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.ukAbstra
t. The MULTICUT IN TREES problem 
onsists in de
iding, given a tree, a setof requests (i.e. paths in the tree) and an integer k, whether there exists a set of k edges
utting all the requests. This problem was shown to be FPT by Guo and Niedermeyer in[10℄. They also provided an exponential kernel. They asked whether this problem has apolynomial kernel. This question was also raised by Fellows in [1℄.We show that MULTICUT IN TREES has a polynomial kernel.1. Introdu
tionAn e�
ient way of dealing with NP-hard problems is to identify a parameter whi
h
ontains its 
omputational hardness. For instan
e, instead of asking for a minimum vertex
over in a graph - a 
lassi
al NP-hard optimization question - one 
an ask for an algorithmwhi
h would de
ide, in O(f(k).nd) time for some �xed d, if a graph of size n has a vertex
over of size at most k. If su
h an algorithm exists, the problem is 
alled �xed-parametertra
table, or FPT for short. An extensive litterature is devoted to FPT, the reader is invitedto read [4℄, [7℄ and [12℄.Kernelization is a natural way of proving that a problem is FPT. Formally, a kernel-ization algorithm re
eives as input an instan
e (I, k) of the parameterized problem, andoutputs, in polynomial time in the size of the instan
e, another instan
e (I ′, k′) su
h that

• k′ ≤ k,
• the size of I ′ only depends of k,
• the instan
es (I, k) and (I ′, k′) are both true or both false.Part of this resear
h was supported by Allian
e Proje
t "Partitions de graphes orientés". Part of thisresear
h was supported by ANR Proje
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184 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEOThe redu
ed instan
e (I ′, k′) is 
alled a kernel. The existen
e of a kernelization algo-rithm 
learly implies the FPT 
hara
ter of the problem sin
e one 
an kernelize the instan
e,and then solve the redu
ed instan
e G′, k′ using brute for
e, hen
e giving an O(f(k) + nd)algorithm. A 
lassi
al result asserts that being FPT is indeed equivalent to having kerneliza-tion. The drawba
k of this result is that the size of the redu
ed instan
e G′ is not ne
essarilysmall with respe
t to k. A mu
h more 
onstrained 
ondition is to be able to redu
e to aninstan
e of polynomial size in terms of k. Consequently, in the zoology of parameterizedproblems, the �rst distin
tion is done between three 
lasses: W[1℄-hard, FPT, polykernel.A kernelization algorithm 
an be used as a prepro
essing step to redu
e the size of theinstan
e before applying an algorithm. Being able to ensure that this kernel has a
tuallypolynomial size in k enhan
es the overall speed of the algorithm. See [11℄ for a re
ent reviewon kernalization.The existen
e of a polynomial kernel 
an be a subtle issue. A re
ent result by Fernau etal [6℄ shows that Rooted k-Leaf Outbran
hing has a 
ubi
 kernel while k-Leaf Outbran
hingdoes not, unless polynomial hierar
hy 
ollapses to third level, using a breakthrough lowerbound result by Bodlaender and al [5℄.In the (unweighted) MULTICUT IN TREES problem, we 
onsider a tree T together witha set P of pairs of distin
t nodes of T , 
alled requests. Hen
e, a request 
an also be seen asa pres
ribed path joining these two nodes. We will often identify the request and its path.A multi
ut of (T, P ) is a set S of edges of T whi
h interse
t every request in P , i.e. everypath 
orresponding to a request 
ontains an edge of S.Problem 1.1. MULTICUT IN TREES:Input: A tree T = (V,E), a set of requests P , an integer k.Output: TRUE if there is a multi
ut of size at most k, otherwise FALSE.Note that a more general presentation of this problem is to assign weights to edges, andask for a multi
ut of minimal weight. Our te
hnique does not seem to generalize to theweighted 
ase.This problem appears in network issues (routing, tele
ommuni
ation, ...). See [3℄ for asurvey on multi
ommodity �ow problems and multi
ut problems. It was shown in [8℄ thatMULTICUT IN TREES is NP-
omplete, and its asso
iated de
ision problem is MaxSNP-hardand has a fa
tor-2 polynomial time approximation algorithm.This problem is known to be FPT, see [9℄ or [10℄ for a bran
hing algorithm and anexponential kernel. The existen
e of a polynomial kernel was asked in [1℄. We verify thatMULTICUT IN TREES has indeed an O(k6) kernel. Our redu
tion is very mu
h inspiredfrom [9℄ and [10℄. In the next se
tion, we �rst illustrate our te
hniques when the tree T is a
aterpillar. In Se
tion 3 we extend the proof to general trees.2. A polynomial kernel for 
aterpillarsA node of T whi
h is not a leaf is an internal node. The internal tree of T is the treerestri
ted to its internal nodes. We say that T is a 
aterpillar if its internal tree is a path. We
onsider the restri
tion of the MULTICUT IN TREES problem to 
aterpillars, as it 
ontainsthe 
ore of our proof in the general 
ase.



