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Abstract. The Nemhauser-Trotter local optimization theorem applies to the NP-hard
Vertex Cover problem and has applications in approximation as well as parameterized
algorithmics. We present a framework that generalizes Nemhauser and Trotter’s result
to vertex deletion and graph packing problems, introducing novel algorithmic strategies
based on purely combinatorial arguments (not referring to linear programming as the
Nemhauser-Trotter result originally did).

We exhibit our framework using a generalization of Vertex Cover, called Bounded-

Degree Deletion, that has promise to become an important tool in the analysis of gene
and other biological networks. For some fixed d ≥ 0, Bounded-Degree Deletion asks
to delete as few vertices as possible from a graph in order to transform it into a graph
with maximum vertex degree at most d. Vertex Cover is the special case of d = 0. Our
generalization of the Nemhauser-Trotter theorem implies that Bounded-Degree Dele-

tion has a problem kernel with a linear number of vertices for every constant d. We also
outline an application of our extremal combinatorial approach to the problem of packing
stars with a bounded number of leaves. Finally, charting the border between (param-
eterized) tractability and intractability for Bounded-Degree Deletion, we provide a
W[2]-hardness result for Bounded-Degree Deletion in case of unbounded d-values.
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1. Introduction

Nemhauser and Trotter [20] proved a famous theorem in combinatorial optimization.
In terms of the NP-hard Vertex Cover

1 problem, it can be formulated as follows:

NT-Theorem [20, 4]. For an undirected graph G = (V,E) one can compute in polynomial
time two disjoint vertex subsets A and B, such that the following three properties hold:

(1) If S′ is a vertex cover of the induced subgraph G[V \ (A∪B)], then A∪S′ is a vertex
cover of G.

(2) There is a minimum-cardinality vertex cover S of G with A ⊆ S.
(3) Every vertex cover of the induced subgraph G[V \ (A∪B)] has size at least |V \ (A∪

B)|/2.
In other words, the NT-Theorem provides a polynomial-time data reduction for Vertex

Cover. That is, for vertices in A it can already be decided in polynomial time to put them
into the solution set and vertices in B can be ignored for finding a solution. The NT-
Theorem is very useful for approximating Vertex Cover. The point is that the search for
an approximate solution can be restricted to the induced subgraph G[V \(A∪B)]. The NT-
Theorem directly delivers a factor-2 approximation for Vertex Cover by choosing V \B
as the vertex cover. Chen et al. [7] first observed that the NT-Theorem directly yields a
2k-vertex problem kernel for Vertex Cover, where the parameter k denotes the size of the
solution set. Indeed, this is in a sense an “ultimate” kernelization result in parameterized
complexity analysis [10, 11, 21] because there is good reason to believe that there is a
matching lower bound 2k for the kernel size unless P=NP [16].

Since its publication numerous authors have referred to the importance of the NT-
Theorem from the viewpoint of polynomial-time approximation algorithms (e.g., [4, 17]) as
well as from the viewpoint of parameterized algorithmics (e.g., [1, 7, 9]). The relevance of
the NT-Theorem comes from both its practical usefulness in solving the Vertex Cover

problem as well as its theoretical depth having led to numerous further studies and follow-
up work [1, 4, 9]. In this work, our main contribution is to provide a more general and more
widely applicable version of the NT-Theorem. The corresponding algorithmic strategies and
proof techniques, however, are not achieved by a generalization of known proofs of the NT-
Theorem but are completely different and are based on extremal combinatorial arguments.
Vertex Cover can be formulated as the problem of finding a minimum-cardinality set
of vertices whose deletion makes a graph edge-free, that is, the remaining vertices have
degree 0. Our main result is to prove a generalization of the NT-Theorem that helps in
finding a minimum-cardinality set of vertices whose deletion leaves a graph of maximum
degree d for arbitrary but fixed d. Clearly, d = 0 is the special case of Vertex Cover.

