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Abstract. In this paper, we present a factor 16 approximation algorithm for the following
NP-hard distance fitting problem: given a finite set X and a distance d on X, find a
Robinsonian distance dR on X minimizing the l∞-error ||d−dR||∞ = maxx,y∈X{|d(x, y)−
dR(x, y)|}. A distance dR on a finite set X is Robinsonian if its matrix can be symmetrically
permuted so that its elements do not decrease when moving away from the main diagonal
along any row or column. Robinsonian distances generalize ultrametrics, line distances
and occur in the seriation problems and in classification.

1. Introduction

1.1. Seriation problem. Many applied algorithmic problems involve ordering of a set of
objects so that closely coupled objects are placed near each other. These problems occur in
such diverse applications as data analysis, archeological dating, numerical ecology, matrix
visualization methods, DNA sequencing, overlapping clustering, graph linear arrangement,
and sparse matrix envelope reduction. For example, a major issue in classification and
data analysis is to visualize simple geometrical and relational structures between objects.
Necessary for such an analysis is a dissimilarity on a set of objects, which is measured directly
or computed from a data matrix. The classical seriation problem [16, 18] consists in finding
of a simultaneous permutation of the rows and the columns of the dissimilarity matrix
with the objective of revealing an underlying one-dimensional structure. The basic idea is
that small values should be concentrated around the main diagonal as closely as possible,
whereas large values should fall as far from it as possible. This goal is best achieved by
considering the so-called Robinson property [20]: a dissimilarity matrix has this property
if its values do not decrease when moving away from the main diagonal along any row or
column. Experimental data usually contain errors, whence the dissimilarity can be measured
only approximatively. As a consequence, any simultaneous permutation of the rows and
the columns of the dissimilarity matrix gives a matrix which fails to satisfy the Robinson
property, and we are led to the problem of finding a matrix reordering which is as close as
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possible to a Robinson matrix. As an error measure one can use the lp-distance between
two matrices. Several heuristics for seriation using Robinson matrices have been considered
in the literature (the package seriation [14] contains their implementation). However, these
methods either have exponential complexity or do not provide any optimality guarantee of
the obtained solutions. In this paper, we provide a factor 16 algorithm for the NP-hard
problem of optimally fitting a dissimilarity matrix by a Robinson matrix under the l∞-error.

1.2. Definitions and the problem. Let X be a set of n elements to sequence, endowed
with a dissimilarity function d : X2 → R

+∪{0} (i.e., d(x, y) = d(y, x) ≥ 0 and d(x, x) = 0).
A dissimilarity d and a total order ≺ on X are compatible if d(x, y) ≥ d(u, v) for any
four elements such that x ≺ u ≺ v ≺ y. Then d is Robinsonian if it admits a compatible
order. Basic examples of Robinson dissimilarities are the ultrametrics and the standard
line-distance between n points on the line. Denote by D and R the sets of all dissimilarities
and of all Robinson dissimilarities on X. For d, d′ ∈ D, define the l∞-error by ||d − d′||∞ =
maxx,y∈X{|d(x, y)−d′(x, y)|}. To formulate the corresponding fitting problem, we relax the
notions of compatible order and Robinson dissimilarity. Given ǫ ≥ 0, a total order ≺ on
X is called ǫ-compatible if x ≺ u ≺ v ≺ y implies d(x, y) + 2ǫ ≥ d(u, v). An ǫ-Robinsonian
dissimilarity is a dissimilarity admitting an ǫ-compatible order, i.e., for each pair x, y ∈ X
one can pick a value dR(x, y) ∈ [d(x, y)− ǫ, d(x, y)+ ǫ] so that the resulting dissimilarity dR

is Robinsonian. In this paper, we study the following NP-hard [8] optimization problem:

Problem l∞-FITTING-BY-ROBINSON: Given d ∈ D, find a Robinson dissimilarity dR ∈
R minimizing the l∞-error ||d − dR||∞, i.e., find a least ǫ such that d is ǫ-Robinsonian.

1.3. Related work. Fitting general distances by simpler distances (alias low-distortion
embeddings) is a classical problem in mathematics, data analysis, phylogeny, and, more
recently, in computer science. We review here only the results about l∞-fitting of distances
(this error measure is also known as the maximum additive distortion or the maximum
additive two-sided error [5]). Farach et al. [13] showed that l∞-fitting of a distance d by
an ultrametric is polynomial. This result has been used by Agarwala et al. [1] to design
a factor 3 approximation algorithm for l∞-fitting of distances by tree-distances, a problem
which has been shown to be strongly NP-hard [1]. A unified and simplified treatment of
these results of [1, 13] using sub-dominants was given in [7]. A factor 2 approximation
algorithm for the NP-hard problem of l∞-fitting of a dissimilarity by a line-distance was
given by Hstad et al. [15]. Bădoiu [4] proposed a constant-factor algorithm for l∞-fitting
of distances by l1-distances in the plane.

Seriation is important in archeological dating, clustering hypertext orderings, numerical
ecology, sparse matrix ordering, matrix visualization methods, and DNA sequencing [3, 6,
16, 18, 19, 20]. A package seriation implementing various seriation methods is described in
[14]. The most common methods for clustering provide a visual display of data in the form
of dendrograms. Dissimilarities in perfect agreement with dendrograms (i.e., ultrametrics)
are Robinsonian. Generalizing this correspondence, [11, 12] establish that the Robinson
dissimilarities can be visualized by hierarchical structures called pyramids.