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 185Let us give some general de�nitions whi
h will apply both for the 
aterpillar 
ase andfor the general 
ase.We say that two nodes x and y are R-neighbors if there exists a request xy. A leaf xand an internal node y are quasi-R-neighbors if there exists a request xy, or a request xz,where z is a leaf rooted at y. An internal node with no leaf atta
hed to it is an inner node.If x is a leaf, we denote by e(x) and 
all the edge of x the edge adja
ent to x. A group ofleaves is the set of leaves 
onne
ted to the same internal node. A group request is a request
xy where x and y belong to the same group. A leaf whi
h is an endpoint of a group requestis a bad leaf. A leaf to leaf request is a request between two leaves. An internal request isa request between two internal nodes. A request between an internal node and a leaf is amixed-request. Two requests are disjoint if their edge sets are disjoint. Two requests x1y1and x2y2 are endpoint-disjoint if x1, y1, x2, y2 are pairwise di�erent.The internal path of a request is the interse
tion between the path of the request andthe internal tree. The 
ommon fa
tor of two requests is the interse
tion of their paths. Arequest R1 dominates a request R2 if the internal path of R1 
ontains the internal path of
R2. Contra
ting an edge e in (T, P ) means 
ontra
ting e in T , and transforming ea
h requestof the form (e1, . . . , et, e, et+1, . . . , el) in P into (e1, . . . , et, et+1, . . . , el). Deleting an edge emeans 
ontra
ting e in T and removing every request 
ontaining e from P .Two requests of length at least 2 from a given leaf x have the same dire
tion if these
ond edge of their path starting at x is the same. Two requests from an internal node xhave the same dire
tion if the �rst edge of their paths (starting at x) is the same. All therequests from x have the same dire
tion if they pairwise have the same dire
tion.In the following, our instan
e T is assumed to be a 
aterpillar. We 
all the two extrem-ities of the internal path the left end and the right end of T . The path between a node xand the right (resp. left) end will be 
alled right and left relatively to x.Let T ′ be the internal tree of the 
aterpillar T . The following �ve sets partition T :

• The set I1 of leaves of T ′.
• The set I2 of degree two nodes of T ′.
• The set L1 of leaves rooted at I1.
• The set L′

2 of bad leaves rooted at I2.
• The set L2 of the other leaves rooted at I2.The wingspan W of a leaf x is the path between the 
losest quasi-R-neighbor on theright of x and the 
losest quasi-R-neighbor on the left of x (if no su
h neighbor exists, wetake the father f(x) of x by 
onvention). The size of a wingspan is the number of L2-leavespending from it. The sub
aterpillar of the wingspan W 
onsists in W and the leaves rootedat W . The wingspan W dominates a request yz if both y and z belong to the sub
aterpillarof W .The usual way of exhibiting a kernel is to de�ne a set of redu
tion rules. These rulesshould be safe, meaning that after applying a rule, the truth value of the problem onthe instan
e does not 
hange. Moreover the repeated appli
ation of the rules should takepolynomial time. Finally, after iterating these rules on an instan
e, we want the redu
edinstan
e to be of polynomial size in k.The redu
tion rules. We apply the following redu
tion rules to an instan
e:(0) Unit Request: if a request R has length one, i.e. R = e for some edge e of T , thenwe delete e and de
rease k by one.