Motivation. Since the NP-hard Bounded-Degree Deletion problem—given a graph
and two positive integers k and d, find at most k vertices whose deletion leaves a graph
of maximum vertex degree d—stands in the center of our considerations, some more ex-
planations about its relevance follow. Bounded-Degree Deletion (or its dual problem)
already appears in some theoretical work, e.g., [6, 18, 22], but so far it has received consider-
ably less attention than Vertex Cover, one of the best studied problems in combinatorial
optimization [17]. To advocate and justify more research on Bounded-Degree Deletion,

1
Vertex Cover is the following problem: Given an undirected graph, find a minimum-cardinality set S

of vertices such that each edge has at least one endpoint in S.
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we describe an application in computational biology. In the analysis of genetic networks
based on micro-array data, recently a clique-centric approach has shown great success [3, 8].
Roughly speaking, finding cliques or near-cliques (called paracliques [8]) has been a central
tool. Since finding cliques is computationally hard (also with respect to approximation),
Chesler et al. [8, page 241] state that “cliques are identified through a transformation to
the complementary dual Vertex Cover problem and the use of highly parallel algorithms
based on the notion of fixed-parameter tractability.” More specifically, in these Vertex

Cover-based algorithms polynomial-time data reduction (such as the NT-Theorem) plays a
decisive role [19] (also see [1]) for efficient solvability of the given real-world data. However,
since biological and other real-world data typically contain errors, the demand for finding
cliques (that is, fully connected subgraphs) often seems overly restrictive and somewhat re-
laxed notations of cliques are more appropriate. For instance, Chesler et al. [8] introduced
paracliques, which are achieved by greedily extending the found cliques by vertices that are
connected to almost all (para)clique vertices. An elegant mathematical concept of “relaxed
cliques” is that of s-plexes2 where one demands that each s-plex vertex does not need to be
connected to all other vertices in the s-plex but to all but s− 1. Thus, cliques are 1-plexes.
The corresponding problem to find maximum-cardinality s-plexes in a graph is basically
as computationally hard as clique detection is [2, 18]. However, as Vertex Cover is the
dual problem for clique detection, Bounded-Degree Deletion is the dual problem for
s-plex detection: An n-vertex graph has an s-plex of size k iff its complement graph has a
solution set for Bounded-Degree Deletion with d = s−1 of size n−k, and the solution
sets can directly be computed from each other. The Vertex Cover polynomial-time data
reduction algorithm has played an important role in the practical success story of analyzing
real-world genetic and other biological networks [3, 8]. Our new polynomial-time data re-
duction algorithms for Bounded-Degree Deletion have the potential to play a similar
role.

Our results. Our main theorem can be formulated as follows.

BDD-DR-Theorem (Theorem 2). For an undirected n-vertex and m-edge graph G =

(V,E), we can compute two disjoint vertex subsets A and B in O(n5/2 ·m + n3) time, such
that the following three properties hold:

(1) If S′ is a solution set for Bounded-Degree Deletion of the induced subgraph G[V \
(A∪B)], then S := S′∪A is a solution set for Bounded-Degree Deletion of G.

(2) There is a minimum-cardinality solution set S for Bounded-Degree Deletion

of G with A ⊆ S.
(3) Every solution set for Bounded-Degree Deletion of the induced subgraph G[V \

(A ∪B)] has size at least

|V \ (A ∪B)|
d3 + 4d2 + 6d + 4

.

In terms of parameterized algorithmics, this gives a (d3 + 4d2 + 6d + 4) · k-vertex
problem kernel for Bounded-Degree Deletion, which is linear in k for constant d-
values, thus joining a number of other recent “linear kernelization results” [5, 12, 14, 15].
Our general result specializes to a 4k-vertex problem kernel for Vertex Cover (the NT-
Theorem provides a size-2k problem kernel), but applies to a larger class of problems.

2Introduced in 1978 by Seidman and Foster [24] in the context of social network analysis. Recently, this
concept has again found increased interest [2, 18].
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For instance, a slightly modified version of the BDD-DR-Theorem (with essentially the
same proof) yields a 15k-vertex problem kernel for the problem of packing at least k vertex-
disjoint length-2 paths of an input graph, giving the same bound as shown in work focussing
on this problem [23].3 For the problem, where, given an undirected graph, one seeks a
set of at least k vertex-disjoint stars4 of the same constant size, we show that a kernel
with a linear number of vertices can be achieved, improving the best previous quadratic
kernelization [23]. We emphasize that our data reduction technique is based on extremal
combinatorial arguments; the resulting combinatorial kernelization algorithm has practical
potential and implementation work is underway. Note that for d = 0 our algorithm computes
the same type of structure as in the “crown decomposition” kernelization for Vertex

Cover (see, for example, [1]). However, for d ≥ 1 the structure returned by our algorithm
is much more complicated; in particular, unlike for Vertex Cover crown decompositions,
in the BDD-DR-Theorem the set A is not necessarily a separator and the set B does not
necessarily form an independent set.