1.4. Our result and techniques. The main result of the paper is a factor 16 approxima-
tion algorithm for the problem l∞-FITTING-BY-ROBINSON. The basic setting of our
algorithm goes as follows. First we show that the optimal error ǫ∗ belongs to a well-defined
list ∆ of size O(n4). As in some other minmax problems, our approximation algorithm tests
the entries of ∆, using a parameter ǫ, which is the “guess” for ǫ∗. For current ǫ ∈ ∆, the
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algorithm either finds that no ǫ-compatible order exist, in which case the input dissimilarity
d is not ǫ-Robinsonian, or it returns a 16ǫ-compatible order. Now, if ǫ is the least value
for which the algorithm does not return the negative answer, then ǫ∗ ≥ ǫ, and the returned
16ǫ-Robinsonian dissimilarity has l∞-error at most 16ǫ∗, establishing that we have a factor
16 approximation algorithm.

For ǫ ∈ ∆, a canonical binary relation 4 is computed so that any ǫ-compatible total
order refines 4 or its dual. If 4 is not a partial order, then the algorithm halts and returns
the negative answer. If 4 is a total order, then we are done. Otherwise, we select a
maximal chain P = (a1, a2, . . . , ap) of the partial order 4 and search to fit each element
of X◦ := X \ P between two consecutive elements of P. We say that ai, ai+1 ∈ P form
a hole Hi and that all elements x ∈ X◦ assigned between ai and ai+1 are located in Hi.
This distribution of the elements to holes is performed so that (a) all elements Xi of X◦

located in the same hole Hi must “fit” in this hole, i.e., for all x, y ∈ Xi one of the orders
ai ≺ x ≺ y ≺ ai+1 or ai ≺ y ≺ x ≺ ai+1 must be cǫ-compatible for some c ≤ 12. Partitioning
X◦ into sets Xi, i = 1, . . . , p − 1, is not obvious. Even if such a partition is available, we
cannot directly apply a recursive call to each Xi, because (b) the elements located outside
the hole Hi will impose a certain order on the elements of Xi and, since we tolerate some
errors, (c) we cannot ensure that Xi is exactly the set of elements which must be located in
Hi in some ǫ-compatible total order. To deal with (a), we give a classification of admissible
and pairwise admissible holes for elements of X◦. This allows to show that, if we tolerate a
12ǫ-error, then each element x ∈ X◦ can be located in the leftmost or rightmost admissible
hole for x (we call them bounding holes of x). Both locations are feasible unless several
elements have the same pair of bounding holes. For i < j, let Xij be the set of all elements
of X◦ having Hi and Hj−1 as bounding holes. To deal with (b) and (c), on each set Xij

we define a directed graph L→

ij . The strongly connected components (which we call cells) of
L→

ij have the property that in any ǫ-compatible order all elements of the same component

must be located in the same hole. In fact the cells (and not the sets Xi) are the units to
which we apply the recursive calls in the algorithm. To decide in which hole Hi or Hj−1

to locate each cell of L→

ij and to define the relative order between the cells assigned to the
same hole, we define another directed graph Gij whose vertices are the cells of L→

ij in such

a way that (i) if some Gij does not admit a partition into two acyclic subgraphs then no
ǫ-compatible order exist and (ii) if Gij has a partition into two acyclic subgraphs G−

ij and

G+
ij , then all cells of G−

ij will be located in Hi, all cells of G+
ij will be located in Hj−1, and

the topological ordering of each of these graphs defines the relative order between the cells.
To partition Gij into two acyclic subgraphs (this problem in general is NP-complete [17]),
we investigate the specific properties of graphs in question, allowing us to define a 2-SAT
formula Φij which is satisfiable if and only if the required bipartition of Gij exists. Finally,
to locate in each hole Hi the cells coming from different subgraphs G+

j′i,G
−

ij , and G−

ij′′ with

j′ < i < j < j′′, we use the following separation rule: the cells of G+
j′i are located to the left

of the cells of G−

ij and the cells of G−

ij are located to the right of the cells of G−

ij′′ . Due to

space constraints, all missing proofs are given in the full version [9].

2. Preliminary results

The ≺-restricted problem is obtained from l∞-FITTING-BY-ROBINSON by fixing
the total order ≺ on X. Let ď≺ be a dissimilarity defined by setting ď≺(x, y) = max{d(u, v) :
x ≺ u ≺ v ≺ y} for all x, y ∈ X with x ≺ y (we suppose here that a ≺ a for any a ∈ X).
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Let 2ǫ̃≺ = ||d − ď≺||∞ and let d̃≺ be the (Robinsonian) dissimilarity obtained from ď≺ by

setting d̃≺(x, y) = max{ď≺(x, y) − ǫ̃≺, 0} for all x, y ∈ X,x 6= y. Then, the following holds:

Proposition 2.1. For a total order ≺ on X and d ∈ D, d̃≺ minimizes ||d − d′||∞.

Proposition 2.1 establishes that an optimal solution of the problem l∞-FITTING-BY-

ROBINSON can be selected among n! Robinsonian dissimilarities of the form d̃≺. In the full
version, we show that the natural heuristic similar to the factor 3 approximation algorithms
of H̊astad et al. [15] and Agarwala et al. [1] (which instead of n! total orders considers
only n orders) does not provide a constant-factor approximation algorithm for our problem.
Proposition 2.1 also implies that the optimal error ǫ∗ in l∞-FITTING-BY-ROBINSON

belongs to a well-defined list ∆ = {1
2 |d(x, y) − d(x′, y′)| : x, y, x′, y′ ∈ X} of size O(n4).

