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FRAGMENTS OF FIRST-ORDER LOGIC OVER INFINITE WORDS

(EXTENDED ABSTRACT)
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1 Universität Stuttgart, FMI, Universitätsstraße 38, D-70569 Stuttgart, Germany

Abstract. We give topological and algebraic characterizations as well as language the-
oretic descriptions of the following subclasses of first-order logic FO[<] for ω-languages:
Σ2, ∆2, FO2

∩ Σ2 (and by duality FO2
∩ Π2), and FO2. These descriptions extend the

respective results for finite words. In particular, we relate the above fragments to language
classes of certain (unambiguous) polynomials. An immediate consequence is the decidabil-
ity of the membership problem of these classes, but this was shown before by Wilke [20]
and Bojańczyk [2] and is therefore not our main focus. The paper is about the interplay
of algebraic, topological, and language theoretic properties.

1. Introduction

The algebraic approach for fragments of first-order logic over finite words has been very
fruitful. For example, a result of Wilke and Thérien is that FO2 and ∆2 have the same
expressive power [14], where the latter class by definition denotes Σ2 ∩ Π2. Further results
are language theoretic and (very often decidable) algebraic characterizations of logical frag-
ments, see e.g. [13] or [4] for surveys. Several results for finite words have been extended
to other structures such as trees and other graphs, see [18] for a survey. For some charac-
terizations over finite words, it has been shown that they cannot be generalized; e.g. over
unranked trees, it turned out that FO2 and ∆2 are incomparable [1]. For infinite words,
it is clear that the expressive power of FO2 is not equal to ∆2, since saying that letters a
and b appear infinitely often, but c only finitely many times is FO2-definable, but there is
neither a Σ2-formula nor a Π2-formula specifying this language.

Our results deepen the understanding of first-order fragments over infinite words. A
decidable characterization of the membership problem for FO2 over infinite words has been
given in the habilitation thesis of Wilke [20]. Recently, decidability for Σ2 has been shown
independently by Bojańczyk [2]. Language theoretic and decidable algebraic characteriza-
tions of the fragment Σ1 and of its Boolean closure can be found in [8, 9].

We introduce two generalizations of the usual Cantor topology for infinite words. One
of our first results is a characterization of languages L ⊆ Γ∞ being Σ2-definable in terms
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of a property of its syntactic monoid and by requiring that L is open in some alphabetic
topology. Both properties are decidable.

Our second result is that a language is FO2-definable if and only if its syntactic monoid
is in the variety DA. (The result is surprising in the sense that it contradicts an explicit
statement in [20]). Moreover, we show that FO2-definability can be characterized by being
closed in some further refined alphabetic topology and in terms of weak recognition by some
monoid in DA. In particular, weak recognition and strong recognition do not coincide for
the variety DA. This seems to be a new result as well. We also contribute a language
theoretic characterization of FO2 in terms of unambiguous polynomials with additional
constraints on the letters which occur infinitely often.

Further main results of our paper are the characterization of FO2 ∩ Σ2 as the class of
unambiguous polynomials and of ∆2 in terms of unambiguous polynomials in some special
form. In particular, it follows already from this description that ∆2 is a strict subset of
FO2. Furthermore, we show that the equality of FO2 and ∆2 holds relativized to some
fixed set of letters which occur infinitely often. If this set of letters is empty, we obtain the
situation for finite words as a special case. Finally, we relate topological constructions such
as interior and closure with membership in the fragments under consideration. Among
other results, we are going to explain the following relations between the fragments FO2,
Σ2, Π2, and ∆2 = Σ2 ∩ Π2:

Σ2 Π2∆2

FO2

•
L1

•
L2

•
L3

•
L4

•
L5

Here Γ = {a, b, c} and

L1 = “there exists a factor ab”
= Γ∗abΓ∞

L2 = “finitely many a’s”
L3 = “finitely many a’s and infinitely

many b’s” = L2 ∩ L4

L4 = “infinitely many b’s”
L5 = “there is no factor ab” = Γ∞ \ L1

It will turn out that L4 is the closure of L3 within some alphabetic topology, whereas L2 is
not the interior of L3 since L3 ( L2. In fact, the interior of L3 with respect to our topology
is empty.

For basic notions on languages of infinite words we refer to standard references such as
[8, 16].