Exploring the borders of parameterized tractability of Bounded-Degree Deletion

for arbitrary values of the degree value d, we show the following.

Theorem 1. For unbounded d (given as part of the input), Bounded-Degree Deletion

is W [2]-complete with respect to the parameter k denoting the number of vertices to delete.

In other words, there is no hope for fixed-parameter tractability with respect to the
parameter k in the case of unbounded d-values. Due to the lack of space the proof of
Theorem 1 and several proofs of lemmas needed to show Theorem 2 are omitted.

2. Preliminaries

A bdd-d-set for a graph G = (V,E) is a vertex subset whose removal from G yields a
graph in which each vertex has degree at most d. The central problem of this paper is

Bounded-Degree Deletion

Input: An undirected graph G = (V,E), and integers d ≥ 0 and k > 0.
Question: Does there exist a bdd-d-set S ⊆ V of size at most k for G?

In this paper, for a graph G = (V,E) and a vertex set S ⊆ V , let G[S] be the subgraph
of G induced by S and G−S := G[V \S]. The open neighborhood of a vertex v or a vertex
set S ⊆ V in a graph G = (V,E) is denoted as NG(v) := {u ∈ V | {u, v} ∈ E} and NG(S) :=
⋃

v∈S NG(v) \ S, respectively. The closed neighborhood is denoted as NG[v] := NG(v) ∪ {v}
and NG[S] := NG(S)∪S. We write V (G) and E(G) to denote the vertex and edge set of G,
respectively. A packing P of a graph G is a set of pairwise vertex-disjoint subgraphs of G.
A graph has maximum degree d when every vertex in the graph has degree at most d. A
graph property is called hereditary if every induced subgraph of a graph with this property
has the property as well.

Parameterized algorithmics [10, 11, 21] is an approach to finding optimal solutions
for NP-hard problems. A common method in parameterized algorithmics is to provide
polynomial-time executable data reduction rules that lead to a problem kernel [13]. This is
the most important concept for this paper. Given a parameterized problem instance (I, k), a

3Very recently, Wang et al. [25] improved the 15k-bound to a 7k-bound. We claim that our kernelization
based on the BDD-DR-Theorem method can be easily adapted to also deliver the 7k-bound.

4A star is a tree where all of the vertices but one are leaves.
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data reduction rule replaces (I, k) by an instance (I ′, k′) in polynomial time such that |I ′| ≤
|I|, k′ ≤ k, and (I, k) is a Yes-instance if and only if (I ′, k′) is a Yes-instance. A param-
eterized problem is said to have a problem kernel, or, equivalently, kernelization, if, after
the exhaustive application of the data reduction rules, the resulting reduced instance has
size f(k) for a function f depending only on k. Roughly speaking, the kernel size f(k) plays
a similar role in the subject of problem kernelization as the approximation factor plays for
approximation algorithms.

3. A Local Optimization Algorithm for Bounded-Degree Deletion

The main result of this section is the following generalization of the Nemhauser-Trotter-
Theorem [20] for Bounded-Degree Deletion with constant d.

Theorem 2 (BDD-DR-Theorem). For an n-vertex and m-edge graph G = (V,E), we can

compute two disjoint vertex subsets A and B in O(n5/2 ·m+n3) time, such that the following
three properties hold:

(1) If S′ is a bdd-d-set of G− (A ∪B), then S := S′ ∪A is a bdd-d-set of G.
(2) There is a minimum-cardinality bdd-d-set S of G with A ⊆ S.

(3) Every bdd-d-set of G− (A ∪B) has size at least |V \(A∪B)|
d3+4d2+6d+4

.