186 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEO(1) Disjoint Requests: if there are k+1 disjoint requests in P , then we return a triviallyfalse instan
e.(2) Unique Dire
tion: if all the requests starting at a leaf x have the same dire
tion, then
ontra
t e(x). If all the requests starting at an inner node x have the same dire
tion,then 
ontra
t the edge e adja
ent to x whi
h does not belong to any request startingat x.(3) In
lusion: if a request R is in
luded in another request R′, then delete R′ from theset of requests.(4) Common Fa
tor: let R be a request. If k + 1 requests R1, . . . , Rk+1 di�erent from
R but interse
ting R are su
h that for every i 6= j, the 
ommon fa
tor of Ri and Rjis a subset of R, then delete R from the set of requests.(5) Dominating Wingspan: if x is an L2-leaf with a wingspan dominating at least k + 1endpoint-disjoint leaf to leaf or mixed requests, then 
ontra
t e(x).Ea
h iteration of the redu
tion 
onsists in applying the �rst appli
able rule, in the aboveorder.Lemma 2.1. Rules Unit Request, Disjoint Requests, Unique Dire
tion, In
lusion, CommonFa
tor and Dominating Wingspan are safe.Proof. (0) Rule Unit Request is obvious.(1) Rule Disjoint Requests is obvious.(2) For Rule Unique Dire
tion, assume �rst that all the requests from a leaf x have thesame dire
tion, and that a multi
ut 
ontains e(x). Let e′ be the se
ond 
ommonedge of all these paths. As e′ 
uts all the requests 
ut by e(x), if e(x) is in a solution
S then S\{e(x)} ∪ {e′} is also a solution. So we 
an 
ontra
t e(x). Now, assumethat all the requests from an inner node x go to the right. If a solution S 
ontainsthe edge e adja
ent to x on the left then S\{e} ∪ {e′}, where e′ is the right edgeadja
ent to x, is a solution sin
e a request going through e also goes through e′.(3) For Rule In
lusion, observe that an edge 
utting R also 
uts all the paths 
ontaining
R.(4) If there is a multi
ut of k edges, then one of these edges must interse
t two requestsamong the k+1 mentioned in Rule Common Fa
tor. This edge lies in the interse
tionof two paths, hen
e in R, so request R is 
ut in any multi
ut of P \ {R}.(5) Let x be an L2-leaf with a wingspan W dominating k +1 endpoint-disjoint requests.If a multi
ut of size k exists, it 
ontains an edge e whi
h 
uts two of these requests.As the requests are endpoint-disjoint, their interse
tion is in
luded in the internaltree, hen
e in W . Assume, for example, that e is on the left of the leaf x. Then allthe requests from x whi
h go to the left go through e, and moreover x has no grouprequest. Thus, if a solution exists, there is a solution without e(x), sin
e e(x) 
anbe repla
ed by the edge e′ whi
h is on the right of the neighbor of x.Lemma 2.2. De
iding whether a rule applies and applying it takes polynomial time.Proof. Denote by n the number of nodes in T and by r the number of requests, whi
h is

O(n2).(0) The appli
ation of Rule Unit Request takes time O(r).(1) The maximum edge-disjoint paths problem in trees is polynomial, see [8℄, thus RuleDisjoint Requests is polynomial.



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 187(2) Rule Unique Dire
tion 
an be applied in time O(rn2).(3) Rule In
lusion 
an be applied in time O(r2).(4) For the running time of Rule Common Fa
tor, 
onsider a request R. Informally, weare looking for a large enough set of requests whi
h interse
t R, possibly leaving itat one or two pla
es, su
h that the edges through whi
h they leave are all distin
t.More formally, let Z be the set of edges not in R but sharing a vertex with someedge in R. Let Y be the set of edges e in Z su
h that there exists a request startingat a node in R and going through e. We 
an assume without any loss that onerequest per su
h edge e is 
hosen. Let G be the graph whi
h verti
es are Z − Y andwhi
h edges are the pairs (e, e′) su
h that there exists a request going through both
e and e′. There exist k + 1 paths as in Rule Common Fa
tor if and only if G has amat
hing of size at least k + 1 − |Y |. As the mat
hing problem is polynomial, theappli
ation of Rule Common Fa
tor takes polynomial time.(5) Let W be a wingspan, let G be the graph whi
h verti
es are the leaves pending from
W and where two leaves are adja
ent if there is a request between them. There exist
k + 1 endpoint-disjoint requests dominated by W if and only if G has a mat
hing ofsize k + 1, thus Rule Dominating Wingspan is polynomial.Lemma 2.3. The redu
tion pro
ess has a polynomial number of iterations.Proof. Ea
h rule de
reases the sum of the lengths of the requests, whi
h is initially less thanthe number of requests times the number of nodes.In the following we 
onsider an instan
e in whi
h none of these rules 
an be applied,and prove that su
h a redu
ed instan
e has polynomial size in k.Let us introdu
e two graphs theoreti
 lemmas whi
h are used in our proof.Lemma 2.4. Let G be an undire
ted graph having m edges, of maximal positive degree ∆.Then G has a mat
hing of size ⌊ m