2. Preliminaries

Words. Throughout, Γ is a finite alphabet, A ⊆ Γ is a subset of the alphabet, u, v,w are
finite words, and α, β, γ are finite or infinite words. If not specified otherwise, then in all
examples we assume that Γ has three different letters a, b, c. By u ≤ α we mean that u is
a (finite) prefix of α. By alph(α) we denote the alphabet of α, i.e., the letters occurring in
the sequence α. As usual, Γ∗ is the free monoid of finite words over Γ. The neutral element
is the empty word 1. If L is a subset of a monoid, then L∗ is the submonoid generated by
L. For L ⊆ Γ∗ we let Lω = {u1u2 · · · | ui ∈ L for all i ≥ 1} be the set of infinite products.
We also let L∞ = L∗ ∪ Lω. A natural convention is 1ω = 1. Thus, L∞ = Lω if and only if
1 ∈ L.
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We write im(α) for those letters in alph(α) which have infinitely many different oc-
currences in α. The notation has been introduced in the framework of so called complex
traces, see e.g. [6] for a detailed discussion of this concept. The notation im(α) refers to the
imaginary part and we adopt it here. A crucial role for us are sets of the form Aim, where,
by definition, Aim is the set of words α such that im(α) = A. Note that Γ∗ = ∅im. The set
Γ∞ is the disjoint union over all Aim.

Logic and regular sets. We assume that the reader is familiar with basic concepts in
formal language theory. All languages L here can be assumed to be regular. The finite part
L∩Γ∗ can be assumed to be specified by some NFA and infinite part L∩Γω can be assumed
to be specified by some Bchi automaton. We focus on regular languages which are given by
first-order sentences in FO[<]. Thus, atomic predicates are λ(x) = a and x < y saying that
position x in a word α is labeled with a ∈ Γ and position x is less than y, respectively. By
FO2 we mean FO[<]-sentences which use at most two names x and y as variables or the class
of languages specified by such formulas. Similarly, Σ2 means FO[<]-sentences which are in
prenex normal form and which start with a block of existential quantifiers, followed by a
block of universal quantifiers and a Boolean combination of atomic formulas. A Π2-formula
means a negation of a Σ2-formula. The notations Σ2 and Π2 refer also to the corresponding
language classes. The class ∆2 means the class of Σ2-formulas which have an equivalent Π2-
formula. But the notion of equivalence depends on the set of models we use. If the models
are finite words, then a result of Thérien and Wilke [14] states FO2 = ∆2. Moreover, FO2

is the class of regular languages in Γ∗ which are recognized by some finite monoid in the
variety DA and a classical result of Schützenberger shows that DA also coincides with
unambiguous polynomials [10]. We refer to [12, 4] for more background on the class DA. It
is a class of finite monoids defined e.g. by equations of type (xy)ω = (xy)ωy(xy)ω. We recall
that the class DA can also be defined by equations of the form e = ese for all idempotents
e (i.e., e2 = e) and for all s generated by factors of e, see e.g. [17].

Saying that formulas are equivalent if they agree on all finite and infinite words changes
the picture. This is actually the starting point of this work. So, in this paper models are
finite and infinite words. We are mainly interested in infinite words, but it does no harm
to include finite words, and this makes the situation more uniform and the results on finite
words reappear as special cases. See e.g. Theorem 8.1 which means FO2 = ∆2 for finite
words by choosing A = ∅. An important concept in this paper is topology.

3. The alphabetic topology and polynomials

We equip Γ∞ with a refinement of the usual Cantor topology. The languages uΓ∞ form
a basis of the Cantor topology. As we will see, topological information is crucial in our
characterization results. We define the alphabetic topology by its basis, which is given by
all sets of the form uA∞. Thus, a set L is open if and only if for each A ⊆ Γ there is a
set of finite words WA ⊆ Γ∗ such that L =

⋃

WA A∞. By definition, a set is closed, if its
complement is open; and it is clopen, if it is both open and closed. All sets A∞ are clopen.
A set Aim is not open unless A = ∅, it is not closed unless A = Γ.

Remark 3.1. The space Γ∞ with the alphabetic topology is Hausdorff, but not compact,
in general (in contrast to the Cantor topology). To see that it is not compact for Γ = {a, b}
note that Γ∞ = aω ∪Γ∗bΓ∞. The singleton set aω is clopen, but for no finite subset F ⊆ Γ∗

we have Γ∞ = aω ∪ FbΓ∞.
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For a language L, its closure L is the intersection of all closed sets containing L.
A word α ∈ Γ∞ belongs to L if for all open subsets U ⊆ Γ∞ with α ∈ U we have
U ∩ L 6= ∅. The interior of L is the complement of the closure of its complement.
For languages L and K we define the right quotient as a language of finite words by
L/K = {u ∈ Γ∗ | uα ∈ L for some α ∈ K}. For L ⊆ Γ∗ we define

−→
L = {α ∈ Γ∞ | for every prefix u ≤ α there exists uv ≤ α with uv ∈ L} .

Proposition 3.2. In the alphabetic topology we have Aim =
⋃

A⊆B Bim and

L =
⋃

A⊆Γ

(−−−−→
L/A∞ ∩ Aim

)

=
⋃

A⊆Γ

(−−−−→
L/A∞ ∩ Aim

)

.

Corollary 3.3. Given a regular language L ⊆ Γ∞, we can decide whether L is closed (open
resp., clopen resp.).