Given d ∈ D and ǫ ∈ ∆, we define a partial order 4 such that every ǫ-compatible total
order ≺ refines either 4 or its dual. For this, we set p 4 q for two arbitrary elements
p, q ∈ X, and close 4 using the properties of partial orders and the following observation: if
d(x, y) > max{d(x, z), d(z, y)} + 2ǫ, then in all ǫ-compatible with d orders z must be located
between x and y. In this case, if we know that two of the elements x, z, y are in relation 4
then we can extend this relation to the whole triplet. For example, if we know that x 4 z,
then we conclude that also z 4 y and x 4 z. If the resulting 4 is not a partial order, then
d does not admit an ǫ-compatible total order. So, further let 4 be a partial order. For
two disjoint subsets A,B of X, set A 4 B if a 4 b for any a ∈ A and b ∈ B. We write
x?y if neither x 4 y nor y 4 x hold. For two numbers α and β we will use the following
notations (i) α ≈c β if |α−β| ≤ cǫ, (ii) β &c α if β ≥ α− cǫ, and (iii) β ≫c α if β > α + cǫ.
We continue with basic properties of the canonical partial order 4: If w 4 {v, z}, v?z,
u 4 v, u?z, and w?u, then: (i) d(v,w) ≈2 d(z,w); (ii) d(v, z) .2 min{d(v,w), d(z,w)}; (iii)
d(w, z) ≈4 {d(u, v), d(u, z)}; (iv) d(w, u) .2 min{d(w, v), d(u, v)}.

3. Pairwise admissible holes

3.1. Admissible holes. Let P = (a1, a2, . . . , ap−1, ap) be a maximal chain of the partial
order 4. For notational convenience, we assume that all elements of X◦ must be located
between a1 and ap (a1 and ap can be artificially added); this way, every element of X◦ must
be located in a hole. Let Hij be the union of all holes comprised between ai, aj . For x ∈ X◦,
denote by H(x) the union of all holes Hi such that x?ai or x?ai+1. If H(x) = Hij, the holes
Hi and Hj−1 are called bounding holes; see Fig. 1 (note that ai = max{ak ∈ P : ak 4 x} and
aj = min{ak ∈ P : x 4 ak} for x ∈ X◦). All other holes of H(x) are called inner holes. Since
x /∈ P, H(x) contains at least two holes. The hole Hk of H(x) is x-admissible, if the total
order on P ∪{x} obtained from 4 by adding the relation ak 4 x 4 ak+1 is ǫ-compatible with
d. It can be easily shown that the bounding holes of H(x) must be x-admissible. Denote
by dx the mean value of min{d(x, ak) : i < k < j} and max{d(x, ak) : i < k < j}. We call
δk = d(ak, ak+1) the size of the hole Hk. Then the following holds:

Lemma 3.1. If an inner hole Hk of H(x) is x-admissible, then dx ≈1 {d(x, ak), d(x, ak+1)}
≈2 δk. In particular, δk ≈3 dx. More generally, for all k, k′ ∈]i, j[, we have dx &3 d(ak, ak′).

3.2. Pairwise admissible holes. A pair {Hk,Hk′} of holes is called (x, y, c)-admissible
if Hk is x-admissible, Hk′ is y-admissible, and the total order on P ∪ {x, y} obtained by
adding to 4 the relations ak 4 x 4 ak+1 and ak′ 4 y 4 ak′+1 is cǫ-compatible. Denote by
AH(x) the set of all x-admissible holes Hk so that for each y ∈ X◦, y 6= x, there exists an y-
admissible hole Hk′ such that {Hk,Hk′} is a (x, y, 1)-admissible pair. Further we can assume
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Figure 1: Bounding holes and the partition of Xij into X−

ij and X−

ij

that for any x ∈ X◦ the bounding holes of H(x) = Hij belong to AH(x). Otherwise, if say
Hi /∈ AH(x), then ai+1 ≺ x in any ǫ-compatible total order ≺ extending 4, thus we can
augment the canonical partial order 4 by setting ai+1 4 x and by reducing the segments
H(x) accordingly. Next we investigate the pairwise admissible locations of x and y in
function of the mutual geometric location of the segments H(x) and H(y) and of the values
d(x, y), dx, and dy. We distinguish the following cases: (H1) H(x) = H(y); (H2) H(x) and
H(y) are disjoint; (H3) H(x) and H(y) overlap in at least 2 holes (H(x) ◦ H(y)); (H4)
H(x) and H(y) overlap in a single hole (H(x) ∗ H(y)); (H5) H(y) is a proper subinterval
of H(x) (H(y) ⋐ H(x)). This classification of pairs {x, y} of X◦ is used in the design of our
approximation algorithm. Also the proofs of several results employ a case analysis based
on (H1)-(H5). We continue with the following result. It specifies the constraints on pairs
of elements, each element of X◦ can be located in one of its bounding holes.

Proposition 3.2. For two elements x, y ∈ X◦, any location of x in a bounding hole of
H(x) = Hij and any location of y in a bounding hole of H(y) = Hi′j′ is (x, y, 12)-admissible,
unless H(x) = H(y) and d(x, y) ≪3 max{dx, dy} or d(x, y) ≫3 max{dx, dy}, subject to the
following three constraints: (i) if H(x) ⋐ H(y), x and y are located in a common bounding
hole, then x is between y and ai+1; (ii) if H(x) ∗ H(y), then i < i′ implies x ≺ y; (iii)
if H(x) = H(y), x and y are located in the same bounding hole, and dy ≪4 dx, then
y is between x and ai+1. If H(x) = H(y) and d(x, y) ≫3 max{dx, dy}, then the only
(x, y, 1)-admissible locations are the two locations of x and y in different bounding holes.
If H(x) = H(y) and d(x, y) ≪3 max{dx, dy}, then any (x, y, 1)-admissible location is in
common x- and y-admissible holes.