This first two properties are called the local optimality conditions. The remainder of this
section is dedicated to the proof of this theorem. More specifically, we present an algorithm
called compute AB (see Figure 1) which outputs two sets A and B fulfilling the three
properties given in Theorem 2. The core of this algorithm is the procedure find extremal
(see Figure 2) running in O(n3/2 ·m + n2) time. This procedure returns two disjoint vertex
subsets C and D that, among others, satisfy the local optimality conditions. The procedure
is iteratively called by compute AB. The overall output sets A and B then are the union
of the outputs of all applications of find extremal. Actually, find extremal searches
for C ⊆ V , D ⊆ V , C ∩D = ∅ satisfying the following two conditions:

C1 Each vertex in NG[D] \ C has degree at most d in G− C, and
C2 C is a minimum-cardinality bdd-d-set for G[C ∪D].

It is not hard to see that these two conditions are stronger than the local optimality condi-
tions of Theorem 2:

Lemma 1. Let C and D be two vertex subsets satisfying conditions C1 and C2. Then, the
following is true:

(1) If S′ is a bdd-d-set of G− (C ∪D), then S := S′ ∪ C is a bdd-d-set of G.
(2) There is a minimum-cardinality bdd-d-set S of G with C ⊆ S.

Lemma 1 will be used in the proof of Theorem 2—it helps to make the description of
the underlying algorithm and the corresponding correctness proofs more accessible. As a
direct application of Theorem 2, we get the following corollary.

Corollary 1. Bounded-Degree Deletion with constant d admits a problem kernel with
at most (d3 + 4d2 + 6d + 4) · k vertices, which is computable in O(n5/2 ·m + n3) time.

We use the following easy-to-verify forbidden subgraph characterization of bounded-
degree graphs: A graph G has maximum degree d if and only if there is no “(d + 1)-star”
in G.
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Algorithm: compute AB (G)
Input: An undirected graph G.
Output: Vertex subsets A and B satisfying the three properties of Theorem 2.

1 A := ∅, B := ∅
2 Compute a witness X and the corresponding residual Y := V \X for G
3 If |Y | ≤ (d + 1)2 · |X| then return (A,B)
4 (C,D)← find extremal (G,X, Y ).
5 G← G− (C ∪D);A← A ∪C;B ← B ∪D; goto line 2

Figure 1: Pseudo-code of the main algorithm for computing A and B.

Definition 3.1. For s ≥ 1, the graph K1,s = ({u, v1, . . . , vs}, {{u, v1}, . . . , {u, vs}}) is called
an s-star. The vertex u is called the center of the star. The vertices v1, . . . , vs are the leaves
of the star. A ≤s-star is an s′-star with s′ ≤ s.

Due to this forbidden subgraph characterization of bounded-degree graphs, we can also
derive a linear kernelization for the (d+1)-Star Packing problem. In this problem, given
an undirected graph, one seeks for at least k vertex-disjoint (d + 1)-stars for a constant d.
With a slight modification of the proof of Theorem 2, we get the following corollary.

Corollary 2. (d + 1)-Star Packing admits a problem kernel with at most (d3 + 4d2 +

6d + 4) · k vertices, which is computable in O(n5/2 ·m + n3) time.

For d ≥ 2, the best known kernelization result was a O(k2) kernel [23]. Note that the
special case of (d + 1)-Star Packing with d = 1 is also called P3-Packing, a problem
well-studied in the literature, see [23, 25]. Corollary 2 gives a 15k-vertex problem ker-
nel. The best-known bound is 7k [25]. However, the improvement from the formerly best
bound 15k [23] is achieved by improving a properly defined witness structure by local mod-
ifications. This trick also works with our approach, that is, we can show that the NT-like
approach also yields a 7k-vertex problem kernel for 2-Star Packing.

3.1. The Algorithm

We start with an informal description of the algorithm. As stated in the introduction
of this section, the central part is Algorithm compute AB shown in Figure 1.