Actually, we have a more precise statement than pure decidability.

Theorem 3.4. The following problem is PSPACE-complete:
Input: A Bchi automaton A with L(A) ⊆ Γω.
Question: Is the regular language L(A) closed?

Remark 3.5. Neither languages of the form
−−−−→
L/A∞ nor

−−−−→
L/A∞ ∩ Aim as in Proposition 3.2

need to be closed. Indeed, let A = {a}, B = {a, b}, and L = a∗(ab)∗baω. Then L/A∞ =

a∗(ab)∗ba∗ and L/B∞ is the set of all finite prefixes of words in L. We have
−−−−→
L/A∞ =

a∗(ab)∗ba∞ and
−−−−→
L/A∞ ∩ Aim = a∗(ab)∗baω = L. The language

−−−−→
L/A∞ is open but neither

−−−−→
L/A∞ nor

−−−−→
L/A∞ ∩Aim is closed in the alphabetic topology, because (ab)ω belongs to both

closures. We have
−−−−→
L/B∞ = a∗(ab)∗ba∞ ∪ a∗(ab)ω and

−−−−→
L/B∞ ∩ Bim = a∗(ab)ω. Both sets

are closed. Actually, L = L∪ a∗(ab)ω in the alphabetic topology. Finally note that L is not
closed in the Cantor topology since aω 6∈ L. Remember that a basis of the Cantor topology
are the sets of the form uΓ∞.

Frequently we apply the closure operator to polynomials. A polynomial is a finite union
of monomials. A monomial (of degree k) is a language of the form A∗

1a1 · · ·A
∗
kakA

∞
k+1

with
ai ∈ Γ and Ai ⊆ Γ. In particular, A∗

1a1 · · ·A
∗
kak is a monomial with Ak+1 = ∅. The set

A∗ is a polynomial since A∗ = ∅∞ ∪
⋃

a∈A A∗a. It is not hard to see that polynomials are
closed under intersection. Thus, A∗

1a1 · · ·A
∗
kakA

∗
k+1

is in our language a polynomial, but
not a monomial unless Ak+1 = ∅. A monomial P = A∗

1a1 · · ·A
∗
kakA

∞
k+1

is unambiguous if
for every α ∈ P there exists a unique factorization α = u1a1 · · · ukakβ such that ui ∈ A∗

i and
β ∈ A∞

k+1
. A polynomial is unambiguous if it is a finite union of unambiguous monomials.

It follows from the definition of the alphabetic topology that polynomials are open.
Actually, it is the coarsest topology with this property. The crucial observation is that
we have a syntactic description of the closure of a polynomial as a finite union of other
polynomials. For later use we make a more precise statement.

Lemma 3.6. Let P = A∗
1a1 · · ·A

∗
kakA

∞
k+1 be a monomial and L = P ∩ Bim for some

B ⊆ Ak+1. Then the closure of L is given by
⋃

{ai,...,ak}∪B⊆A⊆Ai

A∗
1a1 · · ·A

∗
i−1ai−1A

∞
i ∩ Aim.
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Proof. First consider an index i with 1 ≤ i ≤ k + 1 such that {ai, . . . , ak} ∪ B ⊆ A ⊆ Ai.
Let α ∈ A∗

1a1 · · ·A
∗
i−1ai−1A

∞
i ∩ Aim. We have to show that α is in the closure of L. Let

α = uβ with u ∈ A∗
1a1 · · ·A

∗
i−1ai−1A

∗
i and β ∈ A∞ ∩ Aim. We show that uA∞ ∩ L 6= ∅.

Choose some γ ∈ B∞∩Bim. As B ⊆ Ak+1 holds by hypothesis, we see that uai · · · akγ ∈ P ,
and hence uai · · · akγ ∈ uA∞ ∩ L.

Let now α ∈ L and write α ∈ uv1 · · · vk+1A
∞ ∩ Aim with alph(vj) = A. There exists

γ ∈ A∞ such that uv1 · · · vk+1γ ∈ P ∩ Bim. This implies B ⊆ A. Since uv1 · · · vk+1γ ∈
A∗

1a1 · · ·A
∗
kakA

∞
k+1 there are some 1 ≤ i, j ≤ k + 1 such that uv1 · · · vj−1 belongs to

A∗
1a1 · · ·A

∗
i−1ai−1A

∗
i ∩ Aim, vj ∈ A∗

i , and vj+1 · · · vk+1γ ∈ A∗
i ai · · ·A

∗
kakA

∞
k+1

∩ A∞. There-

fore {ai, . . . , ak} ⊆ A ⊆ Ai, too. It follows that α ∈ A∗
1a1 · · ·A

∗
i−1ai−1A

∞
i ∩ Aim.