4. Distributing elements to holes

In this section, we describe how, for each hole Hi, to compute the set Xi of elements of
X◦ which will be located in Hi. This set consists of some x such that Hi is a bounding hole
of H(x). Additionally, each Xi will be partitioned into an ordered list of cells, to which we
perform recursive calls. Let Xij consist of all x ∈ X◦ such that H(x) = Hij. The sets Xij

form a partition of X◦. In the next subsections, we will show how to partition each Xij into
two subsets X−

ij and X+
ij , so that X−

ij will be located in Hi and X+
ij in Hj−1; see Fig. 1.

4.1. Blocks, cells, and clusters. Two elements x, y ∈ Xij are called linked (separated)
if in all (x, y, 1)-admissible locations x and y must be placed in the same hole (in distinct
bounding holes). Two subsets A and B of Xij must be separated if all x ∈ A and y ∈ B
are separated. Let Sij and Lij be the sets of all pairs x, y ∈ Xij such that d(x, y) ≫3

max{dx, dy}, resp., d(x, y) ≪3 max{dx, dy}. By Proposition 3.2, all pairs of Sij are separated
and all pairs of Lij are linked. Since “be linked” is an equivalence relation, all vertices of
the same connected component (called block) of the graph Lij = (Xij , Lij) are linked. We
continue by investigating in which cases two blocks of Lij are separated or linked. For
x, y ∈ Xij , set x  y iff (A1) dx ≪4 dy or (A2) dx &4 dy and there exists z ∈ Xij such
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that xz, yz /∈ Lij and d(x, z) ≪16 d(y, z). If x, y, z ∈ Xij satisfy (A2), then it can be shown
that y and z are strongly separated, i.e., d(y, z) ≫9 max{dy, dz}. Additionally, we show that
if x  y, then x ≺ y in all ǫ-compatible orders ≺ such that ai+1 ≺ {x, y} and y ≺ x in all
ǫ-compatible orders ≺ such that {x, y} ≺ aj−1.

On Xij we define a directed graph L→

ij : we draw an arc x → y iff (L1) x  y and

x, y belong to a common block of Lij or (L2) d(x, y) ≪5 max{dx, dy}. If (L2) is satisfied,
then xy ∈ Lij and y → x hold. The strongly connected components of L→

ij are called cells.
Every block is a disjoint union of cells. Indeed, if x, y belong to a common cell, let R be
a directed path of L→

ij from x to y. Pick any arc u → v of R. If it has type (L2), then

uv ∈ Lij. Otherwise, if u → v has type (L1), then u and v belong to a common block.
Thus the ends of all arcs of any path between x, y belong to a common block.

Lemma 4.1. Let x, x′, y ∈ Xij . If x, x′ belong to a common cell, but {x, x′} and y belong
to distinct blocks, then there does not exist an ǫ-compatible order such that x ≺ y ≺ x′.

Lemma 4.2. For cells C ′, C ′′, if x, x′ ∈ C ′, y, y′ ∈ C ′′, and x  y, y′  x′, then C ′ and
C ′′ must be separated.

Proof. Let B′, B′′ be the blocks containing C ′, C ′′. If B′ = B′′, as x  y and y′  x′,
they are (L1)-arcs, hence x → y and y′ → x′. This is impossible since {x, x′} and {y, y′}
belong to distinct cells. Thus B′ 6= B′′. By Lemma 4.1, if we locate x, x′, y, y′ in the same
bounding hole Hj, either {x, x′} ≺ {y, y′} or {y, y′} ≺ {x, x′} holds. On the other hand,
x  y, y′  x′ imply that x ≺ y and y′ ≺ x′. Thus C ′ and C ′′ must be separated.

Now, let Sij be a graph having cells as vertices and an edge between two cells C ′, C ′′

iff (S1) there exist x, y ∈ Xij , x in the same block as C ′ and y in the same block as C ′′

such that xy ∈ Sij or (S2) there exist x, x′ in the same block as C ′ and y, y′ in the same
block as C ′′ such that each pair xx′ and yy′ belong to a common cell, and x  y, y′  x′.
By Proposition 3.2 and Lemma 4.2, in cases (S1) and (S2) the sets C ′ and C ′′ must be
separated. The graph Sij must be bipartite, otherwise no ǫ-compatible order exist. Now, for
each connected component of Sij consider its canonical bipartition {A′, A′′}, and draw an
edge between any two cells, one from A′ and another from A′′. Denote the obtained graph
also by Sij . Call the union of cells from A′ (or from A′′) a cluster. The clusters K′ and
K′′ of A′ and A′′ are called twins. From the construction, we immediately obtain that all
elements of a cluster are linked and two twin clusters are separated. A connected bipartite
component {K′,K′′} of Sij is called a principal component if there exists x ∈ K′ and y ∈ K′′

such that x and y are strongly separated.

4.2. Partitioning Xij into X−

ij and X+
ij . We describe how to partition Xij into the subsets

X−

ij and X+
ij . For this, we define a directed graph Gij having cells as vertices, and an arc

C ′  C with tail C ′ and head C exists iff one of the following conditions is satisfied: (G1)
C ′ and C belong to twin clusters of Sij ; (G2) C ′ and C are not connected by (G1)-arcs and
there exist x ∈ C and x′ ∈ C ′ such that dx′ ≪4 dx; (G3) C ′ and C are not connected by
(G1)- or (G2)-arcs and there exist x ∈ C, x′ ∈ C ′, and z ∈ Xij such that xz, x′z /∈ Lij and
d(x′, z) ≪16 d(x, z). A head of a (G3)-arc is called a (G3)-cell. A (Gi)-cycle is a directed
cycle of Gij with arcs of type (Gi), i = 1, 2, 3. The (G1)-cycles are exactly the cycles of
length 2. A mixed cycle is a directed cycle containing arcs of types (G2) and (G3). Finally,
an induced cycle is a directed cycle C such that for two cells C,C ′ ∈ C we have C ′  C if
and only if C is the successor of C ′ in C. Our next goal is to establish that either the set
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of cells can be partitioned into two subsets such that the subgraphs of Gij induced by these
subsets do not contain directed cycles or no ǫ-compatible order exist. Deciding if a directed
graph can be partitioned into two acyclic subgraphs is NP-complete [17]. In our case, this
can be done in polynomial time by exploiting the structure of Gij .

