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Abstract. Systems of equations of the form X = Y Z and X = C are considered, in
which the unknowns are sets of natural numbers, “+” denotes pairwise sum of sets S+T =
{m + n | m ∈ S, n ∈ T}, and C is an ultimately periodic constant. It is shown that such
systems are computationally universal, in the sense that for every recursive (r.e., co-r.e.)
set S ⊆ N there exists a system with a unique (least, greatest) solution containing a
component T with S = {n | 16n + 13 ∈ T}. This implies undecidability of basic properties
of these equations. All results also apply to language equations over a one-letter alphabet
with concatenation and regular constants.

1. Introduction

Language equations are equations of the form

ϕ(X1, . . . ,Xn) = ψ(X1, . . . ,Xn), (*)

in which the unknowns Xi are formal languages, while the expressions ϕ,ψ use language-
theoretic operations, such as concatenation, Kleene star and Boolean operations, and con-
stant languages. It is well-known that systems of the resolved form Xi = ϕi(X1, . . . ,Xn)
(1 6 i 6 n) with union, concatenation and singleton constants define the semantics of the
context-free grammars [1]. If intersection is also allowed, such equations characterize an
extension of the context-free grammars known as conjunctive grammars [9] and notable for
efficient parsing algorithms.

The expressive power of language equations of the general form (*) was determined by
Okhotin [10, 11], who proved that a language is representable by a unique (least, greatest)
solution of a system with concatenation, Boolean operations and singleton constants if and
only if this language is recursive (recursively enumerable, co-r.e., respectively). The same
expressive power is attained using concatenation with constants and union [11]. It was
subsequently discovered that language equations can be computationally universal even
without any Boolean operations: Kunc [6] constructed a finite language L ⊆ {a, b}∗, for
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which the greatest solution of a language equation LX = XL is Π1-hard (that is, hard
for co-r.e. sets). This paper establishes a similar result in the seemingly trivial case of a
one-letter alphabet.

Unary languages, defined over an alphabet {a}, form an important special class of for-
mal languages. It is well-known that context-free grammars over this alphabet generate
only regular languages. The first example of a unary language equation with a non-regular
unique solution was constructed by Leiss [7]: this was an equation X = ϕ(X) with ϕ

containing concatenation, complementation and constant {a}. The question of whether
conjunctive grammars (in other words, systems of language equations with union, intersec-
tion and concatenation) can generate any non-regular languages had been a long-standing
open problem [9], until Jeż [2] constructed a conjunctive grammar generating {a4n

|n > 0}.
The ideas of this example were used by Jeż and Okhotin [3] to establish some general results
on the expressive power of these equations, as well as the EXPTIME-completeness of their
solutions [4]. For systems of the general form (*) using concatenation and union, it has
recently been shown by the authors [5] that they are computationally complete.

As unary languages can be regarded as sets of natural numbers, unary language equa-
tions are naturally viewed as equations over sets of numbers. Concatenation of languages
accordingly turns into addition of sets S + T = {m+ n |m ∈ S, n ∈ T}, an operation that
has been a subject of much study in number theory and combinatorics [14]. For instance,
if P is the set of primes, then the equation P + P + P = {6, 7, . . .} expresses the Gold-
bach conjecture. Computational complexity of expressions and circuits over sets of numbers
with addition and different sets of Boolean operations has been studied by Stockmeyer and
Meyer [13] and McKenzie and Wagner [8]. Equations over sets of numbers are a more gen-
eral formalism, and its expressive power was related to the allowed Boolean operations in
the aforementioned work on unary language equations [2, 3, 4, 5].

This paper is concerned with equations over sets of numbers that use only addition and
no Boolean operations. These are systems of equations of the form

Xi1 + . . . +Xik + C = Xj1 + . . .+Xjℓ
+D

in variables (X1, . . . ,Xn), where C,D ⊆ N are ultimately periodic constants. In terms of
language equations over {a}, these are equations

Xi1 . . . XikK = Xj1 . . . Xjℓ
L,

with regular constantsK,L ⊆ a∗. This is the ultimately simplest case of language equations,
and at the first glance it seems out of question that such equations could have any non-trivial
unique (least, greatest) solutions. Probably for that reason no one has ever proclaimed their
expressive power to be an open problem. However, as proved in this paper, these equations
can have not only non-periodic unique solutions, but in fact are computationally universal.
Furthermore, their main decision problems are as hard as similar problems for language
equations over multiple-letter alphabets and using all Boolean operations [10, 11].