4. Recognizability by finite monoids

By M we denote a finite monoid. We always assume that M is equipped with a partial
order ≤ being compatible with the multiplication, i.e., u ≤ v implies sut ≤ svt for all
s, t, u, v ∈ M . If not specified otherwise, we may choose ≤ to be the identity relation.

For an idempotent element e ∈ M we define Me = {s ∈ M | e ∈ MsM}∗. By def-
inition, Me is a submonoid of M . If M is generated by Γ, then Me is generated by
{a ∈ Γ | e ∈ MaM}. We can think of this set as the maximal alphabet of the idempo-
tent e. We say that an idempotent e is locally top (locally bottom, resp.) if ese ≤ e (ese ≥ e,
resp.) for all s ∈ Me. By DA we denote the class of finite monoids such that ese = e for
all idempotents e ∈ M and all s ∈ Me. More information about this variant to define DA

can be found in [17].
Let L ⊆ Γ∞ be a language. The syntactic preorder ≤L over Γ∗ is defined as follows.

We let u ≤L v if for all x, y, z ∈ Γ∗ we have both implications:

xvyzω ∈ L ⇒ xuyzω ∈ L and x(vy)ω ∈ L ⇒ x(uy)ω ∈ L.

Let us recall that 1ω = 1. Two words u, v ∈ Γ∗ are syntactically equivalent, written as
u ≡L v, if both u ≤L v and v ≤L u. This is a congruence and the congruence classes
[u]L = {v ∈ Γ∗ | u ≡L v} form the syntactic monoid Synt(L) of L. The preorder ≤L on
words induces a partial order ≤L on congruence classes, and (Synt(L),≤L) becomes an
ordered monoid. It is a well-known classical result that the syntactic monoid of a regular
language L ⊆ Γ∞ is finite, see e.g. [8, 16]. Moreover, in this case L can be written as a
finite union of languages of type [u]L [v]ωL where u, v ∈ Γ∗ with uv ≡L u and v2 ≡L v.

Now, let h : Γ∗ → M be any surjective homomorphism onto a finite ordered monoid M
and let L ⊆ Γ∞. If the reference to h is clear, then we denote by [s] the set of finite words
h−1(s) for s ∈ M . The following notations are used:

• (s, e) ∈ M × M is a linked pair, if se = s and e2 = e.
• h weakly recognizes L, if

L =
⋃

{[s][e]ω | (s, e) is a linked pair and [s][e]ω ⊆ L}

• h strongly recognizes L (or simply recognizes L), if

L =
⋃

{[s][e]ω | (s, e) is a linked pair and [s][e]ω ∩ L 6= ∅}

• L is downward closed (on finite prefixes) for h, if [s][e]ω ⊆ L implies [t][e]ω ⊆ L for
all s, t, e ∈ M where t ≤ s.
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Lemma 4.1. Let L ⊆ Γ∞ be a regular language and let hL : Γ∗ → Synt(L) be its syntactic
homomorphism. Then for all s, t, e, f ∈ M such that t ≤ s, f ≤ e, and [s][e]ω ⊆ L we have
[t][f ]ω ⊆ L. In particular, L is downward closed (on finite prefixes) for hL.

Proof. Let u ∈ [s], x ∈ [e] and let v ∈ [t], y ∈ [f ]. Now, uxω ∈ L implies vxω ∈ L, which in
turn implies vyω ∈ L. Since L is regular, hL strongly recognizes L, and we obtain [t][f ]ω ⊆ L
because vyω ∈ [t][f ]ω ∩ L.

For lack of space and in order to avoid too much machinery we do not treat ω-semigroups
[9, 19] in this extended abstract. However, let us define tfω ≤L seω for linked pairs by the
implication:

[s][e]ω ⊆ L ⇒ [t][f ]ω ⊆ L.

With this notation we can give an algebraic characterization of being open.

Lemma 4.2. A regular language L ⊆ Γ∞ is open in the alphabetic topology if and only if
for all linked pairs (s, e), (t, f) of M = Synt(L) with t, f ∈ Me we have stfω ≤L seω.

5. The fragment Σ2

By a (slight extension of a) result of Thomas [15] on ω-languages we know that a
language L ⊆ Γ∞ is definable in Σ2 if and only if L is a polynomial. However, this statement
alone does not yield decidability. It turns out that we obtain decidability by a combination
of an algebraic and a topological criterion. This decidability result has also been shown by
Bojańczyk [2] using different techniques. We know that polynomials are open. Therefore,
we concentrate on algebra.

Lemma 5.1. If L ⊆ Γ∞ is a polynomial, then all idempotents of Synt(L) are locally top.

Theorem 5.2. Let L ⊆ Γ∞ be a regular language. The following assertions are equivalent:

(1) L is Σ2-definable.
(2) L is a polynomial.
(3) L is open in the alphabetic topology and all idempotents of Synt(L) are locally top.
(4) The syntactic monoid M = Synt(L) and the syntactic order ≤L satisfy:

(a) For all linked pairs (s, e), (t, f) with t, f ∈ Me we have stfω ≤L seω.
(b) e = e2 and s ∈ Me implies ese ≤L e.