2∆−1⌋.Proof. Su
h a mat
hing 
an be obtained by a greedy algorithm, as taking an edge uv in themat
hing forbids the edges adja
ent to u and those adja
ent to v (there are at most 2∆− 1su
h edges, in
luding uv).Lemma 2.5. Let H be an undire
ted graph on n verti
es, of maximal degree ∆. Then Hhas an independent set of size ⌊ n
∆+1⌋.Proof. Su
h an independent set 
an be obtained by a greedy algorithm, as taking a vertex

u in the independent set forbids the verti
es adja
ent to u.Theorem 2.6. The MULTICUT IN CATERPILLARS problem has a kernel of size O(k5).The rest of this se
tion is dedi
ated to the proof of the theorem.Observation 2.7. A node has at most k + 1 R-neighbors in ea
h dire
tion.Proof. If a node x has k + 2 R-neighbors in, say, the right dire
tion, then Rule CommonFa
tor applies to any longest right request of x.



188 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEOClaim 1. There are at most 2(k + 1)(2k + 1) − 1 bad leaves.Proof. A bad leaf is 
onne
ted to at most k+1 leaves of some given group, by Rule CommonFa
tor. Let G be the undire
ted graph whose verti
es are the bad leaves of T and wherethere is an edge between two leaves if there is a group request between them. The minimaldegree in G is at least 1, and the maximal degree is at most k + 1. If there are at least
2(k + 1)(2k + 1) bad leaves then there are at least (k + 1)(2k + 1) edges in G. Thus byLemma 2.4 there exist a mat
hing of size k+1 whi
h implies the existen
e of k+1 endpoint-disjoint (thus disjoint) group requests. In this 
ase, Rule Disjoint Requests would apply.Claim 2. A wingspan has size at most 2(k + 1)(4k + 3) − 1.Proof. Let W be a wingspan. As Rule Dominating Wingspan does not apply, W does notdominate k + 1 endpoint-disjoint requests. Let W ′ be the set of leaves pending from W .Let G be the undire
ted graph whi
h verti
es are the leaves in W ′ and the nodes in W . Forea
h leaf to leaf request zy su
h that z and y are in W ′, 
reate an edge zy in G. For ea
hmixed-request zy su
h that z is in W ′ and y in W , 
reate an edge zy in G. Finding k + 1endpoint-disjoint requests is equivalent to �nding a mat
hing of size k + 1 in G. The degreeof a vertex u in G is at most 2k+2 be
ause there are at most k+1 requests in ea
h dire
tionfor u in T (by Observation 2.7). Moreover, if u 
orresponds to a node of W ′, the degree of
u is at least one. Indeed, sin
e the wingspan of x is maximal, ea
h L2-leaf pending from Wmust have a request dominated by W .If there are 2(k + 1)(4k + 3) L2-leaves in W ′, then G 
ontains at least (k + 1)(4k + 3)edges, and so G has a mat
hing of size k + 1 by Lemma 2.4, whi
h in turn means theexisten
e of k + 1 endpoint-disjoint requests.Claim 3. There are O(k3) L2-leaves.Proof. Let x be a L2-leaf of wingspan W . By the previous 
laim, there are less than 2(k +
1)(4k + 3) leaves pending from W . At most 2(k + 1)(4k + 3) L2-leaves not pending from
W have wingspans interse
ting W for ea
h dire
tion, as the furthest leaf (on the right)of wingspan interse
ting W has a wingspan whi
h dominates all other leaves of wingspaninterse
ting W from the right. Let H be the auxillary graph on L2, where two L2-leaves areadja
ent if their wingspans intertse
t. H has maximum degree less than 6(k + 1)(4k + 3)by the above dis
ussion. By Lemma 2.5, if T has at least 6(k + 1)(k + 2)(4k + 3) verti
es,then H has a stable set of size k + 1. Thus T would have k + 1 disjoint wingspans, and thus
k + 1 disjoint requests, a 
ontradi
tion.Claim 4. There are O(k5) I2-nodes.Proof. By Claim 3, there are O(k3) I2-nodes with leaves. Let us bound the number of innernodes. Let I ′ be the set of inner nodes in T . Consider the graph G on the set of verti
es I ′where there is an edge xy if xy is a request in T .Be
ause of Rule In
lusion, ea
h inner node has degree at most two in G (one in ea
hdire
tion). Thus G is a disjoint union of paths, 
alled request paths. The length of a requestpath is at most k by Rule Disjoint Requests. A node with degree 1 in G is an extremal innernode.Ea
h extremal inner node must be an R-neighbor in T of a leaf or of an internal nodewith a leaf (otherwise it would be redu
ed by Rule Unique Dire
tion). Denote by X the setof leaves and internal nodes with a leaf atta
hed to it. Ea
h node in X has O(k) R-neighborsamong the inner nodes, and |X| = O(k3), so there are O(k4) inner nodes with a neighbor in