Lemma 4.3. If C = (C1, C2, . . . , Ck, C1) is a directed cycle of Gij, then for any ǫ-compatible
order, C has a cell located in the hole Hi and a cell located in the hole Hj−1.

Proof. The assertion is obvious if C is a (G1)-cycle. So, suppose that all arcs of C have type
(G2) or (G3). The definition of cells implies that C contains two consecutive cells, say C1

and Ck, which belong to different blocks. Suppose that there exists an ǫ-compatible order
≺ such that no element of ∪k

l=1Cl is located in the hole Hi = [ai, ai+1], i.e., ai+1 ≺ ∪k
l=1Cl.

In each Cl pick two elements xl, yl such that xl  yl+1(modk). Then xl ≺ yl+1(modk) for
all l = 1, . . . , k. We divide the cells of C into groups: a group consists of all consecutive
cells of C belonging to one and the same block. The first group starts with C1, while
the last group ends with Ck. We assert that if {Cl−q, . . . , Cl} and {Cl+1, . . . , Cl+r} are
two consecutive groups of C, then Cl ≺ Cl+1 ∪ · · · ∪ Cl+r (all indices here are modulo
k). Indeed, pick u ∈ Cl and v ∈ Cl+1. Since {xl, u} and {yl+1, v} belong to different
blocks while each of these pairs belong to a common cell, applying Lemma 4.1 to each
of the triplets of the quadruplet xl, u, yl+1, v, we infer that in the total order ≺ none of
yl+1, v is located between xl and u and none of xl, u is located between yl+1 and v. Since
xl ≺ yl+1, we conclude that {xl, u} ≺ {yl+1, v}, yielding Cl ≺ Cl+1. Now, consider the
cell Cl+2. The element yl+2 must be located to the right of xl+1, therefore to the right of
Cl. Since Cl+2 and Cl belong to different blocks, we can show that Cl ≺ Cl+2 by using
exactly the same reasoning as for the cells Cl and Cl+1. Continuing this way, we obtain the
required relationship Cl ≺ Cl+1 ∪ · · · ∪ Cl+r. This establishes the assertion. Suppose that
[1, i1], [i1 + 1, i2], . . . , [ir + 1, k] are the indices of cells defining the beginning and the end of
each group. From our assertion we infer that Ck ≺ Ci1 ≺ Ci2 ≺ . . . ≺ Cir ≺ Ck, contrary
that ≺ is a total order.

Lemma 4.4. If C  C ′ is a (G3)-arc and C belongs to a principal component, then C
and C ′ belong to the same cluster. In particular, Gij does not contain (G3)-cycles or no
ǫ-compatible order exist. Moreover, Gij does not contain (G2)-cycles.

Proof. Let xy be a strongly separated pair with x ∈ C. Since C  C ′ is a (G3)-arc, there
exist y′ ∈ C and x′ ∈ C ′ such that y′  x′ is an (A2)-arc. Then there exists z′ such that
x′z′ is strongly separated. If xz and x′y′ belong to different principal components, then
there exists a (G2)-arc from C ′ to C or from C to C ′. In the first case, C and C ′ obey (S2),
thus we cannot have a (G3)-arc from C to C ′. Analogously, in the second case, we deduce
that we have at the same time a (G3)-arc and a (G2)-arc from C to C ′. This is impossible,
so C and C ′ belong to a common principal component. Now, if Gij contains a (G3)-cycle,
then the first assertion implies that all its cells belong to the same cluster, and Lemma 4.3
yields that no ǫ-compatible order exist. Finally, let C = (C1, C2, . . . , Ck, C1) be a (G2)-
cycle. In each Ci, pick xi, yi so that dxi

≪4 dyi+1(modk)
. Since there is no (G2) or (G3) arc

from Ci+1(modk) to Ci, we get dyi
.4 dxi+1(modk)

, yielding dxi
≪4 dyi+1(modk)

.4 dxi+2(modk)
.

Thus dxi
< dxi+2(modk)

for i = 1, . . . k. Then dx1 < dx3 < · · · < dxk−1
< dx1 for even k and

dx1 < dx3 < · · · < dxk
< dx2 < dx4 < · · · < dxk−1

< dx1 for odd k, a contradiction.

To complete the bipartition of cells into two acyclic subgraphs of Gij , it remains to deal
with induced mixed cycles. The following results precise their structure.
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Lemma 4.5. Any induced mixed cycle C of Gij contains one or two (G2)-arcs, and if C
contains two such arcs, then they are consecutive.

Lemma 4.6. Let C ′  C be a (G3)-arc, C  C ′′ be a (G2)-arc, and suppose that there
is no (G2)-arc from C ′ to C ′′. If C,C ′ do not belong to distinct twin clusters and C,C ′′ do
not belong to the same cluster, then C and C ′ must be separated.