(5) The following three conditions hold for some homomorphism h : Γ∗ → M which
weakly recognizes L:
(a) L is open in the alphabetic topology.
(b) All idempotents of M are locally top.
(c) L is downward closed (on finite prefixes) for h.

Proof. “1 ⇔ 2”: This is a slight modification of a result by Thomas [15].
“2 ⇒ 3”: By definition, polynomials are open in the alphabetic topology. In Lemma 5.1 it
has been shown that all idempotent elements are locally top.
“3 ⇔ 4”: The equivalence of L being open and “4a” is Lemma 4.2. Property “4b” is the
definition of all elements being locally top.
“4 ⇒ 5”: Let h = hL be the syntactic homomorphism onto the syntactic monoid M =
Synt(L). Applying Lemma 4.2, property “5a” follows from “4a” and “5b” trivially follows
from “4b”. The condition “5c” holds for Synt(L) by Lemma 4.1.
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“5 ⇒ 2”: Consider α ∈ L with im(α) = A. By “5a” the language L is open. Hence, there
exists a prefix u of α such that α ∈ uA∞ ⊆ L. From the case of finite words and the
hypothesis “5b” on M , we know that P = {v ∈ Γ∗ | h(v) ≤ h(u)} is a polynomial. We can
assume that all monomials in P end with a letter. We define the polynomial Pα = PA∞.
Clearly, L ⊆

⋃

{Pα | α ∈ L} and this union is finite since M is finite. It remains to show
that Pα ⊆ L for α ∈ L. Let v ∈ P and β ∈ A∞. We know uβ ∈ L and there exists a linked
pair (s, e) such that uβ ∈ [s][e]ω ⊆ L. Now, there exists wγ = β such that uw ∈ [s] and
γ ∈ [e]ω. By definition of P , we have h(v) ≤ h(u) and therefore t = h(vw) ≤ h(uw) = s. It
follows vβ = vwγ ∈ [t][e]ω ⊆ L by “5c”. This shows Pα ⊆ L and thus L =

⋃

{Pα | α ∈ L}.

Corollary 5.3. It is decidable whether a regular language is Σ2-definable.

Remark 5.4. An ω-language L ⊆ Γω is Σ2-definable, if L = {α ∈ Γω | α |= ϕ} for some
ϕ ∈ Σ2. This is equivalent with L ∪ Γ∗ being Σ2-definable as a subset of Γ∞. Thus, the
decidability of Corollary 5.3 transfers to ω-regular languages.

6. Two variable first-order logic

Etessami, Vardi, and Wilke have given a characterization of FO2 in terms of unary
temporal logic [5]. In the same paper, they considered the satisfiability problem for FO2.
In this section, we continue the study of FO2 over infinite words.

The following lemma can be proved essentially in the same way as for finite words. The
result is also (implicitly) stated in the habilitation thesis of Wilke [20].

Lemma 6.1. Let L ⊆ Γ∞ be FO2-definable. Then the syntactic monoid Synt(L) is in DA.

A set like Aim is FO2-definable, but it is neither open nor closed in the alphabetic
topology, in general. Therefore, we need a refinement of the alphabetic topology. As a basis
for the strict alphabetic topology we take all sets of the form uA∞ ∩ Aim. Thus, more sets
are open (and closed) than in the alphabetic topology. Another way to define the strict
alphabetic topology is to say that it is the coarsest topology on Γ∞ where all sets of the
form A∗

1a1 · · ·A
∗
kakA

∞
k+1

∩Bim are open. The strict alphabetic topology is not used outside
this section, but it is essential here in order to prove the converse of Lemma 6.1.

Lemma 6.2. If L ⊆ Γ∞ is strongly recognized by some homomorphism h : Γ∗ → M ∈ DA,
then L is clopen in the strict alphabetic topology.

Proof. Since h also strongly recognizes Γ∞ \L as well, it is enough to show that L is open.
Let α ∈ L with α ∈ [s][e]ω for some linked pair (s, e) and let A = im(α). We show that
[s]A∞ ∩ Aim ⊆ L. Indeed, let β ∈ [s]A∞ ∩ Aim. Then we have β = uvγ with h(u) = s,
h(v) = r, γ ∈ [f ]ω where v ∈ A∗, alph(γ) = im(γ) = A, and (r, f) is a linked pair. Since
M ∈ DA, we obtain s = se = serfe = srfe and efe = e and fef = f . Since h strongly
recognizes L, we can compute as follows:

β ∈ [sr][f ]ω = [sr][fef ]ω = [srfe][efe]ω = [s][e]ω ⊆ L

In particular, β ∈ L.