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 189
X (in parti
ular, at most O(k4) extremal inner nodes). Ea
h extremal inner node belongsto a unique request path of size at most k. Moreover ea
h inner node with no neighbor in
X must belong to a request path. So there are O(k5) inner nodes in T .There are O(k3) leaves and O(k5) internal nodes in a redu
ed instan
e. Thus theMULTICUT IN CATERPILLARS problem has a kernel of size O(k5).3. General TreesShould no 
onfusion arise, we retain the terminology of the previous se
tion.Let (T , P , k) be an instan
e. Let T ′ be the tree obtained from T by deleting the leaves.We partition the set of nodes of T into the following seven sets:

• The set I1 of leaves in T ′.
• The set I2 of degree 2 nodes in T ′.
• The set I3 of the other nodes in T ′.
• The set L1 of leaves rooted at I1.
• The set L2 of leaves rooted at I2, endpoint of no group request.
• The set L′

2 of leaves rooted at I2, endpoint of at least one group request.
• The set L3 of leaves rooted at I3.We also denote by I the set of internal nodes of T , and by L the set of leaves of T .We need a few te
hni
al de�nitions. A 
aterpillar of T is a maximal 
onne
ted 
ompo-nent of T − I3 − L3. The ba
kbone of a 
aterpillar is the set of internal nodes of T in this
aterpillar. A 
aterpillar C is non-trivial if the set of internal nodes in C seen as a 
aterpillarhas size at least two. The extremities of a non-trivial 
aterpillar C are the two nodes of Cwhi
h are I2 or I1-nodes of T and be
ome I1-nodes in C. A minimal request of a node x is arequest having x as an endpoint and whi
h internal path is minimal for in
lusion among allinternal paths of requests with x as an endpoint. If several requests have the same internalpaths, we arbitrarily distinguish one as minimal and will not 
onsider the others as minimal.If xy is a minimal request of x then y is 
alled a 
losest R-neighbor of x.Let x and y be nodes in T . If z lies on the path between x and y, or is a leaf rooted atthe path between x and y, we say that z lies toward y from x (and we do not write "from

x" should no 
onfusion arise).Assume x is an L2-leaf of a 
aterpillar C (that is, an L2-leaf of T whi
h belongs to C).Let f(x) be the node from whi
h x is pending. Let Gr(x) be the group of leaves pendingfrom f(x). Let A(x) and B(x) be the two 
onne
ted 
omponents of T −{f(x)}−Gr(x). Let
a(x) (resp. b(x)) be the extremity of C in A(x) (resp. B(x)). If A(x) (resp. B(x)) 
ontainsno extremity of C, that is if f(x) is an extremity of C, then we de�ne a(x) = f(x) (resp.
b(x) = f(x)). A wingspan W of x is formed by the restri
tion to internal nodes of the unionof two requests between x and two of its 
losest R-neighbors lying respe
tively in A(x) and
B(x). Observe that x 
an have several wingspans. The sub
aterpillar of the wingspan W
onsists in W and the leaves rooted at W .An L2-leaf x 
overs a 
aterpillar C if either x /∈ C and there is a request starting at xand going through the whole ba
kbone of C, or if x ∈ C and there are two minimal requestsstarting at x whi
h together 
over the whole ba
kbone of C.We apply the following redu
tion rules to an instan
e: Rules (0), (1), (2), (3), and (4)are stated in the previous se
tion. Rule Dominating Wingspan is split for 
onvenien
e intotwo rules, one similar to the 
aterpillar 
ase and a more general one, as follows:



190 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEO(5a) Bidimensional Dominating Wingspan: if x is an L2-leaf of a 
aterpillar C with awingspan W su
h that W ∩ C dominates at least k + 1 endpoint-disjoint requests,then we 
ontra
t e(x).(5b) Generalized Dominating Wingspan: assume that x is an L2-leaf of the 
aterpillar C,and that x 
overs C. Assume that for every 
losest neighbor z of x in A(x), thereexist k + 1 endpoint-disjoint requests between a node lying toward b(x) from x anda node toward z from a(x). Then we 
ontra
t e(x).Ea
h iteration of the redu
tion 
onsists in applying the �rst appli
able rule, in the aboveorder.Lemma 3.1. Rules (5a) and (5b) are safe.Proof. Safeness of Rule Bidimensional Dominating Wingspan follows from the safeness proofof Rule Dominating Wingspan in the previous se
tion.Assume Rule Generalized Dominating Wingspan 
an be applied to x. Let z1, . . . , zlbe the 
losest R-neighbors of x in A(x). For every i ∈ {1, . . . , l}, be
ause of the k + 1endpoint-disjoint requests mentionned in the rule, any k-multi
ut 
ontains an edge in thepath between zi and b(x). Assume that a k-multi
ut S 
ontains an edge e′′ between x and
b(x). Let e′ be the edge adja
ent to e(x) in the path between x and a(x). If S 
ontains
e(x), then S − {e(x)} ∪ {e′} is also a k-multi
ut. Indeed, any request x, u with u ∈ A(x) is
ut by e′, and any request x, v with v ∈ B(x) is 
ut by e′′. Assume now that a k-multi
ut S
ontains no edge between x and b(x), then for every i ∈ {1, . . . , l}, S must 
ontain an edge
ei in the path between zi and f(x). Let e′ be the edge adja
ent to e(x) in the path between
x and b(x). If S 
ontains e(x), then S − {e(x)} ∪ {e′} is a k-multi
ut. Indeed, any request
x, u with u ∈ A(x) is 
ut by an edge ei, and any request x, v with v ∈ B(x) is 
ut by e′.Proposition 3.2. The repeated appli
ation of these rules on the instan
e until none 
an beapplied takes polynomial time.Proof. The proof of the �rst �ve 
ases was made for general trees in the previous se
tion.The polynomiality of Rule Bidimensional Dominating Wingspan follows from the proof ofRule Dominating Wingspan's polynomiality in the previous se
tion. De
iding whether thereexist k + 1 endpoint-disjoint requests between pres
ribed areas 
an still be expressed asa mat
hing problem as in Rule Dominating Wingspan's proof, so the appli
ation of RuleGeneralized Dominating Wingspan also takes polynomial time.Theorem 3.3. The number of nodes in a redu
ed instan
e is O(k6).The rest of this se
tion is devoted to the proof of this theorem.Claim 5. |I1| = O(k)Proof. There are at most k groups of leaves with a group request, by the k + 1 disjointrequests rule. Every group of L1-leaves has a group request, otherwise any leaf of this groupwould be deleted by Rule Unique Dire
tion. Every I1-node has at least one L1-leaf pendingfrom it, thus |I1| ≤ k.Claim 6. |I3| = O(k)Proof. In a tree, there are at most as many nodes of degree at least 3 as the number ofleaves, so |I3| ≤ |I1| ≤ k.



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 191Claim 7. |L1| = O(k2) and |L′

2| = O(k2)Proof. Ea
h leaf in L1 is a bad leaf by Rule Unique Dire
tion, and ea
h leaf in L′

2 is badby de�nition. As in Claim 1 there are at most 2(k + 1)(2k + 1) − 1 bad leaves in T . Thus
|L1 ∪ L′

2| = O(k2)We now show that:
• |L3| = O(k4)
• |L2| = O(k4)
• |I2| = O(k6)Claim 8. The number of requests from a node x to a group of leaves is at most k + 1.Proof. Otherwise Rule Common Fa
tor would apply to these requests.Claim 9. The number of requests from a node x to all the L2-leaves in a given 
aterpillar