The new results are directly based on the authors’ recent proof of the computational
completeness of equations over sets of numbers with addition and union [5], though it is
established using completely different techniques. The idea is to take an arbitrary system
using addition and union and encode it in another system using addition only. The solutions
of the two systems will not be identical, but there will be a bijection between solutions based
upon an encoding of sets of numbers.
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This encoding of sets, defined in Section 3, is an injection σ : 2N → 2N, which represents
every number n of the encoded set as the number 16n + 13 in the encoding. The given
encoding has two key properties. First of all, its form can be checked by an equation, which
is satisfied exactly by those sets that are valid encodings; such an equation is constructed
in Section 3. Second, the sum of any two valid encodings, encodes both the sum and the
union of the encoded sets of numbers, and furthermore, adding a certain constant to such
a sum of encodings produces a set that encodes only the sum of the original sets, while
adding another constant allows representing only the union of the original sets. In overall,
as shown in Section 4, the sum and the union of any two sets is represented by summing
their encodings.

Finally, on the basis of this encoding, in Section 5 it is demonstrated how an arbitrary
system of equations over sets of numbers with union and addition can be simulated using
addition only. Each variable Xi of the original system will be represented in the new system
by a variable X ′

i, and the solutions of the new system will be of the form X ′
i = σ(Si) for all

variables X ′
i, where Xi = Si is a solution of the original system.

All constants in the construction are ultimately periodic; some of them are finite and
some are infinite. The last question is whether infinite constants are necessary to specify
any non-periodic sets, and an affirmative answer is given in Section 6.

2. Equations over sets of numbers

Throughout this paper, the set of natural numbers N = {0, 1, 2, . . .} is assumed to
contain zero. A set of numbers S ⊆ N is ultimately periodic if there exist numbers d > 0
and p > 1, such that n ∈ S if and only if n + p ∈ S for every n > d. Otherwise, S is
non-periodic. Note that S is ultimately periodic if and only if the corresponding language
L = {an | n ∈ S} ⊆ a∗ is regular.

For every two subsets of natural numbers S, T ⊆ N, their sum is the set {m+ n |m ∈
S, n ∈ T}. Other typical operations on sets are the Boolean operations, such as union,
intersection and complementation. Using complementation and addition, the first example
of an equation with a non-periodic unique solution was constructed:

Example 2.1 (Leiss [7]). For every expression ϕ, denote 2ϕ = ϕ + ϕ. Then the unique
solution of the equation

X = 2
(
2
(
2X

))
+ {1}

is {n | ∃i > 0 : 23i 6 n < 23i+2} = {n | base-8 notation of n starts with 1, 2 or 3}.

However, the expressive power of this family of equations is still quite limited [12], with
some simple languages being non-representable.

The second example of non-periodic solutions of equations over sets of numbers was
constructed by Jeż [2] as a conjunctive grammar [9] generating the language {a4n

| n > 0}.
In terms of equations it is stated as follows:

Example 2.2 (Jeż [2]). The least solution of the system





X1 =
(
(X1+X3) ∩ (X2+X2)

)
∪ {1}

X2 =
(
(X1+X1) ∩ (X2+X6)

)
∪ {2}

X3 =
(
(X1+X2) ∩ (X6+X6)

)
∪ {3}

X6 = (X1+X2) ∩ (X3+X3)
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is X1 = {4n | n > 0}, X2 = {2 · 4n | n > 0}, X3 = {3 · 4n | n > 0}, X6 = {6 · 4n | n > 0}.

The idea behind this example is to manipulate positional notations of numbers, and this
idea was subsequently used to establish the following general result on the expressive power
of such equations. The statement refers to the family of linear conjunctive languages [9],
which properly contains the Boolean closure of linear context-free languages.

Proposition 2.3 (Jeż, Okhotin [3]). For every k > 2 and for every linear conjunctive
language L ⊆ {0, 1, . . . , k − 1}+ there exists a resolved system of equations






X1 = ϕ1(X1, . . . ,Xn)
...

Xn = ϕn(X1, . . . ,Xn)

with ϕi using singleton constants and the operations of union, intersection and addition,
which has a least solution with X1 = {n | the base-k notation of n is in L}.