332 V. DIEKERT AND M. KUFLEITNER

Lemma 6.3. If L is closed in the strict alphabetic topology and if L is weakly recog-
nized by some homomorphism h : Γ∗ → M ∈ DA, then L is a finite union of languages
A∗

1a1 · · ·A
∗
kakA

∞
k+1

∩ Aim
k+1

, where each A∗
1a1 · · ·A

∗
kakA

∞
k+1

is an unambiguous monomial.

Proof. Let α ∈ L. Write α = uβ with β ∈ A∞ ∩ Aim for some A ⊆ Γ. There is a linked
pair (s, e) with α ∈ [s][e]ω ⊆ L and we may assume h(u) = s and β ∈ [e]ω. For A = ∅ we
have [s] ⊆ L and, using our knowledge about the finite case, we may include [s] in our finite
union of unambiguous polynomials. Therefore, let A 6= ∅. We may choose an unambiguous
monomial P = A∗

1a1 · · ·A
∗
kak ⊆ [s] such that u ∈ P and each last position of every letter

a ∈ {a1, . . . , ak} ∪ A1 ∪ · · · ∪ Ak occurs explicitly as some aj in the expression P . Note
that [s] is a finite union of such monomials. Moreover, we may assume that uv ∈ P for
infinitely many prefixes v ≤ β. Each such uv can uniquely be written as uv = v1a1 · · · vkak

with vi ∈ A∗
i . This yields a vector in Nk by (|v1a1| , |v1a1v2a2| , . . . , |v1a1 · · · vkak|) for every

uv ∈ P . By Dickson’s Lemma [3], we may assume that this vector is in no component
decreasing when v gets longer. Hence (after removing finitely many v’s) we may assume
there is some i such that |v1a1 · · · viai| is constant and |v1a1 · · · viaivi+1ai+1| is strictly
increasing. It follows that we may assume {ai+1, . . . , ak} ⊆ alph(vi+1) = A ⊆ Ai+1. In
particular, α ∈ A∗

1a1 · · ·A
∗
i aiA

∞ ∩ Aim. It is clear that this expression is unambiguous.
It remains to show A∗

1a1 · · ·A
∗
i aiA

∞ ∩ Aim ⊆ L. Consider u′γ with u′ ∈ A∗
1a1 · · ·A

∗
i ai

and γ ∈ A∞ ∩ Aim. Since L is closed, it is enough to show that u′γ belongs to the closure
of L in the strict alphabetic topology. Choose any prefix w ≤ γ. It is enough to show that
u′wA∞ ∩ Aim ∩ L 6= ∅. Let z ∈ Γ∗ with alph(z) = A and h(z) = e. Since w ∈ A∗ ⊆ A∗

i+1,
we have u′wai+1 · · · ak ∈ P ⊆ [s]. Hence u′wai+1 · · · akz

ω ∈ [s][e]ω ⊆ L.

Lemma 6.4. Every language Aim and every unambiguous monomial A∗
1a1 · · ·A

∗
kakA

∞
k+1

is

FO2-definable.

Theorem 6.5. Let L ⊆ Γ∞. The following assertions are equivalent:

(1) L is FO2-definable.
(2) L is regular and Synt(L) ∈ DA.
(3) L is strongly recognized by some homomorphism h : Γ∗ → M ∈ DA.
(4) L is closed in the strict alphabetic topology and L is weakly recognized by some

homomorphism h : Γ∗ → M ∈ DA.
(5) L is a finite union of sets of the form A∗

1a1 · · ·A
∗
kakA

∞
k+1∩Aim

k+1, where each language
A∗

1a1 · · ·A
∗
kakA

∞
k+1 is an unambiguous monomial.

Proof. “1 ⇒ 2”: First-order definable languages are regular; Synt(L) ∈ DA by Lemma 6.1.
“2 ⇒ 3”: Trivial, since Synt(L) strongly recognizes L. “3 ⇒ 4”: Strong recognition implies
weak recognition; closure in the strict alphabetic topology follows by Lemma 6.2. “4 ⇒ 5”:
Lemma 6.3. “5 ⇒ 1”: Lemma 6.4.

Recall that if a language L ⊆ Γ∞ is weakly recognizable by a finite monoid, then it is
also strongly recognizable by a finite monoid. The same holds for aperiodic monoids, but
Theorem 6.5 suggests that this fails for DA. Indeed, we have the following example.

Example 6.6. Let Γ = {a, b, c}. Consider the congruence of finite index such that each
class [u] is defined by the set of words v where u and v agree on all suffixes of length at most
2. The quotient monoid of Γ∗ by this congruence is in DA. Let L = [ab]ω = (Γ∗ab)ω. Then,
by definition, L is weakly recognizable in DA. But L is the language of all α which contain
infinitely many factors of the form ab. This is however not closed for the strict alphabetic
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topology since (acb)ω /∈ L, but (acb)ω belongs to the strict alphabetic closure of L since
every open set U with (acb)ω ∈ U contains some (acb)m(cab)ω and [(acb)m(cab)] = [ab] for
all m ≥ 0.