C is at most 2k + 2 if x ∈ C and k + 1 if x /∈ C.Proof. Otherwise there would be at least k + 2 requests sharing the same dire
tion between
x and leaves in this 
aterpillar, and Rule Common Fa
tor would apply to these requests.Claim 10. There are at most (2k + 1)(k + 2) − 1 requests between two groups of leaves.Proof. Let G be the bipartite graph whi
h verti
es are the leaves of the two groups Y and
Z, and where a leaf in Y and a leaf in Z are adja
ent if there is a request between them.The maximum degree in G is at most k + 1 by Claim 8, thus if there are (2k + 1)(k + 2)requests between Y and Z, then by Lemma 2.4 there would be a mat
hing of size k+2 in G.Thus there would be k + 2 endpoint disjoint requests between Y and Z, and Rule CommonFa
tor would apply.Claim 11. The number of requests between a group of leaves E and the nodes in a given
aterpillar C is at most 2(2k + 1)(k + 2) − 2.Proof. Assume by 
ontradi
tion that there are at least 2(2k + 1)(k + 2) − 1 su
h requests.Let f be the node in whi
h the leaves of E are rooted. If f belongs to C, then C − f hastwo 
onne
ted 
omponents. Among these two 
omponents, we sele
t the 
omponent C ′ inwhi
h there is the largest number of requests from E. If f does not belong to C, then welet C ′ = C. There are at least (2k + 1)(k + 2) requests between C ′ and E. Consider theundire
ted (bipartite) graph G whi
h verti
es are the leaves of E and the nodes of C ′, andwhere there is an edge between a leaf from E and node from C if there is a request betweenthem. This graph has maximum degree k +1 by Rule Common Fa
tor, thus by Lemma 2.4,
G has a mat
hing of size k + 2. Thus there would be k + 2 endpoint disjoint requests, andRule Common Fa
tor would apply to them.Claim 12. There are at most 2k − 1 
aterpillars in T .Proof. There are at most 2k nodes in I1 ∪ I3. Let us 
all them separating nodes. Let rbe one of these separating nodes. Let us 
onsider r as the root of T . Ea
h 
aterpillaris adja
ent to exa
tly two separating nodes. Let us asso
iate to ea
h 
aterpillar of T itsadja
ent separating node further away from the root r. This mapping is a bije
tion, and no
aterpillar is mapped on r, thus there are at most 2k − 1 
aterpillars.
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|L3| = O(k4)Proof. We have that |I3| = O(k) by Claim 6. Let X be an L3-group rooted in y ∈ I3.Be
ause of Rule Disjoint Requests, at most (2k + 1)(k + 1) − 1 leaves in X are endpointsof group requests (by Lemma 2.4 on the usual auxilliary request graph on X). Ea
h leafof X must be the endpoint of at least one request, so let us 
ount the maximal numberof requests 
ontributed by ea
h type of nodes. By Claim 10, and as there are at most kgroups of L1-leaves and k groups of L3-leaves, at most k((2k + 1)(k + 2) − 1) leaves of Xhave a request toward an L1-leaf or an L3-leaf. There are at most 2k − 1 
aterpillars in Tby Claim 12, and leaves in X have in total at most 2(2k + 1)(k + 2) − 2 R-neighbors inany 
aterpillar by Claim 11. Thus O(k3) leaves in X are endpoints of a request toward a
aterpillar node, and I3 nodes 
an 
ontribute for at most O(k2) requests, so |X| = O(k3).This gives |L3| = O(k4).Claim 14.
|L2| = O(k4)Proof. Assume by 
ontradi
tion that |L2| ≥ 3(2k − 1)(k + 1)(k + 1)(4k + 3). Let C be a
aterpillar of T 
ontaining the maximum number of L2-leaves. By Claim 12, there are atmost 2k − 1 
aterpillars in T , thus C 
ontains at least 3(k + 1)(k + 1)(4k + 3) L2-leaves.Assume �rst that C is not 
overed. We obtain a 
ontradi
tion as in the 
aterpillar
ase. Consider x to be the L2-leaf having a wingspan whi
h interse
tion W̃ with C hasmaximal size. Let C ′ be the sub
aterpillar of ba
kbone W̃ . Then C ′ 
ontains at least
(k + 1)(4k + 3) L2-leaves, otherwise one would �nd k + 1 disjoint wingspans by taking W̃ ,then a W̃1 disjoint from W̃ , then a W̃2 disjoint from W̃ and W̃1, . . . , and �nally a W̃kdisjoint from W̃ , W̃1, . . . , ˜Wk−1, as in Claim 3. Note that the 
aterpillars W,W1, . . . ,Wkare disjoint, as their interse
tions W̃ , W̃1, . . . , W̃k with C are disjoint and non-empty. Thusthere would be k + 1 disjoint requests, a 
ontradi
tion. Sin
e W̃ is maximal, ea
h L2-leaf yin C ′ is the endpoint of a request r ⊆ C ′. The existen
e of (k +1)(4k +3) su
h leaves meansthere are at least k+1 endpoint-disjoint requests dominated by W̃ , by Lemma 2.4 applied tothe usual auxiliary request graph G on the L2-leaves of C ′ (note that the maximum degreeof G is at most 2k + 2). Whi
h means Rule (5a) should apply, a 
ontradi
tion.Assume now that C is 
overed by some L2-leaf x. If more than (k+1)(4k+3) L2-leavesin C do not dominate C, then some wingspan of x dominates (k + 1)(4k + 3) requests,and thus dominates at least k + 1 endpoint-disjoint requests, by the usual appli
ation ofLemma 2.4. So Rule Bidimensional Dominating Wingspan should apply, a 
ontradi
tion.So at least 3(k + 1)(k + 1)(4k + 3) − (k + 1)(4k + 3) L2-leaves in C 
over C, let X be theset of these leaves. Let d1, . . . , dj be the I1-nodes in A(x). Note that j ≤ k.For su
h an I1-node di and a leaf x ∈ X having at least one quasi-R-neighbor lyingtoward di, let us denote by rn(x, i) the 
losest quasi-R-neighbor of x toward di. Let RN(i)be the set of all nodes rn(x, i) for leaves x ∈ X having at least one quasi-R-neighbor lyingtoward di. Note that the nodes of RN(i) lie on the segment [a(x), di]. Denote by xi