On the basis of this result, it was shown that systems of the general form with the same
operations are computationally complete.

Theorem 2.4 (Jeż, Okhotin [5]). For every recursive (r.e., co-r.e.) set S ⊆ N there exists
an unresolved system






ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

with ϕj , ψj using singleton constants and the operations of union and addition, which has
a unique (least, greatest, respectively) solution with X1 = S.

Exactly the same results hold for unresolved systems with intersection, sum and sin-
gleton constants [5], though they will not be used in this paper.

The goal is now to take any system of equations with union and addition, such as those
constructed in Theorem 2.4, and to simulate it by another system using addition only. The
solutions of the new system will encode the solutions of the original system as described in
the next section.

3. Encoding of sets

An arbitrary set of numbers Ŝ ⊆ N will be represented by another set S ⊆ N, which

contains a number 16n+13 if and only if n is in Ŝ. The membership of numbers i with i 6= 13

(mod 16) in S does not depend on Ŝ and will be defined below. Since many constructions
in the following will be done modulo 16, the following notation shall be adopted:

Definition 3.1. For each i ∈ {0, 1, . . . , 15},

tracki(S) = {n | 16n + i ∈ S},

τi(S
′) = {16n + i | n ∈ S′}.

The subset S∩{16n+ i |n > 0} is called the ith track of S. A set S is said to have an empty
(full) track i if tracki(S) = ∅ (tracki(S) = N, respectively).
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In these terms, it can be said that a set Ŝ shall be encoded in the 13th track of a set S.
The rest of the tracks of S contain technical information needed for the below constructions
to work: track 0 contains a singleton {0}, tracks 6, 8, 9 and 12 are full and the rest of the
tracks are empty.

Definition 3.2. For every set Ŝ ⊆ N, its encoding is the set

S = σ(Ŝ) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Ŝ).

The first property of the encoding announced in the introduction is that there exists
an equation with the set of all valid encodings as its set of solutions. Such an equation will
now be constructed.

Lemma 3.3. A set X ⊆ N satisfies an equation

X + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,

10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}

if and only if X = σ(X̂) for some X̂ ⊆ N.

Proof. ⇒© Let X be any set that satisfies the equation. Then the sum X + {0, 4, 11} has
empty tracks 2, 5, 14 and 15:

track2(X + {0, 4, 11}) = track5(X + {0, 4, 11}) =

= track14(X + {0, 4, 11}) = track15(X + {0, 4, 11}) = ∅

For this condition to hold, X must have many empty tracks as well. To be precise, each track
t with t, t+4 or t+11 (mod 16) being in {2, 5, 14, 15} must be an empty track in X. Calcu-
lating such set of tracks, {2, 5, 14, 15} − {0, 4, 11} (mod 16) = {1, 2, 3, 4, 5, 7, 10, 11, 14, 15}
are the numbers of tracks that must be empty in X.

Similar considerations apply to track 11, as track11(X + {0, 4, 11}) = {0}. For every
track t with t = 11, t + 4 = 11 or t + 11 = 11 (mod 16), it must hold that the tth track
of X is either an empty track or trackt(X) = {0}. The latter must hold for at least one
such t. Let us calculate all such tracks t: these are tracks with numbers {11} − {0, 4, 11}
(mod 16) = {0, 7, 11}. Since tracks number 7 and 11 are already known to be empty, it
follows that track0(X) = {0}.

In order to prove that X is a valid encoding of some set, it remains to prove that tracks
number 6, 8, 9, 12 in X are full. Consider first that track3(X + {0, 4, 11}) = N + 1. Let us
calculate the track numbers t such that there is t′ ∈ {0, 4, 11} with (t + t′) (mod 16) = 3:
these are {3} − {0, 4, 11} (mod 16) = {3, 8, 15}. Since tracks 3, 15 are known to be empty,
then

N + 1 = track3(X + {0, 4, 11}) =

= track3(X) ∪ (track15(X) + 1) ∪ (track8(X) + 1) =

= ∅ ∪ ∅ ∪ (track8(X) + 1) = track8(X) + 1,

and thus track 8 ofX is full. The analogous argument is used to prove that tracks 12, 9, 6 are
full. Consider track7(X+{0, 4, 11}) = N+1. Then {7}−{0, 4, 11} (mod 16) = {7, 3, 12}.
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Since it is already known that tracks 3, 7 are empty, the track 12 is full:

N + 1 = track7(X + {0, 4, 11}) =

= track7(X) ∪ track3(X) ∪ (track12(X) + 1) =

= ∅ ∪ ∅ ∪ (track12(X) + 1) = track12(X) + 1.