7. Unambiguous polynomials and the fragments FO2 ∩ Σ2 and FO2 ∩Π2

Theorem 7.1. Let L ⊆ Γ∞. The following assertions are equivalent:

(1) L is both FO2-definable and Σ2-definable.
(2) L is FO2-definable and open in the alphabetic topology.
(3) L is a finite union of unambiguous monomials of the form A∗

1a1 · · ·A
∗
kakA

∞
k+1

.

(4) L is the interior of some FO2-definable language.

Theorem 7.2. Let L ⊆ Γ∞ be a regular language. The following assertions are equivalent:

(1) L is both FO2-definable and Π2-definable.
(2) L is FO2-definable and closed in the alphabetic topology.
(3) L is the closure of some FO2-definable language.

Theorem 7.2 is not fully satisfactory since we do not have any direct characterization
in terms of polynomials. We might wish that if L is closed (and L ∈ Π2 ∩FO2), then it is a
finite union of languages K ∩ Bim where each K ∩ Bim is closed. But this is not true: Let
L = Γ∗a∪Γω, then L is closed and in Π2 ∩FO2, but cannot be written in this form because
L = Γ∗a is not closed. We also note that the closure of a language L in FO2 ∩Σ2 needs not
to be in ∆2. A counter-example is the language L = Γ∗abc. By Lemma 3.6, the closure of
L is L = L ∪ Γim which is not Σ2-definable.

8. The fragment ∆2 = Σ2 ∩ Π2

For finite words we have the well-known theorem that FO2-definability is equivalent
to ∆2-definability. However, this does not transfer to ω-words where ∆2 forms a proper
subclass of FO2. Consider L = {a, b}im, then L is neither open nor closed, in general. Hence
L ∈ FO2 \ (Σ2 ∪ Π2). The result for finite words is therefore somewhat misleading. The
correct translation for the general case is:

Theorem 8.1. For all A ⊆ Γ the following assertions are equivalent:

(1) L ∩ Aim is FO2-definable.
(2) There are languages Lσ ∈ FO2 ∩ Σ2 and Lπ ∈ FO2 ∩ Π2 such that

L ∩ Aim = Lσ ∩ Aim = Lπ ∩ Aim.

(3) There are languages Lσ ∈ Σ2 and Lπ ∈ Π2 such that

L ∩ Aim = Lσ ∩ Aim = Lπ ∩ Aim.

Note that we cannot expect that Lσ = Lπ in the statement above, because Lσ is open
and Lπ is closed. Hence, a language in ∆2 must be clopen. The first step for a convenient
characterization on ∆2 is therefore a description of clopen unambiguous monomials.
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Lemma 8.2. Let P = A∗
1a1 · · ·A

∗
kakA

∞ be an unambiguous monomial. The following
assertions are equivalent:

(1) There is no 1 ≤ i ≤ k such that {ai, . . . , ak} ⊆ Ai.
(2) P is closed in the alphabetic topology.
(3) P is clopen in the alphabetic topology.

Proof. “1 ⇒ 2”: For a moment let Ak+1 = A. By Lemma 3.6 we know that the closure of
P is:

⋃

{ai,...,ak}⊆B⊆Ai

A∗
1a1 · · ·A

∗
i−1ai−1(A

∞
i ∩ Bim).

Since there is no {ai, . . . , ak} ⊆ Ai for 1 ≤ i ≤ k, we see that this union is just P itself.
Therefore, P is closed. “2 ⇒ 3”: is clear, because P is open. “3 ⇒ 1”: Assume by
contradiction that {ai, . . . , ak} ⊆ Ai for some 1 ≤ i ≤ k. We have a1 · · · ai−1(ai · · · ak)

m ∈ P
for all m ≥ 1. As P is closed we see a1 · · · ai−1(ai · · · ak)

ω ∈ P and hence {ai, . . . , ak} ⊆ A.
But this is a contradiction to the fact that P is unambiguous since {ai, . . . , ak} ⊆ Ai ∩ A
implies that a1 · · · ai−1(ai · · · ak)

2 ∈ P has two different factorizations.

Lemma 8.3. Let L ⊆ Γ∞ be a closed polynomial. For every unambiguous monomial
P = A∗

1a1 · · ·A
∗
kakA

∞ ⊆ L there exist closed unambiguous monomials Q1, . . . , Qℓ such that
P ⊆ Q1 ∪ · · · ∪ Qℓ ⊆ L, i.e., there exists a finite covering of P with closed unambiguous
monomials in L.

Theorem 8.4. Let L ⊆ Γ∞. The following assertions are equivalent.