Using the characterization of bounded-degree graphs by forbidding large stars, in line 2
compute AB starts with computing two vertex sets X and Y : First, with a straightforward
greedy algorithm, compute a maximal (d + 1)-star packing of G, that is, a set of vertex-
disjoint (d+1)-stars that cannot be extended by adding another (d+1)-star. Let X be the
set of vertices of the star packing. Since the number of stars in the packing is a lower bound
for the size of a minimum bdd-d-set, X is a factor-(d + 2) approximate bdd-d-set. Greedily
remove vertices from X such that X is still a bdd-d-set, and finally set Y := V \X. We
call X the witness and Y the corresponding residual.

If the residual Y is too big (condition in line 3), the sets X and Y are passed in line 4
to the procedure find extremal in Figure 2 which computes two sets C and D satisfying
conditions C1 and C2. Computing X and Y represents the first step to find a subset pair
satisfying condition C1: Since there is no vertex that has degree more than d in G−X (due
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Procedure: find extremal (G,X, Y )
Input: An undirected graph G, witness X, and residual Y .
Output: Vertex subsets C and D satisfying the local optimality conditions.

1 J ← bipartite graph with X and Y as its two vertex subsets and
E(J)← {{u, v} ∈ E(G) | u ∈ X and v ∈ Y }

2 FX
0 ← ∅ ⊲ Initialize empty set of forbidden vertices

3 start with j = 0 and while FX
j 6= X do ⊲ Loop while not all vertices in X are forbidden

4 F Y
j ← NG[NJ(FX

j )] \X ⊲ Determine forbidden vertices in Y

5 P ← star-packing (J − (FX
j ∪ F Y

j ),X \ FX
j , Y \ F Y

j , d)

6 D0 ← Y \ (F Y
j ∪ V (P )) ⊲ Vertices in Y that are not forbidden and not in P

7 start with i = 0 and repeat ⊲ Start search for C,D satisfying C2
8 Ci ← NJ(Di)
9 Di+1 ← NP (Ci) ∪Di

10 i← i + 1
11 until Di = Di−1

12 C ← Ci, D ← Di

13 if C = X \ FX
j then ⊲ C,D also satisfy C1

14 return (C,D)
15 FX

j+1 ← X \ C ⊲ Determine forbidden vertices in X for next iteration
16 j ← j + 1
17 end while
18 F Y

j ← NG[NJ(FX
j )] \X ⊲ Recompute forbidden vertices in Y (as in line 4)

19 return (∅, V \ (X ∪ F Y
j ))

Procedure: star-packing (J, V1, V2, d)
Input: A bipartite graph J with two vertex subsets V1 and V2.
Output: A maximum-edge packing of stars that have their centers in V1 and have at
most d + 1 leaves in V2.
See Lemma 2, the straightforward implementation details using matching techniques are
omitted.

Figure 2: Pseudo-code of the procedure computing the intermediary vertex subset
pair (C,D).

to the fact that X is a bdd-d-set), the search is limited to those subset pairs where C is a
subset of the witness X and D is a subset of Y .

Algorithm compute AB calls find extremal iteratively until the sets A and B, which
are constructed by the union of the outputs of all applications of find extremal (see line 5),
satisfy the third property in Theorem 2. In the following, we intuitively describe the basic
ideas behind find extremal.

To construct the set C from X, we compute again a star packing P with the centers
of the stars being from X and the leaves being from Y . We relax, on the one hand, the
requirement that the stars in the packing have exactly d + 1 leaves, that is, the packing P
might contain ≤ d-stars. On the other hand, P should have a maximum number of edges.
The rough idea behind the requirement for a maximum number of edges is to maximize the
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number of (d+1)-stars in P in the course of the algorithm. Moreover, we can observe that,
by setting C equal to the center set of the (d + 1)-stars in P and D equal to the leaf set
of the (d + 1)-stars in P , C is a minimum bdd-d-set of G[C ∪D] (condition C2). We call
such a packing a maximum-edge X-center ≤ (d + 1)-star packing. For computing P , the
algorithm constructs an auxiliary bipartite graph J with X as one vertex subset and Y as
the other. The edge set of J consists of the edges in G with exactly one endpoint in X.
See line 1 of Figure 2. Obviously, a maximum-edge X-center ≤ (d + 1)-star packing of G
corresponds one-to-one with a maximum-edge packing of stars in J that have their centers
in X and have at most d+1 leaves in the other vertex subset. Then, the star packing P can
be computed by using techniques for computing maximum matchings in J (in the following,
let star-packing(J ,V1,V2,d) denote an algorithm that computes a maximum-edge V1-center
≤ (d + 1)-star packing P on the bipartite graph J).