In the same way consider track9(X + {0, 4, 11}) = N. Then {9} − {0, 4, 11} (mod 16) =
{9, 5, 14} and tracks 5, 14 are empty, thus track 9 is full:

N = track9(X + {0, 4, 11}) =

= track9(X) ∪ track5(X) ∪ (track14(X) + 1) =

= track9(X) ∪ ∅ ∪ ∅ = track9(X).

Now let us inspect track10(X + {0, 4, 11}). Then {10}−{0, 4, 11} (mod 16) = {10, 6, 15}.
Since the tracks 10, 15 are empty, then the 6th track is full:

N = track10(X + {0, 4, 11}) =

= track10(X) ∪ track6(X) ∪ (1 + track15(X)) =

= ∅ ∪ track6(X) ∪ ∅ = track6(X).

Thus it has been proved that X = σ(track13(X)).

⇐© It remains to show the converse, that is, that if X = σ(X̂), then

X + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,

10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}.

Since X =
⋃15

i=0 τi(tracki(X)), then

X + {0, 4, 11} =
( ⋃

i

τi(tracki(X)) + 0
)
∪

( ⋃

i

τi(tracki(X)) + 4
)
∪

∪
( ⋃

i

τi(tracki(X)) + 11
)
,

and Table 1 presents the form of each particular term in this union. Each ith row represents
track number i in X, and each column labelled +j for j ∈ {0, 4, 11} corresponds to the
addition of a number j. The cell (i, j) gives the set tracki(X) + j and the number of the
track in which this set appears in the result (this is track i + j (mod 16)). Then each ℓth

track of X + {0, 4, 11} is obtained as a union of all the appropriate sets in the Table 1.

According to the table, the values of the set X̂ are reflected in three tracks of the
sum X + {0, 4, 11}: in tracks 13, 1 and 8 (in the last two cases, with offset 1). However,
at the same time the sum contains full tracks 8 and 13, as well as N + 1 in track 1, and

the contributions of X̂ to the sum are subsumed by these numbers, as τ13(X̂) ⊆ τ13(N),

τ1(X̂ + 1) ⊆ τ1(N + 1) and τ8(X̂ + 1) ⊆ τ8(N). Therefore, the value of the expression does

not depend on X̂ . Taking the union of all entries of the Table 1 proves that X + {0, 4, 11}
equals ⋃

i∈{0,4,6,8,9,

10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11},
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+0 +4 +11

0: {0} 0: {0} 4: {0} 11: {0}
6: N 6: N 10: N 1: N + 1
8: N 8: N 12: N 3: N + 1
9: N 9: N 13: N 4: N + 1
12: N 12: N 0: N + 1 7: N + 1

13: X̂ 13: X̂ 1: X̂ + 1 8: X̂ + 1

Table 1: Tracks in the sum σ(X̂) + {0, 4, 11}, only non-empty tracks of σ(X̂) are included.

as stated in the lemma.

4. Simulating operations

The goal of this section is to establish the second property of the encoding σ, that is,
that a sum of encodings of two sets and a fixed constant set effectively encodes the union
of these two sets, while the addition of a different fixed constant set allows encoding the
sum of the two original sets. This property is formally stated in the following lemma, along
with the actual constant sets:

Lemma 4.1. For all sets X,Y,Z ⊆ N,

σ(Y ) + σ(Z) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if Y + Z = X

and
σ(Y ) + σ(Z) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if Y ∪ Z = X.

Proof. The goal is to show that for all Y,Z ⊆ N, the sum

σ(Y ) + σ(Z) + {0, 1}

encodes the set Y +Z + 1 on one of its tracks, while the contents of all other tracks do not
depend on Y or on Z. Similarly, the sum

σ(Y ) + σ(Z) + {0, 2}

has a track that encodes Y ∪Z, while the rest of its tracks also do not depend on Y and Z.
The common part of both of the above sums is σ(Y ) + σ(Z), so let us calculate it first.