(1) L is ∆2-definable.
(2) L is FO2-definable and L is clopen in the alphabetic topology.
(3) L is a finite union of unambiguous closed monomials A∗

1a1 · · ·A
∗
kakA

∞, i.e., there
is no 1 ≤ i ≤ k such that {ai, . . . , ak} ⊆ Ai.

(4) L is regular, Synt(L) ∈ DA, and for all linked pairs (s, e), (t, f) with s R t (i.e.,
there exist x, y ∈ Synt(L) such that s = tx and t = sy) we have

[s][e]ω ⊆ L ⇔ [t][f ]ω ⊆ L.

Proof. “1 ⇒ 2”: By Theorem 5.2 and its dual version for Π2, we see that Synt(L) ∈ DA

and that L is clopen in the alphabetic topology. From Theorem 6.5 it follows that L is
FO2-definable. “2 ⇒ 3”: By Theorem 7.1, L is a finite union of unambiguous monomials.
Property “3” now follows by Lemma 8.3 and Lemma 8.2. “3 ⇒ 1”: Theorem 7.1 and
Theorem 7.2.
“2 ⇒ 4”: By Theorem 6.5, we see that Synt(L) ∈ DA. Suppose [s][e]ω ⊆ L and let s = tx
and t = sy. Since L is closed we see that [s][eyfx]ω ⊆ L and by strong recognition we
conclude [t][fxey]ω ⊆ L. Let A =

⋃

{alph(v) | v ∈ [f ]}. Since L is open and by strong
recognition, there exists r ∈ N such that [t][fxey]rA∞ ⊆ L. Moreover, t = tfxey and thus,
[t]A∞ ⊆ L. In particular, [t][f ]ω ⊆ L because [f ] ⊆ A∗.
“4 ⇒ 2”: Definability in FO2 follows by Theorem 6.5. By symmetry, it suffices to show
that L is open. Let α ∈ [s][e]ω ⊆ L for some linked pair (s, e) and write α = uβ with
u ∈ [s] and β ∈ [e]ω ∩ A∞ ∩ Aim for some A ⊆ Γ. Let v ≤ β be a prefix such that v ∈ [e]
and alph(v) = alph(β). We want to show uvA∞ ⊆ L. Consider uvγ ∈ Γ∞ where γ ∈ A∞.
We have uvγ ∈ [t][f ]ω for some linked pair (t, f). Let v′ ≤ γ such that uvv′ ∈ [t]. Since
Synt(L) ∈ DA we have vv′v ∈ [e] and s = t · h(v). Together with t = s · h(v′) it follows
s R t and by “4” we obtain uvγ ∈ [t][f ]ω ⊆ L.
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9. Summary

We gave language-theoretic, algebraic and topological characterizations for several first-
order fragments over infinite words. Since FO2 and ∆2 have the same expressive power
only when restricted to some fixed set of letters occurring infinitely often (Thm. 8.1), the
picture becomes more complex. By Pol we denote the language class of polynomials, UPol
are unambiguous polynomials, and restricted UPol is a proper subclass of UPol. All of
the below-mentioned algebraic properties are decidable, since the syntactic monoid of a
regular language is effectively computable [8, 16]. Together with the PSPACE-completeness
of the problem whether a language is closed in the alphabetic topology (Thm. 3.4), this
yields decidability of the membership problem for the respective first-order fragments as a
corollary. Decidability was shown before by Wilke [20] for FO2 and by Bojańczyk [2] for
Σ2. Characterizations for the fragment Σ1 and its Boolean closure over infinite words (using
topological notions based on the Cantor topology) are due to Pin [9]; see also [8].

Logic Languages Algebra Topology

Σ2 Pol eMee ≤ e +
open
(alphabetic) Thm. 5.2

FO2 UPol + Aim strong DA Thm.6.5

weak DA +
closed
(strict alphabetic)

FO2 ∩ Σ2 UPol DA +
open
(alphabetic) Thm. 7.1

FO2 ∩ Π2 DA +
closed
(alphabetic)

Thm. 7.2

∆2 restricted UPol DA +
clopen
(alphabetic)

Thm. 8.4

10. Outlook and open problems

By definition, Σ1-definable languages are open in the Cantor topology. We introduced
an alphabetic topology such that Σ2-definable languages are open in this topology. There-
fore, an interesting question is whether it is possible to extend this topological approach
to higher levels of the first-order alternation hierarchy. To date, even over finite words no
decidable characterization of the Boolean closure of Σ2 is known. In case that a decid-
able criterion is found, it might lead to a decidable criterion for infinite words simply by
adding a condition of the form “clopen in some appropriate topology”. Another possible
way to generalize our approach might be combinations of algebraic and topological char-
acterizations for fragments with successor predicate suc such as FO2[<, suc] or Σ2[<, suc].
A characterization of those languages which are weakly recognizable by monoids in DA is
also open.
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