The most involved part of find extremal in Figure 2 is to guarantee that the output
subsets in line 4 fulfill condition C1. To this end, one uses an iterative approach to compute
the star packing P . Roughly speaking, in each iteration, if the subsets C and D do not
fulfill condition C1, then exclude from further iterations the vertices from D that themselves
or whose neighbors violate this condition. See lines 2 to 15 of Figure 2 for more details of
the iterative computation. Herein, for j ≥ 0, the sets FX

j ⊆ X and F Y
j ⊆ Y , where FX

j is

initialized with the empty set, and F Y
j is computed using FX

j , store the vertices excluded
from computing P . To find the vertices that themselves cause the violation of the condition,
that is, vertices in D that have neighbors in X\C, one uses an augmenting path computation
in lines 7 to 11 to get in line 12 subsets C and D such that the vertices in D do not themselves
violate the condition. Roughly speaking, the existence of an edge e from some vertex in D
to some vertex in X \ C would imply that the ≤ (d + 1)-star packing is not maximum
(witnessed by an augmenting path beginning with e—in principle, this idea is also used for
finding crown decompositions, cf. [1]). The vertices whose neighbors cause the violation of
condition C1 are all vertices in D with neighbors in Y \D that themselves have neighbors
in X \ C. These neighbors in Y \ D and the corresponding vertices in D are excluded in
line 4 and line 18. We will see that the number of all excluded vertices is O(|X \C|), thus,
in total, we do not exclude too many vertices with this iterative method. The formal proof
of correctness is given in the following subsection.

3.2. Running Time and Correctness

Now, we show that compute AB in Figure 1 computes in the claimed time two vertex
subsets A and B that fulfill the three properties given in Theorem 2.

3.2.1. Running Time of find extremal. We begin with the proof of the running time of
the procedure find extremal in Figure 2, which uses the following lemmas.

Lemma 2. Procedure star-packing(J, V1, V2, d) in Figure 2 runs in O(
√

n ·m) time.

The next lemma is also used for the correctness proof; in particular, it guarantees the
termination of the algorithm.

Lemma 3. If the condition in line 13 of Figure 2 is false for a j ≥ 0, then FX
j ( FX

j+1.
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Proof. In lines 4 and 5 of Figure 2, all vertices in FX
j and their neighbors NJ(FX

j ) are
excluded from the star packing P in the jth iteration of the outer loop. Moreover, the
vertices in NJ(FX

j ) are excluded from the set D0 (line 6). Therefore, a vertex in FX
j cannot

be added to C in line 12. Thus FX
j+1 (set to X \C in line 15) contains FX

j . Moreover, this
containment is proper, as otherwise the condition in line 13 would be true.

Lemma 4. Procedure find extremal runs in O(n3/2 ·m + n2) time.

3.2.2. Correctness of find extremal. The correctness proof for find extremal in Figure 2
is more involved than its running time analysis. The following lemmas provide some prop-
erties of (C,D) which are needed.

Lemma 5. For each j ≥ 0 the following properties hold after the execution of line 12
in Figure 2:

(1) every vertex in C is a center vertex of a (d + 1)-star in P , and
(2) the leaves of every star in P with center in C are vertices in D.

Proof. (Sketch) To prove (1), first of all, we show that v ∈ C implies v ∈ V (P ), since, oth-
erwise, we could get a P -augmenting path from some element in D0 to v. A P -augmenting
path is a path where the edges in E(P ) and the edges not in E(P ) alternate, and the
first and the last edge are not in E(P ). This P -augmenting path can be constructed in an
inductive way by simulating the construction of Ci in lines 6 to 11 of Figure 2. From this
P -augmenting path, we can then construct a X-center ≤ (d+1)-star packing that has more
edges than P , contradicting that E(P ) has maximum cardinality. Second, every vertex
in C is a center of a star due to the definition of P and Procedure star-packing. Finally,
if a vertex v ∈ C is the center of a star with less than (d + 1) leaves, then again we get a
P -augmenting path from some element in D0 to v.