1, . . . , x
i
tthe leaves in X having at least one quasi-R-neighbor lying toward di, ordered a

ording tothe distan
e between a(x) and rn(x, i), from 
losest to furthest. If t ≥ (k + 1)(4k + 3),denote by Xi the set {xi

1, . . . , x
i
(k+1)(4k+3)}.When less than (k +1)(4k +3) L2-leaves in X have a quasi-R-neighbor toward di, mark

di as invalid, and pro
eed. Note that at least one di must be valid, as |X| > k(k+1)(4k+3).



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 193Now we have a list of at most k sets (the sets Xi for di valid) of size (k+1)(4k+3). Theunion X ′ of these is of size at most k(k +1)(4k +3) < |X|. Thus there exists an L2-leaf z in
X − X ′. Consider the 
losest quasi-R-neighbor ni of z toward a valid di. There are either
(k+1)(4k+3) L2-leaves of Xi between z and a(x) or (k+1)(4k+3) L2-leaves of Xi between zand b(x). Thus there are k + 1 endpoint-disjoint requests either between the sub
aterpillarsspanned by the segments ]z, a(x)[ and ]a(x), ni[ or between the sub
aterpillars spanned bythe segments ]b(x), z[ and ]a(x), ni[, by Lemma 2.4 on the usual auxiliary request graph. Inthe former 
ase Rule Common Fa
tor applies, in the latter Rule Generalized DominatingWingspan applies.Claim 15.
|I2| = O(k6)Proof. There are O(k4) internal nodes with leaves in T , by Claim 14. It remains to boundthe 
ardinal of the set Z of inner nodes in I2.Let r be an I1-node of T , we now 
onsider r as the root of T . Let u be a node of Z.Let C(u) be the 
aterpillar 
ontaining u, denote by a(u) and b(u) its extremities, with b(u)an an
estor of a(u) with respe
t to r. Let A(u) be the 
onne
ted 
omponent of T − {u}
ontaining a(u). If the node u has an R-neighbor in A(u), sele
t su
h node v(u). Note that uis on the path bewteen v(u) and r. Thus, by Rule In
lusion, v(u) 6= v(u′) whenever u 6= u′.Let G be the graph with vertex set Z, and with edge set {(u, v(u))|u ∈ Z}. This graph Gis a disjoint union of paths. By Rule Disjoint Requests, paths in G have length at most k.Verti
es u in G whi
h have no R-neighbor in A(u) must be adja
ent in T to some node notin Z, by Rule Unique Dire
tion. There are O(k4) nodes not in Z, ea
h of whi
h 
an haveat most k R-neighbors in Z. Indeed, a vertex 
annot have two di�erent R-neighbors in thesame dire
tion, by Rule In
lusion. Thus there are O(k5) verti
es u without R-neighbor in
A(u) in G, whi
h gives that there are O(k6) verti
es in G, whi
h �nally means that thereare O(k6) inner nodes in T . �This 
on
ludes the proof of the theorem.4. Con
lusionWe have shown that the (unweighted) MULTICUT IN TREES problem admits a polyno-mial kernel. This kernelization algorithm, or just some parti
ular sequen
e using some ofthe redu
tion rules presented above, 
an be used as a prepro
essing or in-pro
esssing stepin a pra
ti
al algorithm.This analysis might not be tight, so one 
an hope to improve this O(k6) bound retainingthe same set of redu
tion rules. New redu
tion rules might be needed to de
rease this boundeven further.Our te
hnique does not seem to generalize to the weighted version of MULTICUT INTREES. Thus de
iding whether the Weighted MULTICUT IN TREES problem admits a poly-nomial kernel is still open.It is not known whether the general Multi
ut in Graphs problem is FPT with respe
tto this parameter k, even for graphs of bounded treewidth. If it turned out to be true, thenthe question of the existen
e of a polynomial kernel for Multi
ut in Graphs would rise.Among the most notorious open problems on polynomial kernelization stand Dire
tedFeedba
k Vertex Set and Clique Cover. Dire
ted Feedba
k Vertex Set 
onsists in de
idingwhether a graph admits k verti
es whi
h removal makes the graph a
y
li
. This problem
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