hence ui and u have ξ1 as prefix. We start
the verification of properties (2) and (3) by defining s0 and constructing a computation

p1
s0→ p2. Since ξ1 is a prefix of u, there is a computation for (uz)|Q| which leads from p1

to a state qj such that the pair (qj , p2) is alive. But then, by definition of u0,j, there is a

computation for (uz)|Q| ·u0,j which starts in p1, reaches qj after reading (uz)|Q| and ends in

p2 after reading u0,j. We set s0 = (uz)|Q| ·u0,j. By construction, u0,j is a prefix of u0 which
itself is a prefix of u. Thus there is a string v0,j with u = u0,j · z · v0,j and v0,j has prefix ξ1.

We now construct a string s1 and a computation p3
s1→ p4 as follows. Since v0,j has

prefix ξ1 there is a computation for v0,j ·z ·(uz)|Q| ·u0 which reaches a state qk when starting
in state p3. Since the pair (qk, p4) is alive, we obtain the computation

p3
v0,jz(uz)|Q|u0→ qk

u1,k→ p4

and set s1 = v0,jz(uz)|Q|u0u1,k. The construction of si and verifying a computation p2i+1
si→

p2(i+1) for arbitrary i < k − 1 proceeds in a completely analogous fashion. Finally, again
by property (1) of a critical vector, state p2(k−1)+1 accepts any string sk−1 consisting of a

suffix of uz followed by (zu)|Q|, since the suffix of uz has prefix ξ1.

564 J. HROMKOVIC AND G. SCHNITGER

To complete the argument observe that by construction s = (zu)|Q|zs0z · · · zsk−2zsk−1

has periods uz and zu respectively.

The remainder of the argument proceeds completely analogous to the case of k = 1.
Lemma 3.4 shows that an NFA with sublinear ambiguity solves the detection problem for
k = 1. To introduce its generalization we firstly introduce the detection problem for k > 1:
z has to be rejected iff there is a string z′ ∈ K \L such that z, acting as an impostor of z′,
can be placed in matching positions within the k + 1 individual uz′-cycles of N . Lemma
3.4 was a direct consequence of Lemma 3.3 in the case of k = 1. In the same manner we
can now show that an NFA with ambiguity o(nk) solves the detection problem for general
k as a direct consequence of Lemma 6.3.

Let N be an NFA with ambiguity o(nk) for ∃k(L). As in Lemma 4.1 we simulate N to
obtain a nondeterministic protocol P solving the detection problem with |Q|O(kt) messages;
the exponent grows by the factor k, since k+1 instead of two computations of N on input z

have to be simulated. We transform P into a deterministic protocol D with |Q|O((kt)2 log |Q|)

messages as in Lemma 5.1. To complete the proof of Theorem 1.2, we replace r by r/k2

in the proof of Lemma 5.2 (to compensate for the increase in the number of messages of D

from |Q|O(t2 log |Q|) to |Q|O(k2t2 log |Q|)) and obtain

Lemma 6.4. Let N be an NFA with ambiguity o(nk) recognizing ∃k(L). Then N has at

least 2Ω((r/k2)1/3) states.

References

[1] Aho, A.V., Ullman, J.D. and Yannakakis, M., On notions of information transfer in VLSI circuits, Proc.

of the 15th Annual STOC, pp. 133-139, 1983.
[2] Hromkovič, J., Karhumäki, J., Klauck, H., and Schnitger, G., Communication complexity method for

measuring nondeterminism in finite automata, Inf. Comput. 172, pp. 202-217, 2002.
[3] Hromkovič, J., and Schnitger, G., Nondeterministic Communication with a Limited Number of Advice

Bits, SIAM J. Comput. 33(1), pp. 43-68, 2003.
[4] Leung, H., Separating exponentially ambiguous finite automata from polynomially ambiguous finite

automata, SIAM. J. Comput. 27, pp. 1073-1082, 1998.
[5] Lovasz, L., Communication complexity: a survey, in “Paths, Flows and VLSI Layout”, Korte, Lovasz,

Prömel, Schrijver eds., Springer Verlag, pp. 235-266, 1990.
[6] Ravikumar, B., and Ibarra, O., Relating the type of ambiguity of finite automata to the succinctness of

their representation, SIAM J. Comput. 19, pp. 1263-1282, 1989.
[7] R.E. Stearns and H.B. Hunt III, On the equivalence and containment problems for unambiguous regular

expressions, regular grammars and finite automata, SIAM J. Comput. 14(3), pp. 598-611, 1985.
[8] A. Weber and H. Seidl, On the degree of ambiguity of finite automata, Theor. Comput. Sci. 88 (2), pp.

325-349, 1991.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