The second statement follows easily from Procedure star-packing and the pseudo-code
in lines 6 to 12.

Lemma 6. For each j ≥ 0 there is no edge in G between D and NJ(FX
j ).

Proof. The vertices in FX
j and the vertices in NG[NJ(FX

j )] \ X are excluded from the

computation of P and are not contained in D0 (lines 4 to 6 in Figure 2). Thus, NJ [FX
j ]∩D =

∅ and therefore there are no edges in G between D and NJ(FX
j ).

The next lemma shows that the output of find extremal fulfills the local optimality
conditions.

Lemma 7. Procedure find extremal returns two disjoint vertex subsets fulfilling condi-
tions C1 and C2.

Proof. Clearly, the output consists of two disjoints sets. The algorithm returns in lines 14
or 19 of Figure 2. If it returns in line 19, then the output C is empty and D contains
only vertices that have a distance at least 3 to the vertices in X: The condition in line 3
implies FX

j = X and, therefore, F Y
j contains all vertices in G \ X that have distance at

most 2 to the vertices in X. Since X is a bdd-d-set of G, all vertices in D and their
neighbors in G have a degree at most d. This implies that both conditions hold for the
output returned in this line. It remains to consider the output returned in line 14.
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To show that condition C1 holds, recall that G−X has maximum degree d and that C ⊆
X. Therefore, if for a vertex v in V \X we have NJ(v) ⊆ C, then v has degree at most d
in G − C. Thus, to show that each vertex in NG[D] \ C has degree at most d in G − C,
it suffices to prove that NJ(NG[D] \ C) ⊆ C. We show separately that NJ(D) ⊆ C and
that NJ(NG(D) \ C) ⊆ C.

The assignment in line 8 and the until-condition in line 11 directly give NJ(D) ⊆ C.
Due to Lemma 6 there is no edge in G between D and NJ(FX

j ), where FX
j = X \ C (the

if-condition in line 13, which has to be satisfied for the procedure to return in line 14).
From this it follows that the vertices in NG(D) \ C have no vertex in FX

j as neighbor and,

thus, NJ(NG(D) \ C) ∩ FX
j = ∅. Therefore, NJ(NG(D) \ C) ⊆ C.

By Properties 1 and 2 of Lemma 5, there are exactly |C| many vertex-disjoint (d + 1)-
stars in G[C ∪D]. Moreover, there is no (d + 1)-star in G[D], since X is a bdd-d-set of G.
Thus, C is a minimum-cardinality bdd-d-set of G[C ∪D].

3.2.3. Running Time and Correctness of compute AB. To prove the running time and
correctness of compute AB, we have to show that the output of find extremal contains
sufficiently many vertices of Y . To this end, the following lemma plays a decisive role.

Lemma 8. For all j ≥ 0, the set F Y
j in line 4 and line 18 of Figure 2 has size at most (d +

1)2 · |FX
j |.

Proof. The proof is by induction on j. The claim trivially holds for j = 0, since F Y
0 = ∅.

Assume that the claim is true for j > 0. Since FX
j ( FX

j+1 (Lemma 3), we have

F Y
j+1 = F Y

j ∪NG−X [NJ−F Y
j

(FX
j+1 \ FX

j )].

We first bound the size of NJ−F Y
j

(FX
j+1 \FX

j ). Since FX
j+1 was set to X \C at the end of the

jth iteration of the outer loop (line 15), the vertices in NJ−F Y
j

(FX
j+1\FX

j ) were not excluded

from computing the packing P (line 5) of the jth iteration. Moreover, NJ−F Y
j

(FX
j+1 \FX

j ) ⊆
V (P ) for the star packing P computed in the jth iteration, since, otherwise, the set D0 in
line 6 would contain a vertex v in NJ−F Y

j
(FX

j+1 \FX
j ) and, then, line 8 would include NJ(v)

into C, which would contradict the fact that C ∩ FX
j+1 = ∅ (line 15). Due to property 2

in Lemma 5 the leaves of every star in P with center in C are vertices in D and, thus, the
vertices in NJ−F Y

j
(FX

j+1 \FX
j ) are leaves of stars in P with centers in FX

j+1 \FX
j . Since each

star has at most (d+1) leaves, the set NJ−F Y
j

(FX
j+1\FX

j ) has size at most (d+1)·|FX
j+1 \ FX

j |.
The remaining part is easy to bound: since all the vertices in V \X have degree at most d,
we get