Thus a mixed cycle C contains either one (G2)-arc (C is a 1-cycle) or two consecutive
(G2)-arcs (C is a 2-cycle), all other arcs of C being (G3)-arcs. By Lemma 4.4, the heads of all
(G3)-arcs of C are (G3)-cells of the same cluster K. Then we say that the cycle C intersects
the cluster K. For a (G2)-arc C0  C and a cluster K, we show how to detect if there exists
a 1- or 2-cycle C passing via C0  C and intersecting K. We consider the case of 1-cycles.
Then C0 must be a (G3)-cell of K. Note that an induced 1-cycle cannot contain cells C ′ such
that C0  C ′ is a (G2) or (G3)-arc. Hence, we can remove all such cells of K. Analogously,
we remove all cells C ′ so that C ′  C is an arc. In the subgraph induced by the remaining
cells of K we search for a shortest directed path Q = C  C1  · · ·  Ck  C0 so that
the first arc C  C1 and the last arc Ck  C0 of this path are (G3)-arcs. This can be done
in polynomial time by testing all possible choices for C1 and Ck and applying for each pair
a shortest path finding algorithm in an acyclic graph. If such a path Q does not exist, then
no required induced cycle C exist. Otherwise, the path Q together with the arc C0  C
define an induced cycle C having exactly one (G2)-arc. Indeed, if Ci  Cj is a (G2) or
(G3)-arc and |i − j| > 2, since the subgraph induced by K is acyclic, we must have i < j.
This contradicts the minimality of the path Q. So, the resulting cycle is indeed induced.
It remains to note that C does not contain other (G2)-arcs, because by Lemma 4.5 in an
induced cycle the (G2)-arcs are consecutive. Analogously, we can decide if there exists a
2-cycle passing via C0  C and intersecting K, and having a second (G2)-arc of the form
C  C ′

0 or C ′

0  C0. Therefore, we have the following result:

Lemma 4.7. For a (G2)-arc C0  C and a cluster K, one can decide in polynomial time
if there exists an induced 1- or 2-cycle C passing via C ′  C and intersecting K.

For a cell C, let Ω1(C) be the set of (G2)-arcs C0  C belonging to a 1-cycle intersecting
a cluster K not containing C. Let Ω2(C) be the set of (G2)-arcs C0  C belonging to a
2-cycle C intersecting a cluster K not containing C and passing via C0  C so that the arc
of C entering C0 is a (G3)-arc. In both cases C0 belongs to K: C0 is a head of a (G3)-arc
of C, and all such heads belong to K. Finally, let Ω3(C) be the set of (G2)-arcs C  C0

belonging to a 2-cycle C intersecting a cluster K, so that C belongs to K and the arc of
C entering C has type (G2). Fig. 2 illustrates this classification. For each cell C of Gij

we introduce a binary variable xC satisfying the following constraints: (F1) xC′ = xC′′ , if
C ′, C ′′ belongs to the same cluster; (F2) xC′ 6= xC′′ , if C ′, C ′′ belong to twin clusters; (F3)
xC 6= xC0 , if the arc C0  C belongs to Ω1(C)∪Ω2(C); (F4) xC 6= xC0 , if the arc C  C0

belongs to Ω3(C). Define a 2-SAT formula Φij by replacing every constraint a = b by two
clauses (a ∨ b̄) and (ā ∨ b) and every constraint a 6= b by two clauses (a ∨ b) and (ā ∨ b̄).

Proposition 4.8. If the 2-SAT formula Φij admits a satisfying assignment A, then the

sets X−

ij = {C : A(xC) = 0} and X+
ij = {C : A(xC) = 1} define a partition of Gij into

two acyclic subgraphs. Conversely, given an ǫ-compatible order on X, the assignment A
defined by setting A(xC) = 0 if C is located in Hi, A(xC) = 1 if C is located in Hj−1, and
A(xC′) = A(xC′′) if C ′ and C ′′ are located in a common inner hole, is a true assignment
for Φij. In particular, if Φij is not satisfiable, then no ǫ-compatible order exist.



l∞-FITTING ROBINSON STRUCTURES TO DISTANCES 273

1-cycle: C0  C belongs to Ω1(C) 2-cycle: C0  C belongs to Ω2(C)
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Figure 2: To the classification of the arcs incident to a cell C

Proof. Let A be a true assignment of Φij and the partition X−

ij ,X
+
ij of Xij be defined as

above. Denote by G−

ij and G+
ij the subgraphs induced by X−

ij and X+
ij . (F1) forces every

cluster to be included in one set. (F2) implies that the twin clusters are separated. Hence
G−

ij and G+
ij do not contain (G1)-cycles: if C and C ′ are the two cells of a (G1)-cycle,

then (xC ∨ xC′) ∧ (x̄C ∨ x̄C′) yields A(xC) 6= A(xC′). By Lemma 4.4, Gij does not contain
(G2)-cycles. Since the cells of a (G3)-cycle are contained in the same cluster and each
cluster induces an acyclic subgraph, G−

ij and G+
ij do not contain (G3)-cycles as well. Now,

let G+
ij contain a mixed cycle. Then it also contains an induced mixed cycle C. From Lemma

4.5 we infer that C has either one (G2)-arc C0  C or exactly two consecutive (G2)-arcs
C0  C  C ′′. In the first case, we conclude that C0  C belongs to Ω1(C), thus (F3)
yields xC 6= xC0 , contrary to the fact that A(xC) = A(xC′) = 1. Analogously, in the second
case, we deduce that either xC 6= xC0 and the arc C0  C belongs to Ω2(C) or xC = xC0

and the arc C  C ′′ belongs to Ω3(C), whence xC 6= xC′′ . Then we obtain a contradiction
with the assumption that A(xC0) = A(xC) = A(xC′′) = 1. This shows that the subgraphs
G−

ij and G+
ij obtained from the true assignment A of Φij are acyclic.