Since

σ(Y ) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Y ) and

σ(Z) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Z),

by the distributivity of union, the sum σ(Y )+σ(Z) is a union of 36 terms, each being a sum
of two individual tracks. Every such sum is contained in a single track as well, and Table 2
gives a case inspection of the form of all these terms. Each of its six rows corresponds to
one of the nonempty tracks of σ(Y ), while its six columns refer to the nonempty tracks in
σ(Z). Then the cell gives the sum of these tracks, in the form of the track number and
track contents: that is, for row representing tracki(σ(Y )) and for column representing
trackj(σ(Z)), the cell (i, j) represents the set tracki(σ(Y )) + trackj(σ(Z)), which is
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0: {0} 6: N 8: N 9: N 12: N 13: Z

0: {0} 0: {0} 6: N 8: N 9: N 12: N 13: Z
6: N 6: N 12: N 14: N 15: N 2: N + 1 3: ?
8: N 8: N 14: N 0: N + 1 1: N + 1 4: N + 1 5: ?
9: N 9: N 15: N 1: N + 1 2: N + 1 5: N + 1 6: ?
12: N 12: N 2: N + 1 4: N + 1 5: N + 1 8: N + 1 9: ?
13: Y 13: Y 3: ? 5: ? 6: ? 9: ? 10: (Y +Z)+1

Table 2: Tracks in the sum σ(Y ) + σ(Z). Question marks denote subsets of N + 1 that
depend on Y or Z and whose actual values are unimportant.

σ(Y ) σ(Z) σ(Y )+σ(Z) σ(Y )+σ(Z)+{0, 1} σ(Y )+σ(Z)+{0, 2}

0 {0} {0} N N N

1 ∅ ∅ N + 1 N N + 1
2 ∅ ∅ N + 1 N + 1 N

3 ∅ ∅ ? N + 1 N + 1
4 ∅ ∅ N + 1 N + 1 N + 1
5 ∅ ∅ N + 1 N + 1 N + 1
6 N N N N N

7 ∅ ∅ ∅ N N + 1
8 N N N N N

9 N N N N N

10 ∅ ∅ Y + Z + 1 N N

11 ∅ ∅ ∅ Y + Z + 1 N

12 N N N N N

13 Y Z Y ∪ Z N Y ∪ Z
14 ∅ ∅ N N N

15 ∅ ∅ N N N

Table 3: Tracks in the sums of σ(Y ) + σ(Z) with constants.

bound to be on track i+ j (mod 16). For example, the sum of track 8 of σ(Y ) and track 9
of σ(Z) falls onto track 1 = 8 + 9 (mod 16) and equals

τ8(N) + τ9(N) = {8 + 9 + 16(m + n) |m,n > 0} = {1 + 16n | n > 1} = τ1(N + 1),

while adding track 13 of σ(Y ) to track 13 of σ(Z) results in

τ13(Y ) + τ13(Z) = {26 + 16(m+ n) |m ∈ Y, n ∈ Z} = τ10(Y + Z + 1),

which is reflected in the table. Each question mark denotes a track with unspecified contents.
Though these contents can be calculated, it is actually irrelevant, because it does not
influence the value of the subsequent sums σ(Y ) + σ(Z) + {0, 1} and σ(Y ) + σ(Z) + {0, 2}.
What is important is that none of these tracks contain 0.

Now the value of each ith track of σ(Y ) + σ(Z) is obtained as the union of all sums in
Table 2 that belong to the ith track. The final values of these tracks are presented in the
corresponding column of Table 3.
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Now the contents of the tracks in σ(Y ) + σ(Z) + {0, 1} can be completely described.
The calculations are given in Table 3, and the result is that for all Y and Z,

track11(σ(Y ) + σ(Z) + {0, 1}) = Y + Z + 1,

tracki(σ(Y ) + σ(Z) + {0, 1}) = N + 1 for i ∈ {2, 3, 4, 5},

tracki(σ(Y ) + σ(Z) + {0, 1}) = N for all other i.