∣

∣

∣

NG−X [NJ−F Y
j

(FX
j+1 \ FX

j )]
∣

∣

∣

≤ (d · (d + 1) + (d + 1)) · |FX
j+1 \ FX

j |

= (d + 1)2 · |FX
j+1 \ FX

j |.
With the induction hypothesis, we get that

|F Y
j+1| ≤ |F Y

j |+ |NG−X [NJ−F Y
j

(FX
j+1 \ FX

j )]|

= (d + 1)2 · |FX
j |+ (d + 1)2 · |FX

j+1 \ FX
j | = (d + 1)2 · |FX

j+1|.
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Lemma 9. Procedure find extremal always finds two sets C and D such that |Y \D| ≤
(d + 1)2 · |X \ C|.
Proof. If find extremal terminates, then V ′ = FX

j ∪ F Y
j for the graph G′ = (V ′, E′)

resulting by removing C ∪ D from G. Since C ⊆ X and D ⊆ Y , we have X \ C = FX
j

and Y \D = F Y
j , and by Lemma 8 it follows immediately that |Y \D| ≤ (d+1)2 · |X \C|.

Therefore, if |Y | > (d+1)2 · |X|, then find extremal always returns two sets C and D
such that D is not empty.

Lemma 10. Algorithm compute AB runs in O(n5/2 ·m + n3) time.

Lemma 11. The sets A and B computed by compute AB fulfill the three properties
given in Theorem 2.

Proof. Since every (C,D) output by find extremal in line 4 of compute AB in Figure 1
fulfills conditions C1 and C2 (Lemma 7), the pair (A,B) output in line 3 of compute AB
fulfills conditions C1 and C2, and, therefore, also the local optimality conditions (Lemma 1).
It remains to show that (A,B) fulfills the size condition.

Let X and Y be the last computed witness and residual, respectively. Since the condi-
tion in line 3 is true, we know that |Y | ≤ (d + 1)2 · |X|. Recall that X is a factor-(d + 2)
approximate bdd-d-set for G′ := G − (A ∪ B). Thus, every bdd-d-set of G′ has size at
least |X|/(d + 2). Since the output sets A and B fulfill the local optimality conditions and
the bounded-degree property is hereditary, every bdd-d-set of G′ has size at least

|X|
d + 2

(∗)

≥ |V ′|
(d + 2)((d + 1)2 + 1)

=
|V ′|

(d3 + 4d2 + 6d + 4)
.

The inequality (*) follows from the fact that Y is small, that is, |Y | ≤ (d + 1)2 · |X| (note
that V ′ = X ∪ Y ).

With Lemmas 10 and 11, the proof of Theorem 2 is completed.

4. Conclusion

Our main result is to generalize the Nemhauser-Trotter-Theorem, which applies to
the Bounded-Degree Deletion problem with d = 0 (that is, Vertex Cover), to
the general case with arbitrary d ≥ 0. In particular, in this way we contribute problem
kernels with a number of vertices linear in the solution size k for all constant values of d
for Bounded-Degree Deletion. To this end, we developed a new algorithmic strategy
that is based on extremal combinatorial arguments. The original NT-Theorem [20] has
been proven using linear programming relaxations—we see no way how this could have
been generalized to Bounded-Degree Deletion. By way of contrast, we presented a
purely combinatorial data reduction algorithm which is also completely different from known
combinatorial data reduction algorithms for Vertex Cover (see [1, 4, 9]). Finally, Baldwin
et al. [3, page 175] remarked that, with respect to practical applicability in the case of
Vertex Cover kernelization, combinatorial data reduction algorithms are more powerful
than “slower methods that rely on linear programming relaxation”. Hence, we expect
that benefits similar to those derived from Vertex Cover kernelization for biological
network analysis (see the motivation part of our introductory discussion) may be provided
by Bounded-Degree Deletion kernelization.
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