Conversely, let A be an assignment obtained from an ǫ-compatible order as defined
in the proposition. We assert that A is a true assignment for Φij , i.e., it satisfies the
constraints (F1)-(F4). This is obvious for constraints (F1) and (F2), because if two
cells C ′, C ′′ belong to the same cluster, then they will be located in the same hole and
we must have A(xC′) = A(xC′′). If C ′ and C ′′ belong to distinct twin clusters, then they
must be separated, therefore the unique ǫ-admissible location of C ′ and C ′′ will be in
different bounding holes, thus A(xC′) 6= A(xC′′). Now, pick an arc C0  C which belongs
to Ω1(C) ∪ Ω2(C). If C0  C belongs to Ω1(C), then there exists a 1-cycle C passing via
C0  C and intersecting a cluster K. Since all cells of C, except C, are heads of (G3)-arcs,
they all belong to K, i.e., they have the same value in the assignment. By Lemma 4.3, C
must be separated from C0 (namely C and C ′ must be located in different bounding holes),
showing that A(xC) 6= A(xC0). If C0  C belongs to Ω2(C), then let C be a 2-cycle passing
via C0  C and intersecting the cluster K not containing C. Additionally, we know that the
arc C ′  C0 of C entering C0 is a (G3)-arc, thus C0 belongs to K. Since C ′ cannot belong to
the twin cluster of K (this will contradicts that C ′  C0 is a (G3)-arc) and since C does not
belong to K, from Lemma 4.6 we infer that C0 and C are separated, thus A(xC) 6= A(xC0).
Finally, let C  C0 belong to Ω3(C). Then there exists a 2-cycle C passing via C  C0

and intersecting the cluster K, such that C belongs to K and the arc of C entering C has
type (G2). Since all cells of C except C and C0 are heads of (G3)-arcs, they all belong
to K. Since C also belongs to this cluster, by Lemma 4.3, C0 must be separated from the
remaining cells of C, yielding xC 6= xC0 . Hence A satisfies the constraints (F1)-(F4). This
shows, in particular, that if Φij is not satisfiable, then no ǫ-compatible order exist.
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Figure 3: Relative location of the cells of X+
k(i+1),X

−

ij′ , and X−

ij (k < i, j′ < j) in Hi

4.3. Sorting the cells of X−

ij and X+
ij . Let G−

ij and G+
ij be the subgraphs of Gij induced

by the sets X−

ij and X+
ij obtained from the true assignment of the 2-SAT formula Φij. We

will locate all cells of X−

ij in the hole Hi and all cells of X+
ij in the hole Hj−1 of Hij. The

elements from two cells C ′, C ′′ located in the same hole will not be mixed, i.e., C ′ will be
placed to the right of C ′′, or vice versa. To specify the total order among cells, we use that
G−

ij and G+
ij are acyclic, therefore each of them admit a topological order. We compute a

topological order Cj1 ≺ Cj2 ≺ . . . ≺ Cjp on the cells of X+
ij and a dual topological order

Ciq ≺ Ciq−1 ≺ . . . ≺ Ci1 on the cells of X−

ij . We locate the cells of X+
ij in Hj−1 and the

cells of X−

ij in Hi according to these orders. The following two results relay the topological
orders on the cells with the order on the distances between elements from such cells.

Lemma 4.9. Let C ′, C ′′ be two cells of X+
ij . If C ′ ≺ C ′′ in the topological order, then for

any y ∈ C ′, z ∈ C ′′ and x ∈ X−

ij , we have dy .4 dz and d(x, y) .16 d(x, z).

Proof. Since C ′, C ′′ belong to X+
ij , they are not connected by (G1)-arcs. Since C ′ ≺ C ′′ in

the topological order, there is no arc from C ′′ to C ′. As C ′′  C ′ is not a (G2)-arc, we
must have dz &4 dy. As C ′′  C ′ is not a (G3)-arc, we obtain d(x, y) .16 d(x, z).

Lemma 4.10. Let C,C ′, C ′′ be three distinct cells of the graph Gij . If the algorithm returns
the total order ≺ and C ≺ C ′ ≺ C ′′, then for any x ∈ C, y ∈ C ′, z ∈ C ′′ or x, y, z ∈ C ∪ C ′

and x ≺ y ≺ z, we have d(x, z) &16 max{d(x, y), d(y, z)}.

After fixing the relative position of each cell C of Xij , we make a recursive call to C.
For this, we update the canonical order 4 in the following way: if C is located in X+

ij , we

set x 4+ y if x  y, otherwise, if C is located in X−

ij , we set x 4− y if y  x. Since 4+

and 4− are dual, if we apply to them the “closing” rules, we will obtain two dual partial
orders, denoted also by 4+ and 4− . The restriction on C of every ǫ-compatible order ≺
on X is an extension of 4+ or 4−: since all elements of C will be placed in the same hole,
either ai+1 ≺ C or C ≺ aj . If ai+1 ≺ C, then x ≺ y for all x, y ∈ C such that x  y. Hence
≺ is a linear extension of 4+. Therefore, if the recursive call to a cell C returns the answer
“not”, then no ǫ-compatible total order on X exist. Else, it returns a total order on C,
which is 16ǫ-compatible by induction hypothesis. Then, the total order between the cells
of Gij and the total orders on cells are concatenated to give a single total order ≺ on Xij .