It easily follows that
X = Y + Z

if and only if
σ(X) + σ({0}) + {0, 1} = σ(Y ) + σ(Z) + {0, 1},

as, clearly, X = X + {0}.
For the set σ(Y ) + σ(Z) + {0, 2}, in the same way, for all Y and Z,

track13(σ(Y ) + σ(Z) + {0, 2}) = Y ∪ Z,

trackj(σ(Y ) + σ(Z) + {0, 2}) = N + 1 for j ∈ {1, 3, 4, 5, 7},

trackj(σ(Y ) + σ(Z) + {0, 2}) = N for all other j,

and therefore for all X,Y,Z,
X = Y ∪ Z

if and only if
σ(X) + σ(X) + {0, 2} = σ(Y ) + σ(Z) + {0, 2},

since X = X ∪X.
Both claims of the lemma follow.

5. Simulating a system of equations

Using the encoding defined above, it is now possible to represent a system with union
and addition by a system with addition only. Since Lemma 4.1 on the simulation of individ-
ual operations is applicable only to equations of a simple form, the first task is to convert
a given system to such a form:

Lemma 5.1. For every system of equations over sets of numbers in variables (X1, . . . ,Xn)
using union, addition and constants from a set C there exists a system in variables
(X1, . . . ,Xn,Xn+1, . . . ,Xn+m) with all equations of the form Xi = Xj +Xk, Xi = Xj ∪Xk

or Xi = C with C ∈ C, such that the set of solutions of this system is
{
(S1, . . . , Sn, . . . , fi(S1, . . . , Sn), . . .)

∣∣ (S1, . . . , Sn) is a solution of the original system
}
,

for some monotone functions f1, . . . , fm.

The construction is by a straightforward decomposition of equations, with new variables
representing subexpressions of the sides of the original equations. Once the equations are
thus transformed, the system can be encoded as follows.
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Lemma 5.2. For every system of equations over sets of numbers in variables (. . . ,X, . . .)
and with all equations of the form X = Y + Z, X = Y ∪ Z or X = C, there exists a
system in variables (. . . ,X ′, . . .), using only addition and constants {0, 1}, {0, 2}, {0, 4, 11},
σ({0}), σ(C) with C used in the original system and the ultimately periodic constant from
Lemma 3.3, such that (. . . , S′

X , . . .) is a solution of the latter system if and only if S′
X =

σ(SX) for each variable X, for some solution (. . . , SX , . . .) of the former system.

Proof. The proof is by a direct transformation of this system according to Lemmata 3.3
and 4.1. First, the new system contains the following equation for each variable X ′:

X ′ + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,

10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}. (5.1)

Next, for each equation X = Y +Z in the original system, there is a corresponding equation

X ′ + σ({0}) + {0, 1} = Y ′ + Z ′ + {0, 1} (5.2)

in the new system. Similarly, for each equation of the form X = Y ∪ Z, the new system
contains an equation

X ′ +X ′ + {0, 2} = Y ′ + Z ′ + {0, 2}. (5.3)

Finally, every equation X = C in the original system is represented in the new system by
the following equation:

X ′ = σ(C). (5.4)

By Lemma 3.3, (5.1) ensures that each solution (. . . , S′
X , . . .) of the constructed system

satisfies S′
X = σ(SX) for some sets SX . It is claimed that (. . . , SX , . . .) satisfies each

equation of the original system if and only if (. . . , σ(SX), . . .) satisfies the corresponding
equation (5.2–5.4) of the constructed system. Consider each pair of corresponding equations:

• Consider an equation X = Y ∪ Z from the original system. Then there is a cor-
responding equation (5.2), and, by Lemma 4.1, (. . . , SX , . . .) satisfies the original
equation if and only if (. . . , σ(SX ), . . .) satisfies (5.2).

• Similarly, by Lemma 4.1, an equation of the form X = Y + Z is satisfied by
(. . . , SX , . . .) if and only if (. . . , σ(SX), . . .) satisfies the corresponding equation (5.3).

• For each equation of the form X = C it is claimed that a set SX satisfies it if and
only if σ(SX) satisfies the corresponding equation (5.4). Indeed, σ(SX) = σ(C) if
and only if track13(σ(SX)) = track13(σ(C)), and since track13(σ(SX)) = SX

and track13(σ(C)) = C, this is equivalent to SX = C.

This shows that (. . . , SX , . . .) satisfies the original system if and only if (. . . , σ(SX), . . .)
satisfies the constructed system, which proves the correctness of the construction.

Note that σ is a bijection between the sets of solutions of the two systems. Then, in
particular, if the original system has a unique solution, then the constructed system has a
unique solution as well, which encodes the solution of the original system.