4.4. Defining the total order on Xi. Recall that Xi is the set of all elements of X◦

located in the hole Hi. According to our algorithm, Xi is the disjoint union of all sets X−

ij

(j > i+1) and X+
k(i+1) (k < i). We just defined a total order between the cells of each of the

sets X−

ij ,X
+
k(i+1), and applying recursion we defined a total order on the elements of each

cell. To obtain a total order on the whole set Xi it remains to define a total order between
the sets X−

ij (j > i + 1) and X+
k(i+1) (k < i). For this, we locate each X+

k(i+1) (k < i) to the
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left of each X−

ij (j > i). Given two sets X+
k(i+1),X

+
k′(i+1) (k, k′ < i), we locate X+

k(i+1) to the

left of X+
k′(i+1) if and only if k < k′, i.e., iff Hk(i+1) ⋐ Hk′(i+1). Analogously, given X−

ij ,X
−

ij′

(j, j′ > i + 1), we locate X−

ij′ to the right of X−

ij if and only if j′ < j, i.e., iff Hij′ ⋐ Hij.

This location is justified by the Proposition 3.2 and is illustrated in Fig. 3.

5. The algorithm and its performance guarantee

We have collected all necessary tools to describe the algorithm. It consists of three
procedures l∞-Fitting by Robinson, Refine, and Partition and Sort. The main procedure
l∞-Fitting by Robinson constructs the sorted list ∆ of feasible values for the optimal error
ǫ∗. Its entries are considered in a binary search fashion and the algorithm returns the
smallest value ǫ ∈ ∆ occurring in this search for which the answer “not” is not returned
(i.e., the least ǫ for which a 16ǫ-compatible total order on X exists). To decide, if, for a
given ǫ, such an order exists, the procedure Refine(X,4, ǫ) constructs (and/or updates)
the canonical partial order 4 and computes a maximal chain P of (X,4). For each element
x ∈ X◦ := X \P, Refine computes the set AH(x) of all x-holes which participate in (x, y, 1)-
admissible locations for all y ∈ X◦ and defines the segment H(x). For each pair i < j − 1,
Refine constructs the set Xij and makes a call of the procedure Partition and Sort(Xij),

which returns the bipartition {X−

ij ,X
+
ij } of Xij and a total order on the cells of X−

ij and X+
ij .

Then Refine concatenates in a single total order on cells the total orders on cells coming
from different sets assigned to the same hole. After this, Refine is recursively applied to each
cell occurring in some graph Gij . The returned total orders on cells are concatenated into a
single total order ≺ on X according to the total orders between cells and between holes; then
≺ is returned by the algorithm l∞-Fitting by Robinson. The procedure Partition and Sort
constructs the graphs Lij and L→

ij . Using these graphs, Xij is partitioned into blocks and
cells, then graph Sij and its clusters are constructed. Using the cells, the directed graph Gij

is constructed. If Sij is not bipartite or Gij contains (G3)-cycles, then Partition and Sort
returns the answer “not”. Otherwise, for each cell C and each cluster K, it tests if there
exists a 1-cycle and/or a 2-cycle passing via C and intersecting K. Consequently, for each
cell C, the lists Ω1(C),Ω2(C), and Ω3(C) of (G2)-arcs are computed. These lists are used
to construct the 2-SAT formula Φij, which is solved by the algorithm of [2]. If Φij admits

a true assignment A, then X−

ij = {C : A(xC) = 0} and X+
ij = {C : A(xC) = 1} define a

bipartition of Xij into two acyclic subgraphs G−

ij ,G
+
ij of Gij . Then Partition and Sort locates

the cells from X+
ij in the hole Hj−1 according to the topological order of the acyclic graph

G+
ij and it locates the cells from X−

ij in the hole Hi according to the dual topological order

of G−

ij . Note that if at some stage Refine or Partition and Sort returns the answer “not”,
then there does not exists any ǫ-compatible total order on X and the current value of ǫ
is too small. The total complexity of the algorithm is O(n6 log n). We formulate now the
main result of our paper:

Theorem 5.1. For ǫ ∈ ∆, if the algorithm returns the answer “not”, then the dissimilarity
d is not ǫ-Robinson, else, it returns a 16ǫ-compatible total order ≺ on X. In particular, the
algorithm is a factor 16 approximation algorithm for l∞-FITTING-BY-ROBINSON.

Proof. First, note that no ǫ-compatible order exist in all cases when the algorithm returns
the answer “not”. Indeed, Lemma 4.4, Propositions 3.2 and 4.10 cover all such cases except
the case when this answer is returned by a recursive call. In this case, the induction
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assumption implies that no ǫ-compatible total order on C extending 4+ (and therefore its
dual 4−) exist. Then we infer that no ǫ-compatible order on X exist as well.

Now, let the algorithm return a total order ≺ . Suppose by induction assumption that ≺
is 16ǫ-compatible on each cell to which a recursive call is applied. On the chain P, the total
order ≺ coincides with 4, therefore ≺ is ǫ-compatible on P. Moreover, ≺ is ǫ-compatible
on P ∪ {x} for any x ∈ X◦, because every element x is located in a bounding hole of
H(x) which is x-admissible. Finally notice that ≺ is 12ǫ-compatible on P ∪ {x, y} for any
x, y ∈ X◦ because by Proposition 3.2 the bounding hole of H(x) and the bounding hole of
H(y) into which x and y are located define a (x, y, 12)-admissible pair. To prove that ≺ is
16ǫ-compatible on the whole set X, it suffices to show that d(x, z) &16 max{d(x, y), d(y, z)}
for any three elements x, y, z ∈ X such that x ≺ y ≺ z. From previous discussion, we can
suppose that x, y, z ∈ X◦. For this, we distinguish the Cases (H1)-(H5) in function of
the mutual location of segments H(x) and H(z) and in each case we show the required
inequality. The respective case analysis is given in [9].
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