Furthermore, it is important that the encoding σ respects inclusion, that is, if X ⊆
Y , then σ(X) ⊆ σ(Y ). Consider the partial order on solutions of a system, defined as
(S1, . . . , Sn) 4 (S′

1, . . . , S
′
n) if Si ⊆ S′

i for all i. Now if one solution of the original system
is less than another, then the corresponding solutions of the constructed system maintain
this relation. Therefore, if the original system has a least (greatest) solution with respect
to this partial order, then so does the new one, and its least (greatest) solution is the image
of the least (greatest) solution of the original system.
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These observations allow applying Lemmata 5.1 and 5.2 to encode each system in
Theorem 2.4 within a system using addition only.

Theorem 5.3. For every recursive (r.e., co-r.e.) set S ⊆ N there exists a system of
equations 





ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

with ϕj , ψj using the operation of addition and ultimately periodic constants, which has a
unique (least, greatest, respectively) solution with X1 = T , where S = {n | 16n+ 13 ∈ T}.

Note that S is computationally reducible to T via the “16n + 13” transduction, hence
the following statements:

Corollary 5.4. For every recursive set S ⊆ N there exists a system of equations over sets of
natural numbers using addition and ultimately periodic constants that has a unique solution,
which is computationally as hard as S.

Corollary 5.5. There exists a system of equations over sets of natural numbers using
addition and ultimately periodic constants which has a least (greatest) solution with its first
component being r.e.-complete (co-r.e.-complete, respectively).

Finally, the decision problems for these systems of equations turn out to be as hard as
in the case of union and addition:

Theorem 5.6. The problem of testing whether a system of equations over sets of natural
numbers using addition and ultimately periodic constants has a solution is Π1-complete. The
problem of whether it has a unique, least or greatest solution is Π2-complete. The problem
of whether it has finitely many solutions is Σ3-complete.

The above results equally apply to language equations over a one-letter alphabet with
concatenation as the only allowed operation and with regular constants.

6. Systems with finite constants

The constructions above essentially use three infinite ultimately periodic constants: one
of them is the right-hand side of the equation from Lemma 3.3, and the other two are the
sets σ({0}) and σ({1}) used in Lemma 5.2 to represent constants {0} and {1}. It will now
be shown that the use of such constants is necessary, and systems using only addition and
finite constants cannot specify any non-trivial infinite sets.

This is done by demonstrating that every solution (. . . , S, . . .) of such a system can be
pruned in the sense that each of its infinite components can be replaced by an empty set
and the resulting vector remains a solution.

Lemma 6.1. If a system of equations in variables (. . . ,Xj , . . . , Yi, . . .) using addition and
only finite constants has a solution (. . . , Fj , . . . , Si, . . .), where each Fj is finite and each Si

infinite, then (. . . , Fj , . . . ,∅, . . .) is a solution of this system.

In a similar way, infinite components of a solution can be augmented to co-finite sets.
For every nonempty set S ⊆ N, consider its upward closure S+N, which is always co-finite.
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Lemma 6.2. If a system of equations in variables (. . . ,Xj , . . . , Yi, . . .) using addition and
only finite constants has a solution (. . . , Fj , . . . , Si, . . .), where each Fj is finite and each Si

infinite, then (. . . , Fj , . . . , Si + N, . . .) is a solution as well.

Theorem 6.3. If a system of equations using addition and finite constants has a least
(greatest, unique) solution (. . . , Si, . . .), then each Si is finite (finite or co-finite, finite,
respectively).

Since equations with finite constants have so trivial solutions, it is natural to expect
their decision problems to be much easier than in Theorem 5.6. Establishing the exact
complexity of these problems is left for future work.

7. Conclusion

The study of language equations has progressed by showing the computational univer-
sality of simpler and simpler models [10, 6, 5]. The equations proved universal in this paper
are the simplest considered so far: the constructions use systems of equations X = Y Z and
X = C over an alphabet Σ = {a}, with ultimately periodic constants C ⊆ a∗. Little room
is left for further improvement, as infinite constants were proved to be essential.

The results have been obtained in terms of equations over sets of numbers using the
operation of addition, which is the main subject of additive combinatorics [14]. Hopefully,
this work will lead to some further connections between computability and number theory.
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